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The Interaction of Two Spherical
Gas Bubbles in an Infinite Elastic
F. Chalon SOIld

F. Montheillet

Division for Materials and Structures Sciences, The elastic strain and stress fields between two bubbles of different sizes and different
URA CNRS 1884, pressures were estimated by using the fundamental result of Eshelby. The equivalent
Ecole Nationale Supérieure des Mines de inclusion method was extended to the case of two inclusions in an infinite elastic solid.
Saint-Etienne, This approach, which remains totally analytical, was compared successfully to finite ele-
158 cours Fauriel, ment calculations. The mean stress provides information about gas diffusion between the
42000 Saint-Etienne, France bubbles: according to the results, the bubbles are likely to progressively equalize their

sizes. Moreover, the derivation of the von Mises equivalent stress showed that its value, in
the vicinity of the bubbles, is larger than the elasticity limit. Therefore, for a complete
mechanical description of the problem, plasticity should be taken into account. In spite of
its simplicity, this method nevertheless leads to results, which are very close to the pre-
diction of numerical calculations.DOI: 10.1115/1.162911)0

1 Introduction analysis with Boussines{@], Papkovitch[9], or Neuber[10]
functions and gave series expansion solutions. In this work, a
ifferent approach is proposed, based on the fundamental result of
Eshelby{11] extended to two inhomogeneities. The determination
8ﬁhe eigenstrain of each inclusion from the equivalent inclusion
thethod is used to derive the stress and strain fields between the

L NAtiusions. The present approach involving cavities with an inter-
eventually damage the materidlasser[1]). The knowledge of o) hressyre is the same as for cavities in a material submitted to
the stress field between two bubbles gives information about thelfierna| loading, but it seems important to explain the transposi-
further evolutions. More specifically, the von Mises equivalensn from one problem to the other. This method is quite general
stress level is related to the possible occurrence of local damagsce it allows the interaction between two gas bubbles of differ-
associated with plastic strain, while the mean stiéyslrostatic ent sjzes and different pressures to be investigated. Three configu-
pressurgis associated with bubble growth. An analytical or/angations are analyzed, i.e., two identical bubbles with the same
numerical approach on this kind of material is necessary, sincéfiessure, two bubbles of different sizes with identical pressures,
is very difficult to carry out direct measurements of the materighd two identical bubbles with different pressures. For each case,
evolution with time. It is also relevant to derive analytical expreshe mean stress and von Mises equivalent stress are displayed
sions of the mechanical interaction between two bUbbleS, trﬁbng the Symmetry axis of the bubbles and in the form of iso-
could be simply implemented into more complex numerical mogmalue maps. These results are then discussed by comparison with
els. Sternberg and Sadowsk3] were the first to be interested infinite element calculations that are described later. It should be
the problem of interaction of two spherical cavities of the samgoted that, although finite element calculations generally give ac-
size. They solved it for a uniform field of tension at infinity usingcurate results for linear problems, they may nevertheless some-
the Boussines{3] stress-function approach to obtain a series eXimes depart from the exact solution. In particular, finite element
pansion solution. Other authors then extended this method to metgutions around voids are very mesh sensitive. Numerical results
than two cavities and for cavities of different sizes under uniaxigleed therefore be considered carefully when compared with the
loading along the common axis of the cavities, Miyamieth and  analytical derivations.
uniaxial tension in the direction perpendicular to the axis of the
cavities, Tsuchida, Nakahara, and Koddip Shelley and Yu6],
still following Sternberg and Sadowskj2], developed this o The Equivalent Inclusion Method of Eshelby
method for inclusions. Chen and Acriv$g] extended it to an ) )
arbitrary strain field applied at infinity. Willis and Bulloud8] Eshelby has established the following fundamental result. Let
proposed a slightly different approach: They considered the tof2iP€ an elastic and isotropic infinite body. Consi€leas a part of
energy of the bubbles, i.e., the elastic energy, the energy of tHe Small in comparison witlD. We can isolate fictitiously)
gas, and the surface energy. Their approach was therefore not JMjjCh is supposed to represent an ellipsoidal inclusion. Now re-
mechanical but also thermodynamical. They gave a solution fB}°Ve this inclusion fronD and impose to it an eigenstrat) that
the energy interaction between two excess pressure bubbles g no relation with any stress: for example, a thermal deforma-
they did not derive precisely the stress field from their results. tion or a phase transformation. If the inclusion is replaced ihto

All the above authors, except Willis and Bullough, started thelthich has not been transformed yet, its deformation is no longer

free due to the influence of the surrounding matrix. Thus, a stress

" Contributed by the Applied Mechanics Division ofE AMERICAN SocieTy oF  field appears i) andD. The inclusion deformatior, due to the

MECHANICAL ENGI.NEERSfor publication in the ASME OURNAL. OFA.F’.P!_IED ME- presence of the matriD, is related to the eigénstrain b§/
CHANICS. Manuscript received by the ASME Applied Mechanics Division, February . =L
26, 2002; final revision received, June 10, 2003. Associate Editor; A. Needleman.o: 8, WhereS is the fourth-order Eshelby tensor. Through this

Discussion on the paper should be addressed to the Editor, Prof. Robert M. 'V'C'V'eébriv_ation, Eshelby showed that the deformation of an ellipsoidal

ing, Department of Mechanical and Environmental Engineering, University ; ; afini ; _
California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accep(ife]é;lusmn em.bedded In an mfl_mte .homoqeneous medu_;m, sub
until four months after final publication of the paper itself in the ASMEJBNAL OF mitted to uniform remote loading, is homogeneous. This result

APPLIED MECHANICS. allows the inhomogeneity problem to be dealt with. Consider now

The elastic interaction of two spherical cavities with intern
pressure(bubbles is important from the standpoint of materials,
engineering and has already been investigated by several auth
One of the common applications is the aging of nuclear fuel
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Problem p) of Fig. 1 will first be solved for inhomogeneities.
Consider two ellipsoidal inhomogeneiti€s, and(}, with Hooke
tensorsC' andC" in a matrix with Hooke tenso€ under remote
stressg¥. Deformation in inhomogeneity | is influenced by inho-
mogeneity Il such that

§I:§O+§I+Z7II (2)
with
g=sp ®@)

whereS is constant and the same for the two inclusions since its
expression depends only on the shape of the inclusions, which are
both spherical here, and

27||:|:=)||:[_g|| (4)

whereD" is the influence tensor associated with inclusion 1.
Thus, the strainy" represents the influence of inclusion Il on
r_lclusion I. In the same way, the influence of inclusion | on inclu-

() (®) ©

Fig. 1 Decomposition of the problem

an ellipsoidal region, referred to as an inhomogeneity, in an inf

H |
nite medium, with elastic constants different from the rest of tha®n ! 1S 7. . . . .
material. Note that the eigenstrains could be expanded in polynomial
The Eshelby result is applied to the inhomogeneity. Considgf"eS: €-9-
the infinite elastic body of Hooke tens@, submitted tog® and Bij (X) =B + Bl X+ Bl Xixi + . . . . (5)

the corresponding straigl at infinity. The ellipsoidal inhomoge-

neity ) with Hooke tensolC' disturbs locally the stress field. The' ™ 2 =

aim of the analysis is to determine the perturbations caused by tifdies in the same way. o ) ) |

inhomogeneity. The basic idea of Eshelby is to substitute to theHowever, to a first approximation, the eigenstragisand g

inhomogeneity an homogeneous inclusion with the same prop#fll be assumed uniform, whence

ties as the matrix, but submitted to an eigenstrain. The eigenstrain I—g g 6
_ §=8Sp (6)

must be determined such as to produce the same stresses and

strains as the former inhomogeneity. In the inhomogeneity, tlite constant while

elastic strain iss®+ &, whereas in the equivalent inclusion it is

As {=8:B8 and »=D: 3, they could be expanded in polynomial

. 0 2 . » . 71} (X)=Djjy (X) By (1)
given bye”+ ¢— B. The equivalence condition for the stresses in ) . . i
the inhomoge_nei_ty and the inclusion is therefore remains a function of the space variables through the influence
tensor.
C(e%+&)=Ci(e°+¢-p) 1) The equivalence conditions for the stresses in the two inhomo-

geneities and the two inclusions can now be written:
gl:(§0+§l+yll):g:(go_,’_é;l_;’_yll_@l) in ‘Q'l
gll:(§0+§ll+pl)zg:(§0+§ll+yl_§ll) in 92'

which, combined Witr§=§:g allows the eigenstrain tensgr to

be determined. ®)

3 Extension of the Equivalent Inclusion Method Since the material is isotropic, the constitutive equation can be
of Eshelby written in the following form:
While the problem of interacting inhomogeneities cannot be _
solved in clos?ad fornithe “exact” sol%tion invo?ves infinite series 7ij = 2pei + (K =20l 814 ©)
expansions[12]), an approximate analytical derivation is pro-wherex andu are the bulk and shear moduli, respectively.
posed below. In a first step, the interaction of two bubbles with Equation(8) then becomes
equal internal pressures will be dealt with. Using the superposition |, _o ol I ol
Srinciple llustrated in Hig. 140, 1(8). and 16) it s sufficiont 2 (211 + S Bia+ Dljaia)
to consider merely cavities. Application of the equivalent inclu- + (&' = 2u'13) (£ + SekmnBinn T DlemnBIan)ﬁij
sion method extended to two inclusions then leads accordingly to
introduce two eigenstraing' and 8", that depend on the space  =2u(&}} + Sij Bia+ Dijii B — B1j)
coordinates. For the sake of simplicity, they will be approximated _ 0 I I Il ys i
by their values at the centers of the respective bubbles. In a sec- (k= 2ul3) (et SamoBrmn DicemeBmn ™ Biad dij i
ond step, the effect of a pressure differedge between the two 2#”(8% +$jk|/3L'|+ D:jkllgl'd)
bubbles will be addressed in the form of a small perturbation to
the above solution. It is worth to note that the boundary conditions ~ + (" —=2."/3) (£ R+ SckmnBmnt DickmeBimn) 5
at the bubble surfaces, i.er,,= —p ando,,=0, are not strictly 0 i Lo I
fulfilled by such an estimation of the exact solution. =2u(ij+ Sijia B+ Dija Bia = Bij) + (k= 2u13)
Solid inhomogeneities will first be considered, but in further 0 [ [ I _pllys
derivations their elastic constants will be set equal to zero in order % (81t SacmiBmnt DiaemiBmn™ Biad 9ij I 2z (10)
to deal with cavities. The problem, which is axisymmetric, will be As seen above, the Eshelby tensors are the samé foand
solved in a plane containing the center of the two inhomogeng- . The above system must now be solved in order to determine
ities. In Fig. 1, the transition from gas bubbles to cavities withodbe eigenstrains for each inclusion.
internal pressure is shown, with,; greater thanp,, p=(p; ; ;
+p,)/2 andAp=p,—p. The case illustrated in Fig. b} is more 4 Analytical Resolution
difficult to solve than the other ones that are quite obvious. It 4.1 Derivation of the Influence TensorsDj;,;. The expres-
seems important to remind that the applied stress at infinity $ton of D, for a spherical inclusion of radiusis given by Mura
hydrostatic, so that® is a diagonal tensor. [12]:
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X3 9a3+5a3(1—2v)
Di111= Dzzzzzw

15a5—10a3(2—v)
D3zss= 151=7)

3a5—5a3(1-2v)
D127~ Dzuﬁw

d

—6a5+5a3(1—-2v)

\ D3311=D3320= 51— 1)

5 3

a, —6a3+5a5(1+v)

X2 D1135= Dooss= 15(1= 1)
—12a5+5a3(1+v)

X1 D13157 Dogoz= 30(1— )

Fig. 2 The two cavities and the set of Cartesian coordinates and all the otheDj; =0.

In the above equations;,=a,/d, and for the second inclusion
the corresponding components are the same wijtha, /d.

8m7(1—v)D;; =W, i —2v6P,ii —(1—v)[ D, 5 L . . .
(L= v)Dijia () =W opaij = 200 @i = (1= )[ Do G 4.2 Derivation of the Eigenstrains and the Stress Field
+ @, 8+ D) G+ Dy 6] (11) As seen above§ can be written in the following form:

with &y 0 &g

1 &= 0 &u &g (15)
®=5[1N)=xxd(M)] - and £13 €13 €a3

X; with the 18 associate§;
‘I’.i=§[|(M*kale(M*az(l.(A)*kaklm(k))] (12)

7—5v
and S11117 Sp205= Sazaz™ m S12157 Sy323
A=x>+x2+x2—a? and Ix(\)= Ama’ ) =S, i
et KT 2nt1)(a?+ )" TR BL151-v)
n
(13) 5v—-1

S1127= S2235= Sa311= S1135= Sp211= Ss320= m
Here, the following convention is used: summation from 1 to 3 is

extended over repeated lower case indices; capital indices take the and all the other §;=0.
same values as the corresponding lower case ones but without
summation. Note that, in Eq13), the number of indicea=0, 1, The systenm(10) can now be solved. Farandj=1,3, it leads
or 2. very easily to
As seen before, the unknown eigenstrain tengrand 8" are | |
assumed to be uniform in each inclusion. Owing to axisymmetry, B15=PB15=0 (16)

the expressions of the eigenstrains can be simplifiegl 2). so that the system reduces to four equations for only four un-

Since B11= B2, B13= B2z, andB1,=0, only three eigenstrain . RETI I
. knowns. The elastic moduli', ", «', and«" are now set equal
components are to be determined, nam@ly, B33, andgy; The 1o zero, since cavities are considered, and the hydrostatic loading

linear systen(10) then decomposes into one set of four equation

i " I | I I Is accounted for by specifyingo- =(p/3«) &; . The following sys-
for the “diagonal” unknownsf’,, B33, B11, andB3; on the one fem is obtained: I

hand, and a set of two equations for the “nondiagonal” unknown

Bis and Bl This system will be solved for two inclusions cen- ! | I n_

telrsed a1(0,18,0 and(0,0,d. The(constankvalues of the two eigen- A116|11+ A123|33+ A13,8ﬁ1+ A14'Bﬁ3 P

strain tensors are those derived at the center of the associated A21B11+ AroBazt AxaBit AoaBzs=—p 17
inclusion, although such a choice is somewhat arbitrary since they Ag1Bh1+ AgoBhst AgaBli+ AguBha=—p an
could be calculated anywhere in the inclusions. The derivation is | | I I

detailed below for one inclusior),. Thus, owing to axisym- AaB11t AgBazt AgaBiit AsBzs=—p

metry, » can be written in the following form: where the coefficienta. :

ij » given in the Appendix, depend on the
7 0 7 components of the Eshelby and influence tensors. Once the eigen-
1 B strains are determinetsee Appendix the interaction fields be-
= 0 71 73 (14) tween the inclusions can be calculated with the help of the influ-
ence tensor®' andD".
T3 s 7 The strain field in the matrix associated with the case of Fig.

Therefore only 3¢6=18D;;, components are needed: 1(b) can now been written in the form

Journal of Applied Mechanics NOVEMBER 2003, Vol. 70 / 791
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Fig. 3 The finite element mesh:
cavities

g=g"+D'(X1,X2,X3): 8'+ D" (X1, X2, X3): B".

(a) general view; (b) the area close to the

(18) thermore, the effect of a pressure difference between the two
bubbles may be estimated to a first approximation by adding the

Owing to the axisymmetric configuration, the interactions arétresses determined {@5) below.

analyzed in the planex( ,x3). Since the eigenstrain tensor
following diagonal form:

B O O
0 :811 0 )
0 0 Bs

has the |t is worth to note that the general solution of the problem
proposed here is only an estimation. Indeed we first assumed the
eigenstrains uniform. The second approximation is related to the
boundary conditions. In order to apply the principle of linear su-

(19) perposition, the tangential components due to the pressure differ-
ence between the bubbles are neglected. Under such approxima-
tion, the equality between the boundary conditions illustrated in

the only required components of the influence tensoDgyg and  Fig. 1 remains correct.
Dijs3- The interaction strains for the case of Figh) @re given  For two cavities with the same internal pressprehe solution

by
717= (D111 D159 B11+ D11ggBiat (Dirast D112) Bl
+D11383
722~ 711

733= (D311 D3350 Bh1+ D3333833+ (D3a11+ D3gp)) B

ol
+D333sB33-

Therefore, only 12 components of the influence tensor
calculated. The stresses for the case of two cavities with
pressurep are then obtained from the constitutive E§).

792 / Vol. 70, NOVEMBER 2003

of the case depicted in Fig(d is
ef’=(—pl3k) 5 . (21)
Sincee{’+ & =0, the strain field for two interacting cavities with

the same pressure is the linear superposition of solutions for the
problems illustrated in Fig.(b) and Xc):

(20)

£=D"(x1,X2,X3): B'+D"(x1,%p,%3): 8" (22)
need be

the safifee case depicted in Fig(d) is easy to analyze since the stress
Fur- field of an isolated bubble in an infinite elastic solid has an ana-

Transactions of the ASME



a=0.5nm, d=2.5nm (a/d=0.5) | 2;=0.25nm, a,=0.75nm, d=2.5nm

mean stress along x3, p1=p;=0.5GPa

20 F

15 |
£
=10}
o L

5r + \!

/*/
4 i
-2 -1 0 1 2 3 4
X, (nm)

d
®

von Mises equivalent stress along x3, p1=p>=0.5GPa

O pises (GP2)
O vies (GP2)

- analytical method, + numerical method

Fig. 4 (a) Mean stress along axis x5 for two bubbles of same size with same pressure; (b) mean stress
along axis x5 for two bubbles of different sizes with same pressure; (c) von Mises equivalent stress along
axis x3 for two bubbles of same size with same pressure, and (d) von Mises equivalent stress along axis
X3 for two bubbles of different sizes with same pressure

lytical expression. If an internal pressutep is applied in the

ad Ap a®
absence of remote loading, the displacement field exhibits spheri- o= —Apﬁ, T9o=0pp="5 73 (25)
cal symmetry:
u=u,(r)e (23) _ . .
. . Finally the mean stress and the von Mises equivalent stress are
wheree, denotes the radial unit vector. derived:
Resolution of the equilibrium equations then yields ’
Ap a® Ap a® Ap a®
U(I’)Z 2 Err =

A T

1
(24) Ung((fll"' Tt 033 (26)

|

—:E _ 24 _ 24 _ 214 3( 02t o2t o2 27
Ovm 2[(0'11 022) (02— 033)“+ (033— 011)7] (ot o3t 03y). (27)

Hence the distribution of the two above quantities for two cavities of different sizes with different pressures can be analyzed
For the spherical coordinates, we changerl, 2— 6, and 3— ¢.
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mean stress map (MPa), a=0.5nm, d=2.5nm (a/d=0.5), p1=p>=0.5GPa

Analytical Numerical

-39 S 55 o

o B 03

-

31 31

o 39

g-; 47 ’

: : - 53

6.7 ik o - 8.7 <

%/
" 7 P
B 5 e

von Mises equivalent stress (GPa), a=0.5nm, d=2.5nm (a/d=0.5), p1=p»=0.5GPa

Analytical Numerical

Fig. 5 Mean stress and von Mises equivalent stress maps for two bubbles of same size with same

pressure

5 Results and Discussion In the following, three different cases are considered. The first
It is important to note that for an isolated bubble, the mea(;.pse(i) consists of two bubbles of same size with same internal

stress vanishes at any point; ’ pressure, the second ofig) of two different bubbles of different

sizes with same pressure, and the third @Ging of two bubbles of
same size with different pressures. In the two first cases the mean
stress and the von Mises equivalent stress are analyzed, while for

It is therefore not possible to determine the influenca pfon the the third cass onl¥ the von Mlses_ eqw\f/arl]ent strless can bz ]fj's'
mean stress around the two bubbles because the contributior%?sedse? above Two representations of the results are used for
the configuration illustrated in Fig.(d) is zero. The above ap- each case: the_stresses are displayed both_ along the symmetry axis
proach is expected, however, to give a good estimation of the vBRd on & map in the half-plane(,x). To discuss the analytical
Mises equivalent stress. approach, the results are compared with numerical calculations
The present method allows various configurations to be easfigrried out with the Abaqus® software. An example of the mesh
investigated. Three parameters can be changed: the size and preed for two bubbles of equal size is given in Fig. 3. It is divided
sure of each bubble, and the distance between the bubble centeats. two different regions: in the first one, close to the cavities,

a3

Ap a®
Urr:_Apr_:;x 09g= Opp—

<P<P_7 r—320'm=0. (28)
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mean stress map (MPa), a;=0.25nm, a,=0.75nm, d=2.5nm, p;=p,=0.5GPa

Analytical Numerical

von Mises equivalent stress (GPa), a,=0.25nm, a,=0.75nm, d=2.5nm, p;=p,=0.5GPa

Analytical Numerical
0 \ 1E-4
0.08 008
0.16 - 0.15
024 024
033 ( 033
041 b
- 049 049
057 i
065 0.55
0:73 073

Fig. 6 Mean stress and von Mises equivalent stress maps for two bubbles of different sizes with same
pressure

where the stress fields are to be determined precisely, the elemen#s shown on the curves and the maps, there are slight differ-
are small. The second one, far away from the cavities, is madeeasfces between the analytical and numerical values of the mean
larger elements. To obtain the best results, the mesh must be v&rgss, which are very small with respect to the von Mises equiva-
fine and the elements must be close to squares. Moreover, lfamt stress. This is because the nonzero mean stress is induced by
ensuring a good representation of an infinite solid, the meshtke interaction of the bubbldg vanishes for an isolated bubble
very large compared to the bubble sizes and infinite elements arkereas this interaction only introduces a perturbation of the von
used far away from the bubbles. These requirements are fulfilldises equivalent stress.

in the mesh. In Fig. 4, the stress distributions along the symmetryThe errors brought to the exact solution by the above-
axis are displayed for the two first cases. The corresponding mapentioned approximations can be estimated by considering the
are given in Fig. 5 and 6. The last case is shown in Fig. 7. Allalues of the normal stresses at the bubble surfaces, in particular
calculations were carried out using the elastic constants of palldeng the symmetry axis;. The discrepancies between the exact
dium, which is usually employed to store nuclear fuels, i«., values(i.e., o, = —p) and that predicted by the analytical ap-
=171.3 GPau=42.7 GPa, and'=0.385. proach are less than 1% for the three investigated configurations.
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von Mises equivalent stress
a=0.5nm, d=2.5nm (a/d=0.5), p1=0.6 GPa, p2=0.4 GPa

0.9

0,84 :

0.7

0.6 i

o 054 .

O \

~» 0.4 '
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o 0.3+ ;

0,2 4 1

1 H
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T > T L}
20 15 -1,0 -0,5
X, (nm)
- analytical method, + numerical method
von Mises equivlent stress map (GPa)
Analytical Numerical
o 1E-4
i 0.09
; 019
o
0.48 0.38
0.58 048
0.67 - 058
0.77 067
0.87 077
0.87
Be
o

Fig. 7 Von Mises equivalent stress along axis X3 and von Mises equivalent stress maps for two
bubbles of same size with different pressures

The largest errorgoverestimations occur of course at points tensile or compressive loading to be easily localized. Such results
where the two bubbles are facing. Moreover, the gap is signifian be taken into account in a diffusion model. Helium atoms,
cantly smaller along the equators of the bubbles. after being created by tritium decay, diffuse in the material to-

In Fig. 4, it is apparent that the analytical curves are very closeards the bubbles. From the point of view of mechanics, the
to the numerical results except for a few points where the lattevolution of a pair of bubbles of different sizes can be predicted
are slightly larger than the analytical predictions. The assumptiftom the mean stress map in Fig. 6. The tension mean stress is
of uniform eigenstrains is likely to be responsible for this discreparger near the smaller bubble than near the larger one. Helium
ancy. Similarly, the von Mises equivalent stresses derived analygitoms will therefore diffuse preferentially towards the small
cally (see Fig. 5 and ) exhibit local maxima along the; andx;  bubble, until the latter reaches the same size as the larger one. Itis
axes, that can be related to the Taylor first-order expansions. Ttiiss likely that the bubbles will tend to progressively equalize
first analysis therefore shows that, despite its simplifying assumipeir sizes. This is a part of the mechanism of diffusion, which
tions, the present approach leads to analytical results which areuld be added to a thermodynamical analysis to obtain a com-
quite similar to the finite element predictions. plete description of the evolution of the system.

The mean stress maps allow the material regions undergoingrhe above results can also be used to predict the occurrence of
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cracks in the vicinity of the bubbles. The levels of the von Miseagreement with finite element calculations. The diameters and
equivalent stresses also give quite an important information abquessures of the two bubbles can be easily varied, such that vari-
the areas where plasticity occurs, i.e., at each point where the \@is configurations can be investigated straightforwardly. The two

Mises equivalent stress is larger than the yield stfex3 GPaof

main results are the following:

the material. Therefore, a complete mechanical description of the

material evolution will require to take plasticity into account.

6 Conclusions

A new approach for the estimation of the elastic fields betweenii.
two bubbles loaded by an internal pressure was proposed. In spite

of its simplicity, it leads to analytical results, which are in good

Appendix

i. According to the mean stress distributions, the mechanical
contribution to the diffusion process is likely to progres-
sively equalize the sizes of the neighboring bubbles.

The levels of the von Mises equivalent stresses indicate the
areas where plasticity must be taken into account for a com-
plete mechanical description of the system.

(a) Analytical Expressions of theA;; Coefficients of the Linear System(17)

A;;=H(697+8)

A;,=H(217-8)
Az=H{—2a3[6a5(37+1)+5(37—1)]}
Ap=H{a3[1225(37+1)—5(37+4)]}
Ay=H{—2a3[6a2(37+1)+5(37—1)]}
Any=H{a3[1223(37+1)—5(37+4)]}
Apz=Aqq

Ap=Aq,

whereH= 2u/15(37+4) with 7= /.

Az=2H(217-8)
Az=16H(37+1)

Azz=2A14
Ag=H{—8a3[(3a3—5)(3r+1)]}
Ay=2A
As=H{~8ai[(3a-5)(3r+1)]}
A=Az

A=Az

(b) Analytical Expressions of the Eigenstrainsg;;

| 1 Alllp

Pu=" 1l %

with

Al,=20(817°+ 13572+ 367) a5 S
—8(4867°+ 97272+ 4861+ 72) aas
+120277°+ 6372+ 427+ 8) a5 a3
— 75(257%+ 487%+ 167) aad
+60(817°+ 1717+ 967+ 16) aSas
—5(8917°+ 2160r°+ 1536r+ 320) a3 a3
+30(157°+ 3072+ 167) a3+ (2437°+ 75672+ 7687+ 256)

BL,=(2257) afa3— 144977 + 67+ 1)afa)
+120972+ 97+ 2)as a3+ 120972+ 97+ 2) adaj
—10(1177%+ 1447+ 40) a a5+ (817°+ 1447+ 64).

Similarly, g),=— 1/12A},/BY,p/x where A!, and B!, are ob-

tained fromA!, andB!, by permutation ofw; andas.

_1Agp
87 12BLk
with

Journal of Applied Mechanics

A= 20(817°+ 13572+ 367) a5 s

—8(4867°+ 97272+ 4867+ 72 a5 a5

+120(277%+ 6372+ 421+ 8) a5 a3
—300372+47)adaS+240972+ 157+ 4) ad a5
—5(817°+ 54072+ 8167+ 320) a3

—30(277°+ 6072+ 327) a3+ (2437°+ 75672+ 7687+ 256)

Bba=(2257%)aSaS— 144972+ 67+ 1) ajas
+12097%+ 97+ 2) a5 a3+ 120972+ 97+ 2) adaj
—10(1177%+ 1447+ 40) a3 a3+ (8172 + 1447+ 64)

Similarly, B3,=— 1/12A%/B3p/x where A}, and B}, are ob-
tained fromA}; and B}, by permutation ofx; and «,.
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Crushing of an Elastic-Plastic
Ring Between Rigid Plates With
and Without Unloading

Load-deflection curves are computed for an elastic-plastic ring that is slowly crushed
between frictionless, rigid plates (platens). The ring is assumed to be inextensional with
plane sections remaining plane and to obey a bi-linear stress-strain law with isotropic
hardening. These assumptions lead to a local nonlinear moment-curvature relation iden-
tical to that developed by Liu et al. When inserted into the exact equation for moment
equilibrium, this constitutive relation yields a second-order, nonlinear ordinary differen-

T. J. McDevitt tial equation for the angler between the deformed centerline of the ring and the hori-
Naval Surface Warfare Center, zontal. The numerical solution of this equation, which uses a combined penalty-
Danigren Division, continuation method, along with an auxiliary equation relating the vertical deflection to
Dahlgren, VA 22448-5100 «, leads to overall load-deflection curves that depend on two dimensionless parameters,
Mem. ASME and u. The first is the ratio of the plastic modulus to the elastic modulus; the second
J. G. Simmonds measures the ratio of plastic to elastic effects/As 0, the overall load-deflection curve
+ d- OTHTITOTH of Frish-Fay for the elastica is recovered; as— o, that of DeRuntz and Hodge for a
Department of Civil Enginegring, rigid-perfectly plastic ring is recovered. Three scenarios are considergdinl which an
University of Virginia, initially straight, stress-free beam is bent elastically into a ring and then crushed;itl
_ PO. Box 400742 which an initially stress-free ring is crushed; and §Llin which an initially straight beam
Charlottesville, VA 229044742 is bent first elastically and then elastically-plastically into a ring and then crushed.
Fellow ASME Results for scenario |l are shown to agree well with experiments of Reddy and Reid if

N =0.01 andx =10 and 20 and with experiments of Avalle and Goglia #0.02 and
pn=11. In scenarios§ and 1y, the effects of unloading prove to be small, reinforcing a
similar conclusion of Liu et al., who considered the large-deflection of an elastic-plastic
cantilever under a tip load. If no unloading is assumed, a more analytical treatment is
possible, as shown in the second part of the present paper. The model predicts that the
ring always remains in full contact with the platens, in agreement with recent experiments
by Avalle and Goglio on annealed aluminum tubes. Pull-away from the platens also
observed in experiments is ascribed to end effects which cannot be modeled by a one-
dimensional beam theory. However, it is argued that, even if there is pull-away, the effect
on the overall force-deflection relation must be small because in both cases the forces
exerted by the platens are concentrated at the ends of the contact region. Moving pictures
of successive stages of deformation of the ring showing the formation of plastic loading
and unloading zones in all three scenarios may be found on the web site
www.people.virginia.edu/jgs/ring.html. [DOI: 10.1115/1.1630814

1 Introduction elasticduring this process. In this scenario, a portion of the ring is
o . .always elastic, both before and after the ring has flattened against
The determination of the load-deflection curve of an elastighe platens, because flattening tends to reduce the stfaiThe
plastic ring of initial mean radiuR and thickness B, slowly ring is initially stress-free. Here, the ring may or may not become
crushed between two frictionless rigid platgtatens, is a funda- plastic before it starts to flatten against the platens, depending on
mental problem in mechanics because a knowledge of the enevgyether the half-thickness-to-radius ratit/R, exceeds the yield
absorbed is essential to the design of crash-worthy vehicl&ain.(lll) The ring is formed as iril) except the beam becomes
Moreover, the experimental determination of the load-deflectigiastic (beginning at the outer fibers and moving inward towards

; : e e centerlingbefore a complete ring has been formed. A compli-
curve for a ring affords perhaps the easiest verification of trl(i:ating factor in all three scenarios is that, due to changes in ge-

accuracy of various approximations used in modeling more elabgs etry during crushing, portions of the ring may begirutdoad
rate structures. _ _ as the external load increases.

In computing such a theoretical load-deflection curve, three Finally, we note that our one-dimensional ring model may ac-
scenarios of ever increasing complexity come to mifig.An  commodate a tangential extensional straner it may beinex-
initially straight, stress-free beam is bent slowly by end couplasnsiona) as in the classical theory of curved beams. Thus, there
into a ring and the ends then butt welded. The beam remaiare at leassix plausible scenarios we might considky; I, -+,

Ill¢. The present paper focuses &y Iy, andlll g, i.e., on

Contributed by the Applied Mechanics Division ofif AMERICAN SOCIETY OF  inextensional scenarios.

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- A major difficulty in applying numerical methods to elastic-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 20 . . . .
2001; final revision, April 22, 2003. Associate Editor: N. Triantafyllidis. DiscussimplastIC structu_res is that the plastlc strains a_re o_ftt_en mUCh large_r
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depdft@an the elastic ones. To bypass the potential difficulties associ-
ment of Mechanical and Environmental Engineering, University of California—ated with such a disparity, DeRuntz and Hodggassumed rigid,
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until f?i’érfect plasticity and derived a formula for the load-deflection
months . .

after final publication of the paper itself in the ASMEOURNAL OF AppLiep ~ CUIVE that occurs af.ter four plf’:lStIC hinges have formed, two at the
MECHANICS. points of contact with the rigid plates and two at the ends of a
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horizontal diameter. Redwod@] refined the model of DeRuntz tifies the analysis in the second part of this paper that ignores
and Hodge by adding linear strain-hardening. Reid and RE8dy unloading, thus permitting a more extensive analytical treatment.
and Reddy and Reigd!] refined these models by assuming a rigid, In scenariolll 3, where a relatively thick beamu(>1) is first
linearly hardening moment-curvature relation within a small reésent into a ring, there is plastic deformation before crushing be-
gion near horizontal, diametrically opposed points where tlgins and more than half of the ring begins to unload as the platens
bending moment is the greatest and where the deformed curvatstat to move together.
is relatively high. They ignored unloading and assumed that the
ring moved as a rigid body in the portions of the ring betwees The Equilibrium Equations and Kinematic
these plastic zones and the points of contact with the plate slati
However, as we shall show, elastic effects may contribute signi relations
cantly to the deflections of the ring, depending of the load, the Elementary equilibrium considerations show that, at any point
relative thickness, and the material properties. In a subsection fol the deformed centerline of the ring, the horizontal component
lowing Eq.(12), we discuss pull-away from the platens, after wef the stress resultant is zero and the downward vertical compo-
have introduced certain assumptions and notation. nent is equal td. The remainingexactequation of moment equi-

The first aim of the present paper is to quantify the relatividorium is, from equation(O.5 of Chap. IV of Libai and Sim-
roles of elasticity and plasticity in the crushing of a ring and tanonds[9].
account for the possible effects of unloading. In particular, we _
show by numerical calculation that unloading is not a major effect dM/ds=(1+e)P cosa, )
in the overall load-deflection behavior of a ring in scenatipand whereM is the bending momen(positive in a counterclockwise
[y, but is in scenaridlly. To this end, we assume that thesense and with dimensions PFORCHX[LENGTH]), s is dis-
dominant hoop stress in the ring can be represented by a bitance to the right along the undeformed centerline of the beam,
linear stress-strain relation which, if there is no unloading, imeasured from the fixed lowest point on the bent ring, aiglthe
given by the followingodd function of the engineering strast ~ angle the tangent to the deformed centerline makes with the hori-

zontal. The vertical distance moved by the platens is
e if |e|<ey
! , (1) 2
eysSgne+Ae if ey<|e| 5:2[RJ (1+e)sinads
0

o=0(e)=E (1)) . 5)

whereE is Young’s modulusgy>0 is the yield strain)\ is the o ] ) )
(constant ratio of the plastic to elastic modulu&€s/E, and  Once constitutive relations are in hand that expidsande in
sgnx:|x|/)(, x#0. See F|g qa) of Liu et al. [5] (Where theira is terms OfK, the bendlng strain, anhl=—P sin o, the tangentlal
our\). component of the stress resultaf) reduces to a second-order
If unloading first begins at some strain at some point in the ordinary differential equation for the unknowa The boundary
ring, then isotropic hardening_ubliner [6], p. 137 implies that conditions are
we h_ave a new stress-strain relation of the f_dm)wbut shifted to a(sg)=0, a(Rml2)=ay. (6)
the right bye} =(1—\)(g,— &y Sgney). That is, ) ) .
Here,sg is the location of thégenerally unknown pointB where
o=d(s—e¥), (2) the lower right quarter of the ring loses contact with the lower
platen. See Fig. 1. The value sf depends on the dimensionless
whered; meansg with ey replaced bye,|. If there is a second load v, the combined geometric-yield strain parameieand the
unloading at a straie,>¢q, then in(2) we replace the subscript specific form of the constitutive relations.Nf# 0, thehinge angle

1 by a 2, etc. ay=m/2, whereas iiA=0, ayy may be less thaar/2, depending
As will be seen, the governing dimensionless equations contaém u, v, and the scenarid g, 114, or Il ). Herein, we approach
beside\, the two additional dimensionless parameters perfect plasticity £=0) by letting A\—0 (A\=10"%, numeri-
cally). Later in this paper, where we assume no unloading, we
H 3P treat perfect plasticity exactly by taking=0 and solving for the
M=goo and v= 2 ®)  hinge anglex
Rey bEHeY 9 gleay .

where P is the net vertical load on the ring produced by theg cgnstitutive Relations for Scenariosl, 114, and
platens ando is the width of the ring. Clearly, €\<1, but 0

<u<oe; if A=0, we have elastic-perfectly plastic behavior. ThéII 0
parameter is a measure of the relative balance between elasticAt the outset, we make a maj@iout conventionalassumption:
and plastic effects. Ag— 0, the effects of plasticity diminish and The deformed reference curve is inextensional, ee=0 in (4)
our analysis reduces to that of Frish-A&} for an elastica com- and(5). This assumption, which simplifies the analysis consider-
pressed between platens, providing we first re-scale the dimetly, may be justified heuristically by noting that the maximum
sionless load by setting/ u?=3PR?/bEH®. As u—o, we ob- tangential compressive force in each vertical half of the ring is
tain rigid-plastic behavior. However, as we shall see, in scenadnd occurs at the extreme horizontal poi@tsind C’ in Fig. 1
I, (where the ring is formed by bending a straight beam elasticallthat shows the successive stages of deformation in scehgario
and inextensionallywe must assume that<Qu<1; in scenario but that is typical of the general trend in scenafdibgandlll o).
[11 5, which is the complement of scenatig, 1<u <. In sce- The maximum bending moment also occurs at these points and,
nariolly, 0<pu<oo. from elementary equilibrium considerations, is equéaPto where
The second aim of the present paper is to show that in scendriés the unknown horizontal distance from poBiwhere the ring
I, appropriate choices ok (which measures relative strain-separates from the platen to poi@t We estimate the direct
hardening and » (which measures the relative ratio of plastic testresses in the deformed reference curve & be OP/bH) and
elastic effectsgive an excellent fit to the experimental data prethe outer fiber(bending stresses to be ®L/bH?). Thus, the
sented by Reddy and Rejd] and Avalle and Goglid8]. ratio of the direct stresses to the bending stresses K/I0
Because of the possibility of unloading, we must solve the gowhich is quite small except near the final stages of crushing when
erning ordinary differential equation numerically. A penaltymost of the net vertical displacement has already taken place. A
continuation method proves to be particularly effective. Howevespmewhat different argument for ignoring the effects of exten-
as we show numerically, the effect of unloading on the overaional strain is given by DeRuntz and HodgH; experimental
force-deflection curves for scenaripsandll  is small. This jus- evidence for near inextensionality is offered by Avalle and Goglio
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Fig. 1 Two crushing sequences for an initially straight beam bent elastically

into a ring (scenario /y) with u=0.5. The parts of the rings shown in solid
black are elastic; dashed (loading ) and solid gray (unloading ) parts are plas-
tic. In (@), A=107%; in (b), A=0.1.

in the second column on p. 232 [df0]. However, we remind the k=dalds so thate=—yx. 7)
reader that the analysis to be presented already represents a gen-

eralization of the two extreme casgs=0 andu— o, examined, ginceM = —2b[Hyady, it follows from (1) and (7), that
respectively, by Frish-Faj7] and DeRuntz and Hodggl]. To

introduce yet another dimensionless parameter to measure exten-

sional strain effects would distract from the main focus of the

present investigation which is to determine the load-deflection —m=f(7)={ [1—-A 1
curve predicted by the more representative elastic-plastic stress- o 3=
strain relationg1) or (2) in which 0< u <.

n it [n]<1

. ®)
sgnnp+Ay if |7]>1,

Scenarios |y and Il ,. The procedure for obtaining awhere

moment-curvature relation is standard: we consider a finite piece

of the ring under a uniform bending momevit (This would be m= 3M and n= E ©)

the setup were this relation to be determined experimentaly. 2bEH%gy m ey

symmetry, plane sections remain plane and a straight unstretched

fiber at a distancg from the undeformed centerline of the straightire a dimensionless moment and a dimensionless curvature. Fig-

beam deforms into a stretched circular fiber a distagf® ure 2 is a graph ofm versuszy for A=0, 0.01, 0.1. This is essen-

+en(y)] from the deformed centerline, wheeg, is the normal tially Fig. 3 of Liu et al.[5], with their « equal to our\.

engineering strain—a Poisson ratio effect that will be neglected. Whether points in the ring are loading or unloading, to solve the
For an initially straight beam, we take the bending strain to bgoverning equations we need only the slope of the moment-

the curvature of the bent but unstretched centerline, curvature relation, namely
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me__3M buckling, i.e., pull-away. Finally, we note that once the beam be-
2 bER® £y gins to flatten against the platertke only contact forces are four
e identical concentrated vertical loads at the ends of the contact
S regions This conclusion follows immediately frortd) and the
s B 11 moment-curvature relation of Fig. 2; sinEevanishes inside the
contact region, the momeiM and hence the curvatureis con-
stant there. Thus, whether there is pull-away or not, the contact
n==— forces are always concentrated at the ends of the contact region,
so any differences in the overall force-displacement curve must be
small.
-1 — A=0 These remarks are still at odds with the finite element analysis
B A=.01 of Leu [11] who considers an infinite tube in plane strain and
— whose results show that, although an annealed, strain-hardening
. aluminum tube indeed remains in contact with the platens, a
Fig. 2 Dimensionless moment-curvature relation for an non-annealed nearly perfectly-plastic aluminum tube may
elastic-plastic ring However, Leu shows that, according to his analysis, if there
is sufficient friction between the platens and the t(biy. 6(a)
of [11]) or if the elastic modulus is sufficiently higlrig. 7(a) of
] ) [11)) or if the tube is sufficiently thifFig. 8a) of [11]), there is
tim= B 1 'f. e|aSI'F . no pull-away. Because Leu does not present dimensionless graphs
dy 7 (1—\)| 7| 3+\ if loading plastically and because he only takes three elements in the thickness direc-
(10) tion (as opposed to 10 if8]), it is difficult to assess whether his
results for the nonannealed aluminum tubes are a numerical arti-
fact or a result of some dimensionless parameter exceeding a criti-
cal value. We note that, although Leu refers to pull-away as
“buckling,” he never attempts to give a physical explanation of
_pl_p-1 B this phenomenon.
k=R R™.  where R=ds/da (11) Finally, we mention a paper by Ward?2] which analyzes a
is the radius of the deformed centerline. To relate the bending tube with an elastic-perfectly plastic moment curvature relation
momentM, we consider again a segment of the ring under a putieat is crushed between frictionless platens. He finds no pull-away
bending moment, except now we have an initially circular fiber dfom the platens but states in his introduction that his analysis
length (1-y/R)ds lying a normal distancg from the centerline “applies to verythin [original emphasiflexible rings or tubes.”
of the undeformed ring. Under the action of a uniform mom¥nt He then states that “For thick inelastic rings the crushed shape
and the assumption that the centerline is inextensional, this filkgnsists of plastic hinges and segments of rigid arcs. In such a
deforms into another circular arc of lengthl—(y/R)(1 case a rigid-perfectly plastic constitutive equation is more appro-
+ey)]ds, where, as beforegy is the normal strain. Thus, the priate (DeRuntz and Hodgé¢l] and Reid and Redd{3]).” We

Scenario Il ;. The major difference from scenaridg and
Il just analyzed is that, in place of () the bending strain is
now defined as

engineering hoop strain is find this statement most curious because Wang's moment-
curvature relatiorincludes rigid-perfect plastic behavior as a lim-
1+8N_ 1 iting case (Let Young’'s modulusE—co and the yield curvature
R R ko— 0, keepingE x, a constanj. Thus, were there a combination

- = —yk[1+0O(ey ,H/R)]. (12) of parameters where pull-away occurs, Wang's analysis fails to
1-y/R reveal it.

Henceforth, we shall neglect the effects of normal stf&iais-
son ratio effedt and relative thickness. That is, we shall take
=—«ky, as in Eq. (7) for scenariod, andlll o. This means that 4 The Governing Differential Equation and Boundary
the dimensionless moment-curvature relati®nand its derivative Conditions

(10) remain unchanged. ) o )
Because the centerline of the ring is a circle of radRusefore

_Contact With the Platens. Both referees of the original ver- cryshing, we henceforth set=R¢. With this change of variable
sion of this paper have insisted that we discuss why our modgld with the introduction of7), (10), and (11) along with the

fails to predict the partial separatigpull-away of the ring from  dimensionless quantities defined €8) and(9) into the basic dif-
the platens observed in some experiments. However, recent fential Eq.(4), we have, because=0,

perimental work on tubes by Avalle and Gog]i®,10] and finite

element calculations on infinite tubes in a state of plane strain by , d’a v
Leu[11] have shown that, away from their ends, annealed alumi- F(n gz = 2,2 €05
num tubes flatten against the platens amederseparate. That is,

end effects must be the essential cause of pull-away. Indeed, tdéf A>0, as we now assunfand regard perfect plasticity as the
quote from p. 231 of10], limit as A\—0), there are no plastic hinges and the boundary con-
dition (6), can be replaced by

(13)

It can also be noted that at the frofgnd real end of the
tube . . . vihere a plane stress condition prevails, the upper and a(ml2;v)=7l2. (14)
lower walls lose contact with the plates and assume curvatures L ) ) .

opposite to those of the undeformed state. Conversely, in there, in anticipation of the continuation method that we introduce
central portion(and most of the tube, the material remains inPresently, we have included the dimensionless load as the second
contact with the compressing plates. argument of the deformed angle. Furthermore, because our model,

) . that assumes frictionless contact, has no mechanism that permits
Because we model a one-dimensional beam and not a tWga ring to separate from the platefas is sometimes observed in

dimensional circular cylindrical shell, we cannot account for e“ﬁractice—see Fig. 4 dfi] and Fig. 3b) of [4]), we may replace
effects. Moreover, because contact between the platens and (i by the boundary condition and constraint,

ring is assumed to be frictionless, there is no way this contact
could generate a compressive hoop stress that might cause local a(0;v)=0, a(6;v)=0, 0<O<m/2. (15)
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5 The Penalty Method 1 (1 26 0) g(6)

An effective way of handling the constraint {f5) numerically AG:0)= Z,uz - 2,u§ ' (23)
is with a so-callebenalty methodin the present case, this entails . .
replacing (13—(15) by the unconstrainedtwo-point boundary Scenarioll ((0<p<®). Here, the ring is initially unstressed

value problem, so thaty=0 andf’(%)=1. Hence,
d’a v 0 if a=0 9(6)
' - = A(6,0)= 5—, (24)
f (n)dﬁz 2M2005a+pT(a), T W2 i a<O’ p—oo, 2u2

(16) the same as for scenarig.

subject to the boundary conditions Scenario Il o(u>1). Here, as the beam is bent by end
a(0;v)=0, a(7/2;v)="ml2. (17) couples, it first deforms elastically into an open circular arc and
then, once its dimensionless curvatupeexceeds 1, undergoes
In practice, we take to be large, say T0 Physically, the penalty plastic loading as it is bent further into the final shape of a ring
termpT imposes a very large vertical force at any point along thgith dimensionless curvature=u>1. Next, when the dimen-
centerline corresponding to a point on the outer face of the riRgonless load is first applied, the ring begins to ovalize, i.e., near
that penetrates the platens. point A (see Fig. 1 » begins to decrease from (unloading
whereas near poin€, 7 begins to increase fronx (loading.
Thus, asv—0+, there is some value of= #* where f'(7)

6 The Continuation Method ) - . 0
. . switches from 1 to (EX)u 3+X. With A(8;0)=A(6), (19
Any solution of the nonlinear boundary value problé®), and (20) may be replaced by

(17) is of the forma= a(6;v). To use the continuation method of

solution, we differentiate the ordinary differential Ed6) and the 0
boundary condition17) with respect tov. Noting from (3),, A= 57 0<h<6* (25)
(7)1, (9),, and(11) that K
, " and
7y= K&y and fezﬂf (77)0‘661 (18)
. . . . . 0
where partial derivatives are denoted by subscripts, we obtain the A= 0205’9 < g<ml2, (26)
linear boundary value problem 2uf ()
v Cosa subject to the boundary conditions
[F'(m)Ayst|5—Sina—pT (a) |A= -, 0<60<m/2,
2p 2u 0 0
(19) A(0)=A(m/2)=0, (27)
A(0;v)=0, A(m/2;v)=0, (20)  the continuity condition
coupled with the twanonlinear initial value problems 0 0
a,=A(6;v), a(6;0)=6, 0<p<oo (1) A(O* +)=A(6"—), (28)
and and the condition that* marks the boundary between loading
and unloading,
7,= Ay 0;v), 0<w<o,
0
| m in scenarioly or Il A'(6*=)=0. (29)
7(6,0)= 0 in scenarioll, ° (22) Thus
In (29 a and n are regarded as known _and@l) ar_ld (22) the 1— 0sin6* —coso, 0< 6< §*
dimensionless load plays the role of a timelike variable. 0
One advantage of the continuation method is that the solution A= 2.2 (/12— #)sin 8* — cosH " . (30)
of (19—(22) at any intermediate value ofrepresents the state of M ' (p) , O <O<ml2
the ring when it ispartially crushed. Another advantage of the o _
continuation method is that there is loadifuploading if 77, is Where¢* satisfies the transcendental equation
positive {negative, an easily monitored variable. At any value of Y
. X ) (m/2)sin@* —f'(w)
6 where| |>1 and 5,= uA,=0, the expression fof’(7) may 6* sin 6* + cosf* = ;
switch from the first line 0f10) to the second. 1-f(p)
sin~Y(2/m) < 6* < w/2. (31)
7 Determining A(6;0) From(10), A\<f'(u)<1if I<u<o, soitis easily seen th&B1)

. . . always has exactly one solution on the given interval.
The simplest numerical procedure for solving the coupled sys- Y y g

tem (19)—(22) is to (i) computeA(#;0) andA,(#;0) from (19 : : .
with @=6 and p=0; (ii) compute a(6;Av) from (21) and 8 The Shape of the Ring During Crushing
7(6;Av) from (22), whereAv is some small increment af: (i) The shape of the ring at successive loads is given by solving the
substitute these value in{d9) and setp to some suitably large differential equations with initial conditions

value; (iv) solve forA(6;Av) and A,(0;Av); and (v) repeat to _ i 70 — .

obtain a(#:2A7) and 7(6-2A%). Although A(6:0) can be deter- 9d¢=cosa(fiv), X(0:»)=0 and dyldo=sina(,),
mined numerically, the following simple closed-form expressions y=(0;v)=0, (32)
are easily obtained. Becauae= 6 if v=0, we can drop the pen-

alty term in(19) in this initial step. where Rx,RY) are the Cartesian coordinates of a point on the

deformed centerline of the ring.
Scenariol o(0<p=1). Here, the beam remains elastic as it Figure 1 shows the ring at several stages of loadingNor
is bent into a ring withy=u=<1. Thus,f’(#)=1 and hence =10"° and A=0.1 for scenarid, with x=0.5. Note the near
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Fig. 3 Dimensionless load-deflection curves for an initially
straight beam bent elastically and inextensionally into a ring

(scenario 1y) for various values of dimensionless material
(m) parameters. Solid curves include

and geometric-material
unloading effects; dashed curves do not.

material D t Vickers
mm mm hardness
kiS x mild steel ar 38 16 195
v " an S50 1.6 113
& " an. 75 16 130
e alummiumar 25 08 101
+ " ar 25 1.2 101
o . an. 25 09 544
¢ copper ar 25 09 &7
a brass ar 45 1.6 127
2- (arsas received, an.zannealed)

PIRL

M)

1 it '

0.6 08

J 1 I

0.2 0.4
o §/D

formation of a plastic hinge at poins andC’ if A=0 and»
sufficiently large. Similar figuregnot shown are obtained for Fig. 6 Comparison of rescaled dimensionless predicted load-
scenariodly andlll ;. Overall load-deflection curves for an in-deflection curves for scenario I/, with A=0.01 and x=10,20

extensional centerlinee&0) follow from (5) and (32)
SI2R=1-y(m/2;v).

Figures 3, 4, and 5 plot these curves for several valu@saofd w.
The dashed lines are produced if we assume no unloading;

as with experimental data from Reddy and Reid  [4]

(33)

show later in this paper, the assumption of no unloading permits a
MBre detailed—but not total—analytic treatment of scenakips

solid lines correspond to unloading. In scenarigsaand Il the andll ,.

effect of unloading is small, but not so in scenarid,. As we

In Fig. 6, we have re-scaled the ordinate in Figfer scenario
I1) to read v/6u and superimposed the resulting graphs Xor
=0.01 andp=10, 20 on Fig. &) of Reddy and Reid4] that
gives experimental data fdP/P, versusé/2R for a variety of
metal tubes—not rings—both “as-received” and annealed. Agree-

0 . . . .
6 A=.01 i ment is quite reasonable for the given metals fiobetween 10
50 A and 20. HereP, is what DeRuntz and Hodgd ] call the yield

/ool point loadof the tube. If we regard each cross section of the tube
40 il as a ring(and thus neglect the end effects discusseldtn then
u=10 ,,/' i the dimensionless yield point load ig=6u. See the Appendix
30 / i for a derivation. In Fig. 7, we have compared the predicted load-
20 4 i deflection curve of our model for=0.02 andw =11 against the
]
=1 z',
10 m.2 /
&/2R
0.2 0.4 0.6 0.8 1%/ : e
4000
Fig. 4 Dimensionless load-deflection curves of an initially B aetog nt1
stress-free ring (scenario /ly). Solid curves include unloading Fil) © d=100: Mo
effects; dashed curves do not. 4 d=100;n° 3
. O d=100;n°4
3000 X d=80;n°1
v X d=80;n°2
! = d=80:n°3
60 i + d=80;n°4 :
50 :" 2000 °
t

40 ;

30 ! 1000

20

10 . - .

———————————— " u=1 0 > g
———————————— 00 - 02 0.4 0.6 0.8 1.0
0.2 0.4 0.6 0.8 1 o/2R displacement/diameter
Fig. 5 Dimensionless load-deflection curves of an initially
straight beam bent elastically-plastically into a ring (scenario Fig. 7 Comparison of predicted load-deflection curve for Sce-
nario /1y with A=0.02 and m=11 with experimental data from

11ly) with A=0.1. Note that unloading effects
become increasingly important as  u increases.
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experimental results presented in Fig. 6[8]. The agreement is
quite good. Note, especially, how the model captures the rather ap=sin_
rapid increase in slope near complete crushing.

Because unloading does not have a major effect on the ovellwhich »=1.
load-deflection curves in scenaribsandlly, we now show that = The deflection of the inextensional ring due to pure elastic de-
the neglect of this phenomenon in these two cases permits a mimenation, g, is computed fron{5). Using (7), to switch froms

1

1-27%0)] =
TF? (38)

detailed analytic treatment of crushing. to « as the variable of integration and noting (3)(9),, and
(37), we find that

9 Elastic and Plastic Regions in Scenarid, (No Un- e 1 @  sinada (39)

loading) 2R~ ")y JA0) tosina

Recall that in this scenario, we assume that, when the initial he intearal is elliotic. To bring it to standard form. make the
straight beam is bent into a ring, the resulting deformation i 9 ptic. 9 '

elastic. That isu=1. Thus, when the load is first applied througt"a"9€ Of variable

the platens, the ring is elastic. From E¢&52), (4.57), and(4.66) sina=1-2sif ¢, ¢p=p=nld, (40)
of Frish-Fay[ 7], the maximum dimensionless elastic bending mo-
ment occurs at point€ andC' in Fig. 1 and is given by and let

2 1-sin
me=Vma+ v, (34) pzzngﬂ} and ¢P=sin1( \/Tap). (41)

where the subscripté or C denote values of the unknowns at
pointsA or C. As v increasesm, decreasesnd vanishes, accord- Thus,
ing to Frish-Fay, when the dimensionless loag=(1/m)

a i 4 — i
X[T(1/4)T (3/4)2u2=(2.78 ) u2, where T is the gamma P sinada 2/fo (1-2sirf 4)dg
function. For higher loads, the portion AB of the ring in Fig. 1 o V72(0)+vsina ép V1—p?sit ¢
lies flat against the lower platen and suffers no bending moment. »
Moreover, because the bending moment (unlike the vertical shear B & >—
force) is continuous at B, there is always some part of the ring to =\2/v(2/p) L ( V1-p*sir’ ¢
b

the right of B that remains elastic.

pressed with the aid of (3) (7)., and (9p as o o + M) " @2)
T ;H V1—p?sirt ¢
2= f do=6g+ j (dé/da)da so that, from(39),
R 5e/2R=1=(2\2/u) (uIP){E(P, m/4) ~E(p, bp) + (1/207~ 1)
=bpgtpu fo F’(da/n)+ LPH(da/n) : (35) X[F(p,7/4)—F(p,dp)]}, (43)

whereF(p,¢) and E(p,¢) are, respectively, Legendre’s elliptic

Here, ap e (0,ay] is the angle(if any) at which plastic deforma- integrals of the first and second kind.

tion begins whereas, as explained followity, oy = 7/2, except
possibly if \=0. As we shall see, alastic hingeforms if the Solution in the Plastic Region ap<a<ay Where np>1.
dimensionless load exceeds 3- 7°(0). Wenote that the change Supstitution of(10) into (36) and integration from 1 to; yields
in variable from# to « in (35) is permissible because is a ] ) .

strictly increasing function o for #g<6#<ay. Oncen as a v(sina—sinap)=(7—1)[2(1-N)7 "+ X(n+1)]
function of @ has been determined, the first integral on the right 2 \=0

side of (35) can be evaluated in terms of elliptic integrals; the ~ 5

second, if needed, can be evaluated numerically with the aid of a A% A#0
symbol manipulating program such Bethematica Since the left side of44) is bounded, the last line on the right
shows that a plastic hinge can occur, iggan approach infinity,

. . . . only if \=0.

10 __SO!Ut'On of the D|ffere_nt|al Equation of Momgnt The deflection due to any purely elastic deformation of the ring
Equ|l|br|um and Determination of the Load-Deflection is given by(39) or, equiva|ent|y’ by(43) The additional elastic-

as p—oo. (44)

Curve for Scenario | o plastic contribution is given by
Taking « rather thars= R# as the independent variable (4), v sinada
applying the chain rule, using (7)and (8), introducing the di- 5p=_2R/-lzf ﬁE—ZRMA, (45)
mensionless load’ and curvaturen from (3), and (9), and ap Yl@rap AV
ignoring the extensional strai we obtain wheren=g(a;ap,\,v) is that root of(44) which equals 1 when
dy vcosa a=ap. (This involves finding the root of a cubic polynomial.
nf'(n) 7—=—7F—, 0<a<ay. (36) For the special case of elastic-perfect plasticity; 0 and(44)
da 2 has the explicit solution
Solution in the Elastic Region Ka<ap Where np=<1. 2 2
From (10), f'(7)=1 and(36) can be integrated immediately to 7=9(e;ap,0,v)= 2 o(sinvp_sina) 3—7%(0)—vsina
yield
(46)
n(a)=n°(0)+vsina. (37)  clearly, if v=3—5?(0), there is a valuer= ay,</2 wherey

If the ring has flattened, thep(0)=0. The dimensionless curva- Pecomes infinite. Substitution ¢46) into (45) yields

ture 7 mcreases_wnha un_tll either q:w/2, in Whlch_ case phe A= coSap— CoSay+ (vI4)[ ap— ay+(CoSap— COSay)sinap
entire ring remains elastic and Frish-Fay’s analysis applies, or

else, from(37), there is a value +(sinay—sinap)cosay]. 47)
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For N#0, we used Mathematica to first determine
d(a;ap,\,v) analytically and then to evaluate the integra(4)
numerically. There are two cases to be considered.

(i) Unflattened ring: 6<7(0)<1, 65=0.

As can be seen froni39), if v<1— 7?(0), thering remains
elastic. By (41), ¢p=0 and from(43) the deflection reduces to

SI2R=1—(2\2Iv)(u/ p)[E(p, 7/4) + (p%2—1)F(p, m/4)].
(48

Except for a slightly different notation, this is E@.67) of Frish-
Fay[7].

To relate the dimensionless loadto 6/2R, we follow Frish-
Fay and impose the inextensionality conditi¢®5). With the
change of variablé40), we have, sincédg=0 andap= /2,

T w4 d¢
=2 —— _ — [2IupF(p,ml4). (49
=i | a7y~ VPRI, (@)

Thus,
3PR?> 8p?F(p,wl4
v SRR SRR (50)
n° bEH T
Substitution of this result int¢48) yields
8 _, w[E(p,7/4)+(1/2p2—1)F(p,7/4)] 51
2R p°F(p, m/4) G

The load-deflection curve for the unflattened ring in the elastic

range is thus given in parametric form t§0) and(51) with p as
the parameter.
If v>1—75%(0), thering becomes plastic whea= ap=</2,

11 Elastic and Plastic Regions in Scenaritl ; (No Un-
loading)

In this scenario, the parametgr that measures the ratio of
plastic to elastic effects has the full rangec@.<e. Moreover,
the bending strain at poidin Fig. 1 (which is drawn for scenario
lo, but whose general features are the same as for sceg)io
decreases from zews the load is applied. If the ring flattens, then
R=o; i.e., from (9) and (11), »=—u. As »=—1 marks the
transition from elastic to plastic behavior, the ring will not go
plastic before it flattens i<1.

At point C in Fig. 1 the bending straiincreases from zero
BecauseM (and hencex) is a continuous function of, there is
always some point betweekandC (which depends on the load
where k=0. Thus, in scenaridl,, some segment of the ring
always remains elastiso that there are two values,. anda, ,
depending on\, u, and v, such that the ring is elastic for 0
<a_<a<a,<ay<=/2. This in turn implies that there may be
two separate plastic zoness@r<«a_ where »<-1, and o,
<a<ay=mw/2 wherenp>1.

12 Solution of the Differential Equation of Moment
Equilibrium for Scenario 11

Taking, as beforeg rather tharp as the independent variable in
(4), applying the chain rule, usin@0) and (11), introducing the
dimensionless load and curvaturen from (3), and (9), and
ignoring the extensional strag we have

where ap is given by (38). In this subcase, the analytical/f’(%)=1. Integrating(55) from «a_ to «, we have

numerical procedure is as follows: Fix and u (both less than
one. For each value of, solve for 7(0) by requiring that

/2
\/%lu’p[l:(pvﬂ-/4)_ F(pr¢P)]+ J gil(a;ap l)\r V)d(f: /2.

ap

(52)

This was done using the secant methodMathematica Once
7(0) was found, we computed the total deflection fr¢43) and
(45) as 6= 6g—2RuA(7/2), whereA was determined by inte-
grating (45) numerically.

(i) Flattened ring: 7(0)=0, 6z>0.

Numerically, this case is simpler than the first subcase becay
the inextensionality constrairiB5) may be regarded as an equayifer

tion for determiningég (which is not needed in determining the
load-deflection curve—the goal of the present papigain there

- dy vcosa 55
(twt'(n) g =—>— (55)
Solution in the Elastic Region CSa_<a=<a,. From(10),

n=—u+[n(a_)+ul?+v(sina—sina_). (56)

If =<1, the ring is relatively thin; as the load increases from
zero, the ring first flattens at=(1/7)[T (1/4)/T"(3/4)]%u?
=(2.78 ... u? and becomes plastic & whenv=(1+ x)?. As
the load increases further, single plastic zone spreads froi@
inward to some point whera=«, .

If ©>1, the ring is relatively thick and—if we look ahead to
(70—first becomes plastic & when the dimensionless loadis
such thatr/2= \2lvupF(p,w/4), wherep is given by (67) with
a_=0 and#(0)=—1. (The ring need not to have begun to flat-
ten at this loagl As the load increases further, this zone spreads
A, extending to some point where=«a_ . (It makes no
ence in the analysis to follow whether the ring has flattened
or not because we work with the deformed anglewhich is
always zero at the point of contact of the ring with the lower

aré twg subcasfes. . . . . platen, whether that point be Ator B.) At some load level, which

If v<1, the ring remains elastic and the analysis in Section 43,5t pe determined numerically, a second plastic zone begins to
of Fnsh-Fay[?]/zapplles. In this subcasé39) reduces t05/2R  gpread fromC. We now analyze both cases simultaneously with
=1—(u/v)[g ysinada which leads to the load-deflectionne understanding that j.<1, a plastic zone near the platens

curve does not exist.
3PR? I'(3/4 2
12 = 5= T (319 } . (53) Solution in the Plastic Region GSa<a_(—us»p<-1).
po BEH® 4 [(1-62R)T'(5/4) If 7<—1, then from(10), f'(7) = — (1—\) 3+ \. Substituting

this expression int@55), integrating, and choosing the constant of
integration so thaty)— —1 asa— «_ , we obtain

w(1-M(1-7) N 2(1-))

If »>1, then, by(38), the ring is elastic if 8 a<sin Y (1/v)
and plastic otherwise. The total deflectionds 5g+ p, where,
from (41) and (43), p=v2, 2vsirf ¢pp=v—1,

(1+7) , T2 pu=N(1=17)
Sel2R=1—(2ul\v)[E(V2, 74 —E(V2,¢p)], (54) kK
and 5 comes from integrating45) numerically (with the aid of v(sina—sina.). ©7)
Mathematica. Upon multiplying by z? we obtain a quartic polynomial ir. Let
Our final results agree with the dashed curves presented in Fig. _ .
7/—9—(“:0(—,)\”“«) (58)

3 that were computed using the numerical methods discussed in
Sections 5-7. denote that root which reduces tol whena=« _ .
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Solution in the Plastic Regiona,<a<ay=<wu/2. Because
7>1, (10) yields f'(#)=(1—\) 5 3+\. Substituting this ex-

pression inta(55), integrating, and choosing the constant of inte-

gration so thaty—1 asa— a, , we obtain
p(L=N)(p+1) 2(1-X\) N

v(sina—sina,)=(n— 1)[

+ 2\
s 7 a
2+pu, A\=0
+AN(p+1)|= N2 N0 as n—».
(59)

As in scenarid y, the last line on the right of this equation shows

that a plastic hinge is possible onlyNf=0. Upon multiplying the
first line of (59) by %> we obtain a quartic polynomial im. Let

7]:9+(a;a+x7\xﬂ) (60)

denote that root which reduces to 1 wher «, .

13 Determination of @, if p>1 and the Ring has
Flattened

To find a_, setp=—pu at @=0 in (57). It follows that
(p=D[1+N(p—1)]
mv '

To find a. , impose(56) at «= a, where »= 1. It follows with
the aid of(61) that

(4P (p- D1+ N(u—1)]
a,=sin o .

=sin"!

o _

(61)

(62)

14 Computation of the Load-Deflection Curve for
Scenarioll
If 0<u<1 (i.e., if the ring is relatively thii there are three

distinct stages of deformation as the load slowly increaggthe
entire ring is elastic and there is no flatteniitig) the ring begins

f"— sinada
0 lu‘+g*(a;a* !)\!/-'L)

-

sinada

ay

a_ [ n(a_)+ul?+v(sina—sina_)
ay sinada
i JM ptg(a,ag N, u)
=1-plA (e Np)+A(e ,aq N\ p)
TA (ay ay N @)l

(65)

Unless the ring has flattened, that would allow us to (&B—
(63), the anglese_, a,, and ay must be determine¢thumeri-
cally) as part of the solution.
The middle integral is elliptic and may be brought to standard
form with the change of variable
sina=1-2sit ¢, ¢.<p<d¢_, (66)
and by setting

. 2v
T pe)+plP+v(l—sina_)

[1-sina.
and ¢>i=sin‘1 77

Thus—seg42) and (43—,
¢ (1—2sirf $)do

s [ S
=\2/v(2Ip){E(p,¢_)—E(p,d-)
+(p22—1)[F(p,¢_)—F(p, ¢ )]}

p

(67)

(68)

to flatten, but remains elasti6ii) a plastic zone begins to spread As_ in sce_narldo, the dlmenS|onI§ss deflections in the elastic-
from C. Qualitatively, the stages of deformation are similar t®lastic portions of the deformed ring\.., were computed nu-
those for scenarid, shown in Fig. 1. IfA=0 (elastic-perfect Merically with the aid oMathematica )
plasticity), a plastic hinge can form at. In case(i) for 0<u=<1 and cases#i) and(ii) for >1, where

If ©>1, but not too larggsay u=2), there are four distinct the ring has not yet flattened, the inextensionality constraint must
stages of deformation as the load slowly increases. To descripfe Satisfied, which produces a relation between the dimensionless
these, leD denote the point where= «_ andE the point where l0ad v and the dimensionless deflectiéf2R. (In the other cases,
a=a, . (i) the entire ring is elastic and there is no flattenifig; inextensionality merely serves to determine the extent of the flat-

the segmenAD is plastic whereaBC remains elastic and there istened portion of the ring, if neededrhus, in analogy td35), we
no flattening;(iii) AB is flattened and plasti®D is plastic, and have
DC elastic;(iv) AB is flattened and plasti&D is plastic,DE is
elastic, ancEC is plastic. Although\ and x are given, the load at
which any point switches from elastic to plastic is usually un-
known and must be determined numerically. For larger values of
wu (say, u=10), stagd(ii) above is modifiedAD is plastic,DE is
elastic, andeC is plasticbeforeflattening occurs.

If A=0, a plastic hinge can form & under a sufficiently high
load. To find the associated hinge anglg,, we set\ =0 and let
n—o in (59). Using (62), we obtain

[ 6u
—

/2
77/2/.sz da/(u+7)
0

_j“f da
a 0] lu'+g—(a;a—l)\llu)

f“+ da
+
a_ [ n(a_)+ul?+v(sina—sina_)
72 da
" J;ur M+g+(a;a+ 1)\1M)
Elﬂ,(a, ,)\,,U«)J" l//(a+ YO 1)\IIL‘L)+ ¢+(C¥+ ,}\,,LL).
(69)

With the change of variablég6) and the definitiong67), the
middle integral reduces to

=\2/vp[F )—F . 7
Breaking the integral into the sum of three integrals and using v fplF(p.¢-)=F(p. )] (70)
(56), (58), and(60), we have The integralsy.. were computed numerically usindathematica

ay=sin (63)

Clearly, the denominator must exceed the numerator for the hinge
angle to be less than/2.
The deflection in scenaridl 5, from (3),, (5) (with e=0),

(9),, and(11), is
1 J“Hsinada
lo wtn

6
2R

(64)
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'Load-deflection curves for scenati, without unloading agree V(p—1)2+ku(sina—sina_)=u+0(1) as u—o.
with the dashed curves in Fig. 4 that were computed by the nu- (A3)
merical methods described in Sections 5-7. )

In the Appendix, we show that as the material approaches rigiti?us: (65 yields
perfect plasticity § =0,u—«), we recover from(65) what ay
DeRuntz and Hodggl] call theyield point loadof the tube,Py, 6I2R=1— f
which, in dimensionless form, is given by /u=6.

sinada+0O(u ) =cosay+0(uY).
0

(A4)
15 Conclusions But from (63),

We have produced numerical solutions for three simple bench- N TRV >
mark problems for circular rings made of a bi-linear elastic-plastic cosay=V1=(6Kk)"+O(n™7). (A5)
material that may undergo isotropic hardening. In scerlgrian Solving for k=v/u, we obtain the asymptotic dimensionless
initially straight beam is bent elastically into a ring and therorce-deflection relatioAl).
slowly crushed; in scenaritl o, and initially stress-free circular  The dimensionlesgield point load
ring is slowly crushed; in scenaridl 5, the complement of sce-
nario ly, a straight beam is bent first elastically and then plasti- volu=F6, (»6)
cally into a ring before being slowly crushed. For simplicity, th&orresponding ta$/2R—0 in (A1), may be derived from simple
centerline of the rings has been assumed to be inextensionalp&shanical considerations. At the load®R2when the ring first
indicated by the subscript 0. flattens at poinA—see Fig. 1—, the dimensionless bending strain

The analysis confirms, in a more quantitative way than beforgere, 7(0), is equal to—u. Thus, asu—o, we have a plastic
what workers in the field have long known, namely, that wheRingebothat A andC, with moments of magnitudgeH? but of
both strains and deflections are large, the amount of strain hagposite sign. Because the ring is essentially rigid before these
ening has a significant influence on the deformed Configuration m’hges come into p|ay, equ”ibrium of a quarter of the ring requires
a structure. This is quite evident in Figs. 3 and 4, where the ifhat p R=2Ee,bH2. By (3), this is just the dimensional form of
fluence of\, the ratio of the plastic to elastic modulus, is ex{ag). According to DeRuntz and Hoddé], the yield point load

tremely pronounced in the final stages of crushing. On the othef \was first computed by Drybye and Hangad].
hand, the effect of unloading in scenarigsandll , is not large.
This observation motivated the more analytical treatment of these
two cases given in Sections 9-14. eferences
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A method is developed for derivation of effective constitutive equations for porous
nonlinear-elastic materials undergoing finite strains. It is shown that the effective consti-
tutive equations that are derived using the proposed approach do not change if a rigid
motion is superimposed on the deformation. An approach is proposed for the computation
of effective characteristics for nonlinear-elastic materials in which pores are originated
after a preliminary loading. This approach is based on the theory of superimposed finite
deformations. The results of computations are presented for plane strain, when pores are
distributed uniformly.[DOI: 10.1115/1.1630811

1 Introduction whereV is a representative volume. Then, using the divergence

. i . . heorem, one can write
Effective constitutive equations are constructed using weﬁ- '

known general principles that are considered, in particular, by 1
Hashin and Rozefil], Christenseri2], Kachanov et al[3], and Ee:w 3§ (nu+un)dl’,
Mauge and Kachano4]. A representative voluméarea for the r
two-dimensional cagevhich mechanical behavior represents theuhereT is the boundary of the representative volume. By this,
properties of material as a whole is extracted in a body. The stagife can formally find the average strains within pores using the
problem of nonlinear elasticity is solved for this volume at giveassumption that the pores are filled by a special elastic material so
loads applied to its boundary. Then the strains and stresses @ the displacements of boundary points of the special material
averaged over the representative volufaeea, and the effective are the same as the displacements of the correspondent points of
constitutive equations are constructed as a relation between the matrix material at the boundaries of the pores, and the stresses
average strains and the average stresses. within the special material are equal to zépoovided that there is

It should be noted that there is a rigorous approach for homogo pressure in porgsThis approach permits one to determine the
enization, when the limit is taken for the homogenized constitaverage strains over the volume of a pore by the displacements of
tive equations as the characteristic size of a representative regi@boundary; these displacements are obtained from the solution
tends to infinity(at the fixed characteristic size of structural eleof the elasticity problem. So, there is no need to determine strains
ments. In particular, this approach is described by Zhikov et akt each point of a pore.
[5]. For nonlinear inhomogeneous periodic me@iéthout voidsg This approach can't be applied directly for finite strains because
this approach has been developed by A. Braifiisand by S. each strain tensaifor example, the Green or the Aimansi strain
Muller [7]. This problem goes beyond the scope of this papaensoj nonlinearly depends on the displacement gradient in the
Note also that the approach @] is extended to nonlinear inho- coordinate basis of the initial or the deformed stdfi)], and,
mogeneous materials with initiated cracks by Braides €i8dl.  therefore, it is impossible to replace the volume integral by the

Analyzing the effective properties of inhomogeneous materiadsirface integral using the divergence theorem. By this, the follow-
one should answer the question, how to define a “comparisoig difficulty takes place: the averaging of each strain tensor over
material so that the physical sense of this definition will be clear representative volume gives different results if we define the
(for the use in experimentsand the mathematical representatiogiisplacements within pores by different ways, even if the conti-
of this definition will be simple enough? In addition, it is not cleahuity of displacements over the boundaries of pores is assumed.
how to define the average strains for porous medium correctlyTherefore, if the strains are finite, it is necessary to modify the
because the strains within the pores are undefifiieis is the approach that is used by Kachanov et[dl] and Vavakin and
difference between porous materials and composites with elastigiganik[9] for infinitesimal strains. We use the following way:
inclusiong. For infinitesimal strains these problems are solveghe deformation gradienfbut not the strain tenspiis averaged
simply enough[2,3,9]. In particular, the strain tensor of the com-over a representative volume in the undeformed state, and then the
parison material is taken as strain tensor of the comparison material is expressed in terms of

the averaged deformation gradient.

1 1
Eezvf EdV=Ef (Vu+uVv)dv,
v v 2 Definitions in the Case When the Shapes of Pores

—_— . o are Given in the Undeformed State
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME GURNAL OF APPLIED ME- Let the shape of pores be determined in the undeformed state.

CHANICS. Manuscript received by the ASME Applied Mechanics Division, August 9| et Vo be a representative volume extracted in this stﬁgethe
2001; final revision, June 2, 2003. Associate Editor: E. Arruda. Discussion on the 0

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmenmjundary ofVy, N the normal to the boundary,. LetV be the

Mechanical and Environmental Engineering, University of California—Santa Ba:, ; : ;
bara, Santa Barbara, CA 93106-5070, and will be accepted until four months :Eeqrrespondent representative volume in the deformed dtaits,
final publication of the paper itself in the ASME)URNAL OF APPLIED MECHAN- oundary,N the normal to the boundary. (We assume that the

ICS. boundary of the representative volume does not intersect the pore
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0
space. By V andV denote the gradient operators referring to the oC=T= EJ odV q,e:i wdv (5)
base of the initial and the deformed states, respectively. W et V] ' 0 o

0

=1+Vu=(I-Vu)~* denote the deformation gradientthe dis- Here and further in this paper the superscript 6ver a quantity
placement vectorR position vector of a point in the deformedindicates that this quantity is a property of a comparison material.

state. Using the divergence theorem, we can write the second4q.
Let the boundary condition in the form
N-o|p=N-3|r D) 1o
be given at the boundaiy of the deformed volume. Hereis the J ‘I’dVO_V_f ( +VU)dV0_ I+ Vo Jr NudT'.
true (Cauchy stress tensor, ané is an arbitrary constar(inde- 0 ©6)
pendent on coordinatgssymmetric tensor.

Following Hashin and Rozeft], it may be shown that if the ~ Consider now an approach to the construction of effective con-
condition (1) is satisfied and the body forces are equal to zerstitutive equations for porous materials on the basis of the pro-
then the averaged true stresses over the deformed volume p@&ed concept. A representative voluMgis extracted in a po-
equal to. Indeed, the equilibrium equation in this case has ®@us medium(in the undeformed state The solution of the

form nonlinear elasticity problem is obtained subject to the boundary
condition(3) at the external boundaiyy of this volume(it will be
V.o=0. (2)  recalled thats in (3) is a constant, symmetric tengpand the

Consider the identity boundary conditions at the boundaries of pores. In particular, the

. displacement vectar is obtained. Next, the deformation gradient
V-(eR)=(V-0)R+0o-(VR)*=(V-0)R+0:1=(V-0)R+0. e of the comparison material is obtained frof®). Then the

. . . N . 0
Taking into account2), we obtain from this identity Green strain tensoE® and the second Piola-Kirchhoff stress

0
o=V-(oR). tensorX® of the comparison material are determined using the

Integrating the last equation over the deformed volume arglations
using the divergence theorem, we have

0 1
Ee=§(\lfe~\I'e*fI), )
JUdV=jV-(0’R)dV= %N-URdF.
\Y \% T 0
Using (1) and taking into account that the tengbris symmetric 8= (detw®)(We)* ~1.g¢ (W)L
and constant, we get 1~ L
= (detW®)(We)* "~ G- (W)~ (8)

é N-oRdl'= § N-FRdl'= é o-NRA'=5- 35 NRdI". and the effectlve constltutlve equations are constructed as a rela-
r r r r

tion betweenEe and Ee For example, these equations may be

And finally, applying the divergence theorem to the last integral,
we obtamy PRYIng g 9r&ritten in the formEe: ]—'(Ee).

There is a limitation of our method, because of the assumption
- - - ~ that the boundary of the representative volume does not intersect
g iNRdF: g LVRdVZ g jvldv= Vo. the pore space. This assumption is not valid for the case when the
pore space has a connected component which spans all §pace
Thus, example, for open-cell foamed plasticén our opinion, the pos-
1 sible approach in this case is to impose affine boundary conditions
— f odV=75. on the displacements at the boundary of the representative region
Vv and to calculate the resulting average stress through its integral
over the representative volume. For gridwork materials this ap-
proach is developed by Brovko and IlyusHitt].
Note also that our approach to the homogenization is primarily
0 0 0 similar to the one developed by R. Hjll2], although Hill did not
N-3|; =(detW)N-¥* 1.5 Wl (3) consider porous materials as a special case of inhomogeneous
0 0 materials.

Note that the boundary conditiofl) may be written in the
coordinates of the undeformed state in the form

0
Here, is the second Piola-Kirchhoff stress ten4dQ]: 3 Analysis of Superimposed Rigid-Body Motions
0 _ _ Now we claim that the effective constitutive equations that are
2= (detw)w* Lo Wl “) constructed using the method which is describ%d above are not
Now we shall give the definition of a comparison material. Lethanged if a body, including a representative volume extracted in
a representative volumé, be extracted in an undeformed poroust, carries out a rigid motion after the deformation. Let the body be
material, and let the loads be applied to the boundayyf this passed to a certain state after the rigid motion. Following Lurie
volume in accord with(3). Let the true stresses in the porougl0], we shall prime the quantities relating to this state. Qebe
material be averaged over the deformed voluthe average true the orthogonal tensor that describes this rigid motion; by defini-
stresses in this case are equaldtp as shown aboye and the tion of a rigid motion this tensor is independent on coordinates. It
deformation gradient of the porous material be averaged over tiseknown,[10], that the deformation gradiedt and the true stress
undeformed volume. Then a uniform material is called a compatinsoro are transformed by the rules
son material if the following condition holds: if the true stresses in L P
this material are equal @, then the deformation gradient of this w'=w0, o0'=0%00, ©)
material is equal to the averaged deformation gradient of the pwhen the rigid motion is superimposed on the deformation.
rous material. Using (5) and (9) and taking into account that the tengdris
In accord with this definition we can write constant and orthogonal, we have
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1 1 1
\If’ez—J ¥'dV, =—f V- 0dVy=— f wdV,|-0
VO Vo 0 VO Vo ° VO( Vo ’

:q,/e. o‘ §
1 1 E 5 F _
o'== o’dV’:—f O* .o O detOdV ! O
v fv’ Vv : O M
L
1 DIL-----'-'--—---'—-—'———-"'(/,
=_0*. J odV|-0=0* 0% 0.
v ( v ) SO
Thus, /,’ ¥4
re__ e re__ * e !
o P'e=w*.0, o —O.-O"O. (20) X3 A B
Taking into account E¢(10) we obtain, from(7), (8), X
2
" 1 Vs
E/e:E(q,le.q,/e*_l):E(lpe_o.o*.\pe*_l) xl
1 0 Fig. 1 Three-dimensional case: the representative volume is a
- > (We. P —|)=E°, rectangular prism

0
re_ re reyk —1 re rey—1
1= (detWH (W) o (¥ sentative volume assumes the shape of a parallelefjzeéllelo-
= (detWe detO)(We)* 1.0 - 0O*. ¢ 0-0 1. (W&~ 1 gram), then our new definition gives the same equationsiiras
the definitions that are given {i13,14].
Consider now the equations which follow frof6) in some
special cases.
0 0 ) If the representative volume assumes the shape of a rectangular
Thus, the tensor&® and X° that are determined by the api:sm such that its edges are parallel to the coordinate axes

0
= (detw®)(W®)* 1. 0% (W) =3

proa_lch yvhich is described above do not change when the ri 'ﬁiBHxl, ADIIx,, AElxs, Fig. 1), then the components of the
motion is superimposed on the deformation. Therefore, the re{gsformation gradient for the comparison material may be deter-
tion between these tensditbat is, the effective constitutive equa-iined as

tion) doesn’t change, too.

4 Some Particular Cases

At infinitesimal strains the proposed approach to averaging co-
incides with the conventional approach, which is presented, for
example, by Kachanov et dI3] and Vavakin and Salganif9]. . 1
Indeed, if we substituté?) into (6), we have W5i= 0o+ WRUOIDCGH—(ui)IABFd, (12)

1
S=6y,+ m[<ui>|BCGF*<Ui>|ADHE]v

0 1 0 0 1 0
EEZW (NLH‘ uN)dFO-i-W é NUdFO 1
0 JTo 0\ JTo 3= 03t m[<ui>|EFGH_<ui>|ABCDJv
0
uNdIg |. )
320 0 (i=123).
If strains are infinitesimal, we can write this equation up to the )
first order of smallness as Here we use the notatiofu)|pors= 1/sf porsudl, wherePQRS
is an arbitrary side of the parallelepiped, ani$ the area of this
0 1 0 0 side.
EQIW fﬁ (Nu+uN)dI'y. (11) In (12) and further, where equations are written in suffix nota-
0 JTo tion, it is assumed that the Cartesian coordinates are chosen in the

This equation is similar to the well-known relations presente@@sis of the state, in which the problem is solved.
in [3,9]. In the two-dimensional casg@n plane straiip a representative

In our previous paper§l3,14), another definition of a compari- area is considered instead of a representative volume. Suppose
son material was given. Let us outline the approach that was usBat the representative ar&g is a parallelogram of sidessandb
in those papers. Let a representative volufaeea, which as- that make angles af andg with thex,-axis, respectivelyFig. 2).
sumes the shape of a parallelepip@drallelogram in the two- LetA, B, C, D be the vertices o8y, then the components of the
dimensional cagebe extracted in a porous body. Then a unifornfleformation gradient of the comparison material may be found
material is called a comparison material if the following conditioffom the equations
holds. If the representative voluntarea is filled by the compari-

son material, then the average displacements over each side of this 1
volume (areg are equal to the ones for the given porous materiall’ ;= 53;+ = f u; sin adl+f u; sin,BdI—f u; sinadl
at the same loads. Sol Jas BC cb
The definition that is given in this paper is more general than
the definitions proposed ifl3,14], because it doesn’t impose re- — j u; sianI),
strictions to the shape of the representative volume. If the repre- DA
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T2

T

Fig. 2 Two-dimensional case: the representative area is a
parallelogram

1
—(f U COSad|+f u; cosgdl
S0 AB BC

—J u; COSad|—j u; cos,BdI),
CD DA
whereSy,=ab sin(8—a).

Wi = 6~

These equations are equivalent to the correspondent equations

(0) (1) (0) (1)
~ ~ o~ e e __e
U= U mij0ij T U mijki0ij k= U mijojj + U mij 0ij O -
(14)
Substituting(14) in (6), we get
. (0) . (1) e o
W= OmnT Smnijoi; + Smnijki T Tk - (15)

If we substitute(15) into the expressiofi7) for the Green strain
tensor of the comparison material and retain in the obtained ex-
pression only linear and quadratic terms, we have

0 (0) (1)
Ern= T mnijo; + T mnijkio ki » (16)
where
(0) (0) (0)
Tmnij= Smnij+ S’nmijv
(1) (1) (1) (0) (0)

T mnijt= Smnijki T Snamijkit Smpij Snpki-

0 1
(T)mmj and(T)mnij,d are the first-order and the second-order com-
pliance moduli, respectively.

Solving system(16) with respect tOUﬁ- by the perturbation
technique up to the second order, we have

(0) 0 (1) 0 0
n= CmniiE; + CmnijEf Eki -

given by Levin et al[14]. In the particular case, when the repre- And finally, if we substitute the last expression together with
sentative area is a rectangle of sidesndb that are parallel to the expression(15) into formula (8) for the second Piola-Kirchhoff

axesx; andx,, respectively(i.e., ata=0, 8= w/2), we have

1
V,=6;+— j u-dl—f udl |,
1i 1i ab BCI DA i )
W= 0y + ! dl dl 13
2= %" 7p CDUi ABUi . (13)

stress tensor and retain in the obtained expression only linear and
quadratic terms, we can write the effective constitutive equations
in the form

0 (0) 0 (1) 0 0
2 8n= CmnijEf + CmnijwEf Eki - (17)

(0) (1)
Here C nnij and C 55 are the first-order and the second-order

Equations(13) coincide with the correspondent equations that!astic moduli, respectively.

are presented by Levin et &fL3], within a notation.

Note that the described method may be used for isotropic ma-

trix materials as well as for anisotropic ones. The comparison
material is generally anisotropic.

5 Approximate Method for the Construction of Effec-

tive Constitutive Equations 6 Definitions in the Case When the Shapes of Pores
In general, the considered approach to the construction of efre Given in the Final State
fective constitutive equations is not restricted by the value of the ¢ pores assume a given shape in the deforitiied) state, it is

deformation. This approach may be used whenever the boundag, o oiate to use another definition of a comparison material. In
value problem of nonlinear elasticity with the boundary condltlonmiS case we average the inverse of the deformation gradent
(1) or (3), wherea is an arbitrary constant, symmetric tensor, May \-1_| _vy over a representative volume in the deformed

be solved for a representative region with holes. However, it is ”Q;ate Let the representative volurvebe extracted in the de-
clear whet_her this model adequ_ately reflects the _overall r_ne_c_h Fméd porous material, and the loads be applied to the boundary
cal behavior of a porous material when the strains are infinite of this volume in accérd witl{1). Let the true stresses and the
increased. In addition, as is knowp]0], even in the two- in}/erse of the deformation gradient be averaged over the volume

d'men$'°na| case the_ exact solutions of nonlinear prc_)blems \'in the deformed statéhe averaged true stresses in this case are
elasticity at large strains are found only for some special pote qual t0F). Then the uniform material is called a comparison

tials. By these reasons we consider the approximate method terial if the following condition holds: If the true stresses in

tmhgth%%nisstgjgggg ogftr:gzoleuf{iicr?\é?ngﬁﬂﬁggtlvgb?g;ztgn;és-[iz is material are equal t&, then the inverse of the deformation
P adient for the comparison material is equal to the averaged in-

sed at a mited range of sitams, Nots thal even when the averdggee Of the deformation gradient fo the porous material
g S : %ccordlng to this definition, we get

strain is small, the local strain in some regions could be large,
depending on the microstructure. In particular, this effect takes 1 1 1
place for a body with closely situated circular holes, especially ‘I’eflzv f PdvV= \—/J (I=vudv=I-g fﬁ NudI".
when one hole is considerably larger than another in its size v v r
(Levin and Zingermai15]), or for a body with narrow slotéor
example, elliptical 7 Load-Induced Pores

Let the nonlinear problem of elasticity with the boundary con- Now we construct effective constitutive equations for the case
dition (3) at the external boundary of the representative volume éhen pores are originated in materials after loading. Such equa-
solved by the perturbation technique up to the second order. Theans may be used to simulate the mechanical behavior of materi-
we can represent the components of the displacement veasr als in which microdefectésubmicrocracksare originated at load-
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ing, [16,17]. There may be diverse approaches to this problem. between the average additional strains and the average additional
this paper we consider an accumulation of microdefects as a ditresses or as a relation between the average total deformation
crete process such that each stage of this process is associgtadient and the average total stresses.

with the application of a load. This approach may be verified Thig scheme may be used for simulation of a partial unloading
experimentally by the fact that the concentration of submicrest nolymeric materials in which pores are originated after loading.
cracks in polymeric materials at first increases after the appliGgis experimentally shown by Tamuzh and Kukserik8] that the

tion of a load, but then reaches a steady-state value within SOR¥hcentration of micropores do not decrease significantly after
time of loading if the load is time-independent, and this steadyartial unloading, that is the originated micropores do not close.
state value of concentration depends on the value of the appliggis scheme may be also used for examination of cavitation phe-
load, as shown by Zhurkov and Kukserlk®] and Zhurkov et al. nomena(sudden opening of cavities at loadjnm rubber-like

[17]. Tamuzh and Kuksenkfil8] note that submicrocracks may materials[21,22].

be considered as holes in a homogeneous medium. In other wordsghe general approach to the construction of effective constitu-
the approaches that were developed for the analysis of macfige equations is the same for the both cases. Consider this ap-
scopic holes may be extended to submicrocracks, and one gabach now using the notation of Lev[i9,20 and Levin and
analyze the submicrocracks within the scope of continuuingerman[23]. Let the initial deformation be affine. LaF® be
mechgnics neglecting the structural inhomogeneity of polymerige deformation gradient of the comparison mateNs},,, W,
materials. andW , the initial, additional and total deformation gradients of

Assuming that the accumulation of microdefects is a discrefrous material, respectively, the additional displacement vec-
process, we can analyze this process using the theory of supenst; o, ; and o , the initial and the total true stress tensors respec-
posed finite deformations that was developed by Ld\i9,20. tively. Let V, be a representative volume in the initial state, and
The basic concepts of this theory are as follows. Let us distinguigt this volume be transformed to the volumésandV, after the
N states of a body: initiafundeformed state; N—2) intermedi- initial and the total deformation respectively. By, I';, andl’,
ate states, for which body goes step by step by successively dpnote the boundaries of volum¥g, V,, andV, respectively.
plied external effects; final state, to which body goes after the i .
application of all external loads to it in the predetermined orde 'elt_N (k']_ g'l'zzj be the S_O_rmal ;.
By “application of load” we mean application of body forces and et the boundary condition
application or removal of load over both the pre-existing bound-
aries of regions and the newly formed ones.

Within the scope of this theory, the origination of holes in the
body may be simulated using the scheme, which is proposed by . . U
Levin [19,20. Assume large plane static strains and stresses &’r% given at the boundary, in the deformed state. Hef@ is a
brought about by external forces in a nonlinear elastic body th&#Stant, symmetric tensor, as before. . .
was in the initial(unstressedstate. The body passes to the firshg‘s in the case, when deformations are not superimposed, it may

2 2
N-aodr,=N-]r, (18)

intermediate state. Then a closed surface is imagined in the bo Usrlmown thath'f c%ndltlor(18) Solds andl the body forcis arT
and its contents, bounded by this surface, is removed, and al to zero, t~en_t e averaged true total stresses over the volume
effect of the removed part of the body on the remainder is re? are equal i@, i.e.,
placed by forces, distributed over this closed surfarethe prin-

: ; . ; : 1
ciple of releasing from constraintslt is clear that this transfor- = | ooAdV,.
mation doesn’t change the stress and strain states in the body. Vs Vy
Then these forces, changed to the category of external forces, are

reduced to zero quasistatically. It raises lagiethe vicinity of the Boundary condition18) may be written in the coordinates of
originated surfacestrains and stresses that are superimposed #re intermediate state as
the large initial strains and stresses already existing in the body.
The body passes to the next state. The shape of the introduced 11 1

boundary surface is changed. Then this procedure is repeated for N~Eo,zlpl:(detllflvz)N-\If’l‘ygl-Tr\Pl"zﬂrl. (19)
the origination of the second hole, etc.

Below, three states of a body are considered: initial, intermedi-

1
ate, and final. The indices 0, 1, and 2 correspond to these sta greEo,z is the total(for the final statgstress tensor referring to
resbectively T €' base of the intermediate stgt&9].

Consider now two schemes of construction of effective consttir-1 Now Wefshall give the g%fir;ition of a compar:isclnn ?atézrial folr d
. . . ; e case of superimposed deformations. Let the loads be applie
tutive equations for previously loaded porous materials. to the boundar?l*l inpthe intermediate state in accord witho) PP

1 A continuous (undamaged body is loaded. Finite initial |et the true stresses in the porous material be averaged over the
strains are brought about in it. The body passes to the intermedigéumeV, in the final statdthe averaged true stresses in this case
state. Then pore@nicrodefects are originated in the body by the are equal t&r, as noted aboyeand the additional deformation
scheme which is proposed by Le\it9,20. It is assumed that the gradient be averaged over the voluligin the intermediate state.
pores are uniformly distributed over the body. The origination dfhen a uniform material is called a comparison material if the
pores raises additional finite strains that are superimposed on fbkowing condition holds: If the true stresses in this material are
finite initial strains. equal too, then the deformation gradient of the comparison ma-

By this, the average stresses do not change. The additional ttial is equal to the initial deformation gradient multiplied on the
ternal loads are not applied to the body. The effective constituti@veraged additional deformation gradient of the porous material.
equations are constructed as a relation between the average totd) accord with this definition we can write
deformation gradient and average stresses caused by loading.

2 A continuous body is subjected to initial loading. Then pores ~ e_~ _ 1 vV Pe=1p, .. 1 W, dV
are originated in the body. Then additional external loads are ap- ©  ©  V, VZUO'Zd 2 0l v, v, 1dVs-
plied to the body. Additional finite strains are brought about in the (20)

body due to the origination of pores and the additional loading.
These additional strains are superimposed on the initial ones. Th&aking into account tha; ,=1+ V1u, and using the diver-
effective constitutive equations are constructed either as a relatgence theorem, we can write the second @€) in the form
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1 1 1 1 (0) (0) (0)
W=, . V—f (|+Vu2)dV1=‘I’0,1- I+ 3@ Nuzdrl). Smnij= P mnij+ Qumnij»

1Jv, 1Jrn €8] (1 (1 © O

(21) S ikt = P mniji ™ Qmnijki T P mpijQ pnki -
This equation may be written as Note that Eq.(28) has the same structure as E#5).
We=p, W, (22) Further compl_Jtatipns are similar to _the_ ones that are _prese_nted
’ ’ above for materials in which pores exist initially, beginning with
where Eq. (16).
1 .
izz”vi fﬁ Nu,dT', . (23) 8 Numerical Results
1 Consider now some numerical results. The effective moduli are

Thus, we formally consider the deformation of a comparison m&omputed for the two-dimensional cager plane strainwhen the
terial as a sequence of two stages of deformation assuming tR¥gchanical properties of the matrix are described by Murnaghan’s
the first stage of deformation coincides with the initial deformaRotential,[10,24],
tion of the original material. 0 0 0 0

Now, using the last definition, we shall consider an approach to Y =\(E:1)l + 2GE+ 3C4(E:1)?l
the construction of effective constitutive equations for materials in
which pores are originated after loading. This approach basically 0 0 0 0
coincides with the approach that is stated above for materials in + C4(E2:1)1 +2C4(E:1)E+ 3C5E2. (29)
which pores exist initially. Let the shape of pores be prescribed in_l_he nonlinear problem of elasticity is solved by the perturba-
the intermediate state. At first, the gradient of initial deformatior}s hni 152 o th y d ord By thi pth
W, , is determined from the given initial stresseg;. Then a fon technique[14,23, up to the second order. By this, the as-

representative volum¥, is extracted in a body in the intermedi-SUMpPton. of Mori-Tanaka's schem¢25], is used: Insteqd of
ate state. The solution of the nonlinear problem of elasticity ecification of loads at the boundary of the representative area,

obtained subject to the boundary condition defined 1§ at the far-field true stresses;; are given. These far-field stresses are
external boundary’; of this volume, and the boundary conditions2SSumed to be equal to the average stresses in the matrix and are
at the boundaries of pores. In particular, the additional displacéetermined as

mentsu, are found. Then the deformation gradiedf€ of the oi=(1-p) ot

comparison material is received frof@1). The Green strain ten- . e

0 0
sor E¢ and the second Piola-Kirchhoff stress ten3r of the
comparison material are obtained from the equations

whereo—ﬁ- are the average stresses in the porous mediump éd
the porosity of the material in the final state. Note that the last
equation takes place whenever the boundaries of pores are
0 traction-free.
Z(We W ), Xe=(detWe)(We)* 1. gC (We) L, It is known that Mori-Tanaka's scheme may be used at relative
2 small porosities. Levin et a[14] attempted to analyze the appli-
(24)  cability of this scheme considering representative regions with
Then the effective constitutive equations are constructed a$@Me interacting pores. The interactions between pores within the
) 0 0 representative region was taken into account during the solution
relation between the tenso¥ andE®. , of the problem of nonlinear elasticity. The computations was per-
If the nonlinear problem of elasticity is solved approximatelyiormed for the isotropic elastic material with uniformly distributed
then the effective constitutive equations are constructed approggual circular holes and showed that the correction for the effects
mately, too. Consider this approximate method in detail for thef interaction between pores within the representative area does
first scheme(when additional external loads are not applied to Aot exceed 3% for the first-order effective moduli and 20% for the
body after the origination of porgsin this case we can write second-order effective moduli f@r<0.4. Mauge and Kachanov
[4] discovered the same effect analyzing the effective properties
of linear-elastic solids with arbitrarily located microcracks.
Let the nonlinear problem of elasticity be solved for the repre- In accord with Mori-Tanaka’'s scheme, the boundary condition
sentative volume with pores using the perturbation technique Up or its equivaleni3) may be replaced by the condition
to the second order. Then the solution can be represented in the

0 1
Ee=

001~ 0'e=5'.

form aijl.=0a; .
(0) (1) The computations are performed for the case when pores are
Up, = U mijoij+ U mijk 01 0 - (25) equal in size and assume a circular shape either in the undeformed
m

o o state or in the intermediate stdtter a preliminary loading The
Substituting the last expression in®3), we have the expan- ensemble averaging technique which is developed by Levin et al.

sion for\lf‘l"2 [14] is used in order to approximately simulate the uniform dis-
) (1) tribution of pores. This averaging permits one to represent the
VS, =St Qunijof + Qunijiios oF - (26) effective constitutive equations in the form
. . . . 0 0 0 0 0
The similar expansion e be rece(':ed Wo.. o= \S(ES:1)] + 2G°E+ 3C(E%: 1) + CEL(E92 NI
61,,,= Omnt P mnijotj + P mnijiiij o - (27) o o0 0

+2CE(E®1)E®+3CE(E®)?, (30)
If we substitute(26) and (27) into (22) and retain in the ob- ) ) ) )
tained expression only linear and quadratic terms, we have ~ Where\® and G® are the first-order effective elastic moduli, and

Ci(i=3,...,6) thesecond-order effective elastic moduli.

(0) (1) . ; i
e _s o e e e The isotropy of the comparison material takes place due to a
W= Omnt Smnij i+ Smijia 7 i (28) special ensemble averaging procedure, which is developed by
where Levin et al.[14]. This procedure includes the averaging of the
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Fig. 3 Effective linear elastic moduli ¢, G°¢ referred to the Fig. 5 Coefficients bs;, bss, and bg, versus porosity for
correspondent matrix moduli versus porosity. N G=2. NG=2

(0) (1) terials is used. The computations show that the monltyli G€,
effective moduliC yjj, Cmnijii in (17) by all possible orienta- a;, and all the coefficients;; are the same for these both cases,
tions of coordinate axes. If we do not do this additional averagingnd the coefficientas andag are different.
the comparison material will be generally anisotropic. The plots of the effective moduk®, G, and the coefficients;

It is noted by Levin et al[13] that one of the modulC3, Cj, andby; in (31) versus porosity are presented for matrix materials

t, C& may be given arbitrarily in the case of plane strain. In thwith A/G=2. The ratios\®/\, G®/G are plotted in Fig. 3. The
present paper the computations are performed under the assuouefficientsa; are plotted in Fig. 4(in this figure a¥ and ag
tion C3=C,(1—p)> denote the coefficientss andag, respectively, for the case when

Because the solution of the nonlinear problem of elasticity, ob-
tained by the perturbation technique up to the second order, de-
pends linearly on the material constarts, C,, and Cg, the

effective moduliC?, computed by the scheme considered, also ' ' '
depend linearly on these constants: 0.20r
5 i -bsy
Cé=a;+ >, b;C; (i=3,5,6). (31) 0.15} P e . by
=5 ’ T
Note that if the nonlinear problem of elasticity will be solved o.10k s b '/
with regard for higher-order effects, the dependence between the : 7 - 34\ .____,_‘;;,.
effective moduliC{ and the matrix modulC; will not be linear. - e b
The computations are performed as for the case when pores 005k e be; P b
exist in an undeformedunloaded material as for the case when L R 4 jZ
pores are originated in a previously loaded material. In the last v Sa00es O SRS by
case, it is assumed that the material isn't loaded additionally after 0.00 i . ]
the origination of pores, i.e., the first scheme of construction of 0.0 0.1 0.2 p

effective constitutive equations for previously loaded porous ma-
Fig. 6 Coefficients bg,, bss, bsz, bss, bgz, and bgs versus
porosity for N G=2

0.5 . ; . .
04} aF == - 20
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02r ¢ el T L
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Fig. 4 Coefficients a; versus porosity for N/ G=2. The plots for
the case when pores are originated in previously loaded mate- Fig. 7 Effective elastic moduli versus porosity for the porous

rials are marked by circles. organic glass
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1 Introduction

Novel Boundary Integral
Equations for Two-Dimensional
Isotropic Elasticity: An Application
to Evaluation of the In-Boundary
Stress

A new nonsingular system of boundary integral equations (BIEs) of the second kind for
two-dimensional isotropic elasticity is deduced following a recently introduced procedure
by Wu (J. Appl. Mech§7, pp. 618-621, 2000) originally applied for anisotropic elastic-

ity. The physical interpretation of the new integral kernels appearing in these BIEs is
studied. An advantageous application of one of these BIEs as a boundary integral repre-
sentation (BIR) of tangential derivative of boundary displacements on smooth parts of the
boundary, and subsequently as a BIR of the in-boundary stress, is presented and analyzed
in numerical examples. An equivalent BIR obtained by an integration by parts of the
integral including tangential derivative of displacements in the former BIR is presented
and analyzed as well. The resulting integral is only apparently hypersingular, being in fact
a regular integral on smooth parts of the boundary.

[DOI: 10.1115/1.1630813

eigenvectorsA andB, of the fundamental elasticity matri, and
on relations of these matrices with the Barnett-Lothe tenddys,

The strongly singular character of the integral involving dist 'ands, Taking into account the fact that these relations hold in
placementsy;, in the fundamental boundary integral equatiomhe basic form used by Wi#] only for the so-called mathemati-
(BIE) of linear elasticity, i.e., Somigliana displacement identity, iSaIIy nondegenerate anisotropic materiédsth simple or semi-
well known, Rizzo[1]. This integral, evaluated in a Cauchy prin-simple matrixN, Ting [5]), explicit expressions of the integral
cipal value sense, makes analysis and numerical solution of tkgrnels presented by 4] hold only for these nondegenerate
BIE more difficult than, for example, analysis and numerical sdnaterials. Consequently, results by \j cover the case of math-

lution of an analogous BIE in the potential theory, Bamd Caas

[2]. This strongly singular integral may be regularized by the su
traction of rigid-body displacement& usual approach in the
boundary element methoBEM)) or by integration by parts,

Ghosh et al[3].

A very novel approach to obtain a BIE system of the seco
kind with nonsingular integrals involving unknown elastic vari-
ables defined on the boundary has been recently introduced by
[4] for the two-dimensional case. Wu's BIE system, in its origina‘f
form, involves a nonsingular integral with tractiorts, and a
strongly singular integral with tangential derivative of displace-
ments,dqU; , in the first BIE and a nonsingular integral withu;
and a strongly singular integral with in the second BIE. Thus,
considering the first BIE on the boundary part where displac
ments are prescribed and the second BIE on the boundary
where tractions are prescribed, the final form of the nonsingul
BIE system of the second kind is obtained. This system c¢
be applied to solve boundary value problef®/Ps) of linear

elasticity.

The derivation of the nonsingular BIE system of the seco
kind by Wu [4] is based on some basic results of the Stroh fo[J-S
malism of two-dimensional anisotropic elasticiying [5]), in
particular on Stroh orthogonality relations for complex matrices

ematically degenerate materials only as a limit dasasidering a
H@riation of elastic stiffnessgsnd not in an explicit way.
The first objective of the present study is to complete Wdls
work by deducing explicit expressions of the integral kernels
which are involved in the nonsingular BIE system of the second
land for isotropic materials. Note that isotropic materials represent
"he most important case of the so-called mathematically degener-
9\}8 materials in the framework of the Stroh formalism. Explicit
Xpressions of these integral kernels will be presented in both
complex and real variable formulations.
The second objective of the present work is to study an appli-
cation of the advantageous nonsingular character of YMy'BIE
system, which was not discussed in his original work. This appli-
ation is an accurate evaluation of the in-boundary stwgsén a
;%‘)r t-processing procedure applied after a numerical solution of a
formulation which directly involves as variables boundary

afsplacementsi and tractiong; , but notoss. An accurate evalu-
Hon of the complete stress tensor at the boundary is of crucial
importance for engineering decisions in view of the fact that stress
critical locations in elastic BVPs typically appear at or near the
undary, where maximum values of different failure criteria are
ually achieved. The present study is concerned with boundary
oints situated at locally smooth boundary pdits., excluding
oundary cornejsand where the stress tensor is continuous.

The standard procedure to evaluaig in boundary element

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF f
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- method(BEM) codes, proposed in the very early stages of BEM

CHANICS. Manuscript received by the ASME Applied Mechanics Division, SeptemPY Rizzo and _Shippfe] and (_:ruse and Van Buréﬁ] and U_Sed to
ber 18, 2002; final revision, July 28, 2003. Associate Editor: R. C. Benson. Discidate, starts with the evaluation of the tangential derivative of tan-
sion on the paper should be addressed to the Editor, Prof. Robert M. McMeekinfential displacementjsug, by differentiation of a boundary ele-

Department of Mechanical and Environmental Engineering, University : ; i . .
California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted un ?nt approximation ofis, giving the in-boundary strain tensor

four months after final publication of the paper itself in the ASMELBNAL OF COMponentess. Then, o is computed fromegs and from the
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boundary normal stress componeti= o,,,, applying Hooke’s
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constitutive law. A possible loss of accuracy due to the numericalent and stress function vectors originated by this force and dis-
differentiation applied and the discontinuities of the in-boundargcation at the field poink=(x;,X,) were given by Wu et al.
stress evaluated in this way at boundary element junctions are [#8]* as
main disadvantages of this simple procedure. Several averaging or _
smoothing techniques have been proposed recently in order to u(x)=U(x,y)F+W(x.y)b,
avoid the above-mentioned discontinuities and also to obtain re- o(X)=WT(x,y)F+V(x,y)b, (1)
sults of a higher accuracy, e.g., ZhE®] and Manticet al. [9], . ) . . .
respectively, for quadratic and linear boundary elements. with U, V, and W being the imaginary parts of the following
Starting from pioneering work of Cruse and Van Buigf a complex matrix functions representing fundamental singular elas-
great deal of research has been devoted to boundary integral fisolutions:
resentationgBIRs), and in particular to the hypersingular BIRs 5
(Guiggiani et al[10]), as another way to obtain the in-boundary Ux,y)=U*+iU=—

1
—=———|iklogzl
stress with a high accuracy. Following the study by Graciani et al. 2wG(k+1)

i -1

i -1

z—z(1 i
ilogzl+iE< ”
(k+1) i(k—1)
—i(k—1) (k+1)

log z(

[11], there are situation&e.g., straight boundaries with some par- 7—7/1 i
ticular boundary conditionswhere the hypersingular BIRs can 4 _< ”
provide highly accurate results because in these situations they are 2z
only apparently hypersingular, and are actually regular BIRs. Nev-
ertheless, in general, a really hypersingular character of the corre-i(x y)=v* +jv= ————
sponding integral kernel implies too restrictive continuity require- m(k+1)
ments on displacement approximatidisishnasamy et al.12]),
which are violated at element junctions in conventional BEMW(X y)=W* +iW=
based on Lagrangian shape functions. As a consequence, the con-"" 2m(k+1)
vergence of results by the hypersingular BIRs can be slower than _ )
the convergence of displacements and tractions evaluated directly N z-z(1 i 5
in BEM analysis, see Graciani et &lL1] for examples of such a z \io—1)) @)
slow convergence at element junctions and element centers iﬂ . . . . o
potential theory, and Avila et a13] for values at element centersWNeréz= (X1 —yi) +i(xz—y5), i is the imaginary unitG is the
in elasticity. shgar modL.JIus:;:.B—Afv is Ko.losoff constant withv as Poisson

It can be expected that a BIR whose integral kernels do nio, andl is the identity matrix. Note that™, V* are bounded
imply too restrictive continuity requirements, like the hypersingdunctions, andw*, U, V, and W are weakly singular whery
lar BIRs traditionally used, could provide results of a high accuapproaches. Observe also thad andV are symmetric matrices,
racy. In particular, considering the continuity of usual approximdheir real and imaginary parts thus being symmetric as well. Gen-
tions ofu; and discontinuity obgu; in BEM, it is required that the eral complex variable expressionsWf V, andW for degenerate
kernel multiplyingu; is strongly(or lessg singular, or equivalently anisotropic materials can be found in Tifitg].
the kernel multiplyingdgu; is weakly singular(or regulay. Obvi- The real and imaginary parts of V, andW can be written in
ously the best results are expected if these kernels are eithedl variable formulation using index notation in the following
bounded, continuous or even smooth at smooth boundary paway:
Thus, new BIRs with special Green’s functions are required. Niu
and Shepard14] derived such a BIR ofrgs using the Green’s 0. _1* a0 _
function defined by an application of a force dipole at the traction- Uij (y) = U Oxy) U5 ()
free boundary of a semiplane. Taking the semiplane boundary
tangent to the actual solid boundary at the point-gf evaluation,

2rGrr 1)L <00

+8ikrykr1j)+i(_K |Ogr6ij+ryir'j)],

the integral kernel representing tractions vanishes along the tan- 2G
gent line to the actual boundary. For an evaluation point placed atlij(x,y):Vi’](x,y)JriVij(x,y): ———[(— 05— &l I j)
a smooth curved boundarwith nonzero curvatupe this traction m(k+1)
kernel is in fact strongly singular. +i(logra;—rr )1,

In the present work two BIRs afyu; are analyzed. The first one e
is defined by the second BIE from the BIE system introduced by -~ .
Wu [4], with integral densitieg,u; andt; . The second one, with Wij (%,y) = Wi (x,y) +iWi; (xy) = 2m(r+1)
integral densitiesy; and t;, is obtained from the first one by
integration by parts in the integral involvingu; . In both BIRs ((k+1)logr 6 — (k—1) Oej; —2r i1 ;) +
studied the integral kernels multiplyirgu; or u; vanish along the i((k+1)06;;+(k—1)logre;j+2eyr v ;)|
line tangent to the boundary at the evaluation point, and are 3
bounded and smooth along smooth boundary parts. The in- ®)

boundary stress.is obtained using.us, evaluated by means of wherer=(r,r,)=(X;—y1,X2—Y,), r=|r|, r;=r;/r, =argz
these BIRs, andj,. The numerical examples studied show a higis the angle of the radius vector with the x;-axis, §;; is the
accuracy of the in-boundary stress obtained in this way with ronecker delta symbol, ang}; is the permutation symboleg,
quadratic O(h?) pointwise convergence for linear boundary=—e,:=1,e1,=£2,=0). Note that expressions &f, VV, andW
elements. in (2) and (3) differ by some physically non-significant constant
terms, corresponding, for example, in the case of displacements to
rigid-body movements. It can also be verified that the real variable
expression ofW;; in Eq. (3) coincides, except for a physically
2 A Nonsingular Boundary Integral Equation (BIE) nonsignificant constant term, with the expressioMgf in Ghosh
System for Isotropic Elasticity et al.[3], as could be expected.
A relation between singular elastic solutions given by the real
21 |ntegra| Kernels. (;Onsider an iSOtI’OpiC |nf|n|te body and imaginary parts d’:ﬂ’ '\7’ and\’i\’/l and in particu|ar a physica|
subjected to a plane-strain state caused by a line fd¥ce interpretation of their real parts, can be easily identified for aniso-
=(F,,F,) and a straight dislocation of Burgers vecttr

= (b;1b2) acting along the line paralle[ to they-axis and inter- There is a misprint in Eq(17) by Wu et al.[15]: the correct expression of
secting the plan&;=0 at the source point=(y;,Y,). Displace- does not include the first minus sign on the right-hand side therein.

818 / Vol. 70, NOVEMBER 2003 Transactions of the ASME



tropic (nondegenerajematerials using a basic relation of Stroh 1
formalism between the Barnett-Lothe tensdfs,L, and S, and Ui (xy)= zc;(—Jrl)r((K*l)F,m(Sij+2F,i|’,jr,m)nm(x).
the matrices of the eigenvectoss and B, [4,5]. This relation K
implies that .- G
V(X Y) = = ———=57 20 il T (X)),
{ Ur(xy) WA xy)] [ UGy Wxy) wlet Lr
WXy VEXY) | IWOGY)T (X, 5
() (xy) () () Wi*j(xy}’):—ZW(K+1)r(_(K+1)r,I5ij8Im_(K_1)r,m8ij
L Uy) W) |
- W(X,y)T V(X,y) N ' (4) +2I"j£im+2r'iajm—4I"ir,jr’|8|m)nm(x), (8)
where ( L
Ui (x,y) = m(Kr,lﬁijslm—f,jSim_|’,i€jm
- S H —
Nz[—L gr| and NN=NTN"=—1I. (5) +20 i1 T 181m) Nin(X),
. 2G
Note that the second equality in E@) is a simple consequence Vij(xy)= Tkt Dr (=T i6ij&mtr j&imtr igjm
of the first identity and symmetry of 66 matrices of real and
imaginary parts ofJ, V, andW on the left and right-hand side of =201 51 181m) Nim(X),
the first equality in(4). Using the argument of the continuity of 1
elastic solutions with respect to a material limit it is obvious that . (x v)= —— (k= 1)(F o8 —T ST 1 5
Eq. (4) holds for isotropic materials as well. The Barnett-Lothe 100y 2m(k+1)r (= 1) (F mdy =1 O+ Om)
tensors are defined for isotropic materidbl, as FAr o N (%) ©)
At ,m/Hm .

B 3—4v 5
17367

G

e

1-2v
i SiT T gy G
©

Sources of singularities io*, V*, andwW* can be determined,
in view of Eq. (1), directly from the second equality in E).
Let g be a real vector. Then, for exampld? (x,y)q represents a
displacement vector at originated by a line forcé=S"q and
a line dislocation of Burgers vectdr=Hq, andV* (x,y)q repre-
sents a stress function vector mtoriginated by a line force
F=—Lg and a line dislocation of Burgers vectbr Sq.

Consider now a smooth non self-intersecting cuPwe R?. Let

H L 6

Note that Eq(4) is valid for tangential derivatives &, V, W and
U*, V* andW* as well, which has been checked by Calzgtig
explicitly for isotropic materials. Recall that tangential derivatives
of U andV are symmetric matrices. Considering a Taylor series of
a parametrization df g about a fixedke I'g, it can be shown that
Re{n,/z} andz/z and also equivalently nn,/r andr ,r; are
smooth and bounded functions ¢feI's. This implies that
U* (x,y) andV*(x,y), apparently singular functions, are in fact
smooth and bounded functions & I's. With reference to the
other mat[ix functipns defiqed in Eqé7)—(9), off-diagonal ele-
ments of U(x,y), V(x,y), W*(x,y) and diagonal elements of
W(x,y) are smooth functions ofe I'g, the rest of their elements

S(X) =(s1,8) and n(x)=(ny,n,) respectively denote the unit peing strongly singular functions gfe I's.

vectors tangent and normal & at a pointxe I'g related byn;

=g;;s;. The corresponding definitions in complex variable are 2.2 Nonsingular Boundary Integral Equations (BIEs).
s,=S;+is,, Ny=n;+in,, s,=in,. Then, tangential derivative Consider an elastic body whose section dom@iCR? has a

atxeI'g of a functionf(rq,r,)=f(z,z) (wherezis complex con-

piecewise smooth Lipschitz boundafy Let I'sCI" denote the

jugate ofz) defined onl'g, consideringy fixed, is evaluated as smooth part ofl’, i.e., excluding corners, points where a jump of

follows: asxf = slaxlf + szﬁxzf =s,0d,f +5.0:f.
Tangential derivatives of singular solutiobk V, W and U*,
V* and W* will appear in BIEs considered in the next sectio

1

0 :A* .A:—
8SXU(x,y) U*+iuU 277G+ 1)

5 V) =V 0= —2 | —@Z o

s V(X.y)= V= m(k+1)| z 2z i -1

d \TV *V’V*-i-'\/\’\/f 1 Ny (k+1) I(k=1)

s, (x,y)= | T 2m(k+1) Iz —i(k—1) (k+1)
+,nxﬂﬁxz 1 i 7
7 i -] v

where U*(x,y)=ds U*(x,y), U(xy)=ds U(xy) and analo-

n
Explicit expressions of these derivatives in complex variable ai

boundary curvature takes place, etc. Following Withe proce-
dure of deduction of the nonsingular BIE system starts with a pair
of strongly singular BIEs introduced by Wu et fL5], which can

IIée written in the following compact matrix form fore I'g:
E(asu(x) - f Uxy)  W(xy) ( t(y) )dr
2 —t(X) —pV- r W(X,y)T \7(X,y) _asu(y) v
(10)

all the integrals being evaluated in a Cauchy principal vaiue)

sense. Multiplying Eq(10) by N from the left, another pair of

BIEs is obtained, whose form is, in view of E@), as follows
o,

(Wu [4P):
|
T
(11)

Due to the smoothness of integral kerndl, V* and off-
diagonal elements div*, only the integrals including diagonal
elements ofV* are in fact evaluated in a Cauchy principal value
sense.

As has already been discussed, taking advantage of the fact that

U* (x,y)
W* (x,y)T

t(y)

W*(x,y) (
—dsu(y)

V*(x,y)

gously for other singular solutions. Simple expressions of thegg andV* are smooth kernels, these BIEs can be organized in
singular solutions in real variable formulation can be obtained

either by differentiation of Eq(3) or directly from Eq.(7) (for
details of algebraic manipulations see Calzftid)):

Journal of Applied Mechanics

2There is a misprint in Eq:12) in Wu [4]: The correct form does not include the
first minus sign on the right-hand side there.
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such a way that regular integrals involve unknown elastic vari- | 4G

ables and that strongly singular integrals involve variables defined Vi (x,y) = Tg{( Skl i1 mt Ol il mt Omid il j)

by the boundary conditions of an elastic BVP. [[ebe partitioned mlet r

in two partsI’, andTI'; (both open inl’), I'=T",UT"; (an overline —Ar i r o d mben (Y)Np(X). (16)
denotes the closure of a get’ ,NT';=, displacements being . . . . .
prescribed oA, and tractions ofi’;. Then, when the first equa- Recall that this kernel is hypersingular, i.e., proportionat tG

tion from (11) is applied at points placed on the smooth part dP’ Y€ I's y—xel's, only apparently because it has been ob-
r,, ie,xel',Nls, tained as a tangential derivative of a smooth funct6i(x,y).

Thus, V*(x,y) is in fact a smooth function of e T for a fixed
1 . xel's and it is bounded for alyeI". Observe also that the fol-
FHtx) + FU (xy)t(y)dly lowing symmetry relations hol¥}: (x,y) = V% (x,y) = Vi (¥.X).
Substituting Eq.(15) into Eq. (14) the following BIE is ob-

1 . tained forxeI'g:
:ES&SU(X) +p.v. | WH(xy)dsu(y)dl'y, (12)
v

1 N
ELasu(x)= - ESTt(x)f p.v.f W*(x,y) "t(y)dl,
and the second equation frofhl) is applied at points placed on r

the smooth part of , i.e.,xel')NTg,
1 - f V* (x,y)u(y)dr . (17)
—ELasu(x)+fV*(x,y)asu(y)dry :
r An additional advantage of BIE in E¢L7) when applied as a BIR
1 in a BEM post-processing, in comparison with that in Elf)), is
:—STt(x)+p.v.f W*(x,y)Tt(y)dFy, (13) that a boundary displacement approximation appears directly as
2 r an integral density on the right-hand side of the BIR, no differen-
) o ) _tiation of this approximation then being required here. Note that
a nonsingular BIE system of the second kind is obtained, Whi¢Rere is no restrictive continuity requirement on a displacement
can be used to solve the BVP posed. approximation used on the right-hand side of BIF) in order to

_After a rearrangement of E13) and considering that is @ optain a continuous approximation 6fus over I's on the left-
diagonal matrix, see Eq6), a BIR of dsu can be obtained as hand side.

follows:
4 Application for the In-Boundary Stress Evaluation

1 1 .
— _ _l _ T.
FLIux)==5S(x) p.v.JFW*(x,y) t(y)dTy Starting from Hooke’s law an expression of the in-boundary
stresso s in terms of the normal stress to the boundary,=t,

o and in-boundary straings= dsUs is obtained in the following form
+ rV (X,y)dsu(y)drl'y . (14)  for a plane-strain state
v E
A principal advantage of this BIR is that errors produced in the Uss=Etn+ m&sus, (18)

differentiation of an approximation af substituted into the last

integral on the right-hand side are expected to be smoothenedwiyereE is Young’s modulus.

the smooth and bounded integral kerivéfl. Actually, tangential  Although an application of BIRs in Eqé14) and(17) to evalu-

derivative of an approximation af is not required to be continu- atedsus and subsequently through Eq(18) is the most advan-

ous alongl” any more. tageous approach on smooth boundary parts where tradtines
prescribed, these BIRs can successfully be applied on other
smooth boundary parts as well. The accuracy gf evaluated in

. this way can be expected to be similar to that of direct results of a
3 An (Apparently) Hypersingular Boundary Integral  ggwp analysis, tractions and displacements.
Equation for Isotropic Elasticity Two examples are presented to illustrate the performance of the
Thinking of evaluatingr.. on I's as an objective of the present@P0ve BIRs. Note that BIRs given in Eq44) and(17) are in fact

work, another BIE will be deduced in this section starting frorgauivalent, except for rounding-off errors and errors in integra-

Eq. (14). Consider a fixed poinke I's. The regular integral on tions, if the same approximations of the solution of a BVPIon

the right-hand side of Eq14) can be evaluated using an integra@re applied on their right-hand sides as integral densities and in-

tion by parts as tegrations(and also differentiation of the displacement approxi-
mation in the case of Eq14)) are performed over the actual
IV*(X,y) PPV (X,Y) boundaryI’. Thus only results obtained by the BIR given in Eq.
Y _ Y y he i
s ds u(y)dl’y=— asis, u(y)dl'y. (15) (14) are presented here for the sake of simplicity.

Material properties in both examples are given &y

Note that the above integration by parts is permitted because?0C GPa andy=0.25. Uniform meshes of continuous linear

V*(x,y) and u(y) are continuous functions ofeT and also oundary elementéPars and Cans[2]) are used for discretiza-

smooth functions except for a finite number of points rEx- tion of both problems. All integrations in the BEM solution are

plicit expressions of the integral kernel in complex and real var, -arried out analytically. Recall that approximationséfis, ob-

able formulations on the right-hand side of Eg5) can be written glned by a ditierentiation of pIecewise linear |nterpolat|0ps of
displacement nodal values and used in BIR), are piecewise

as constant ovel'.
2\ /*
L(x,y) =\7*(x,y) = i Im[ nx2y| 4.1 Example 1: Simply Supported Beam Under a Constant
dSydSy m(k+1) z Load. Consider a simply supported beam of dimensidns
_ _ . XH, L=2H, subjected to a constant load of vajpapplied at its
(nyny+n,ny)z+2n,nyz ( C ) top surface, see Fig. 1. An analytic elastic solution of an approxi-
278 i -1 mation of this problem given in Timoshenko and Goodi&8] is
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p l l l errors in oss at nodes for finer meshes shown in Fig. 3, it is
Y 3 possible to observe, first a high convergence rate at each particular
node, and second an increase in errors at nodes approaching a
T corner for each particular mesh. This characteristic increase in
n errors near corners is possibly related to the observed increase in

ZS éé errors in displacements obtained by the direct BEM solution
< . , ) (Calzado[17]). A stable quadratic convergence of normalized er-
0.2p LS, ' ' rors of o, evaluated at the center of the bottom side, where a
l« L=2 » maximum value ofo¢¢ is achieved, can be observed in Fig. 4.
Fig. 1 Simply supported beam subjected to a uniform load. 4.2 Example 2: Uniaxial Tension of an Infinite Plate With
Basic boundary element mesh. a Circular Hole. An infinite plate with a circular hole of a ra-

dius R subjected to a uniaxial tension of valpe see Fig. 5, is
analyzed using a superposition approdBlars and Caas [2]).
adopted here for this test problem. All boundary conditions aoundary conditions are prescribed in tractions. Basic mesh of
prescribed in tractions. Rigid-body movements are removed byemht elements is also shown in Fig. 5. A sequence of uniform
procedure developed by Blquez et al[19] applying supports as refinements of this mesh with 24, 72, and 216 elements is used for
shown in Fig. 1. Basic mesh of 12 elements is also shown in Fig.convergence analysis.
1. A sequence of uniform refinements of this mesh with 36, 108, Nodal values of the hoop stress,= o, (normalized byp)
and 324 elements is used for a convergence analysis. obtained for the first two meshes on a quarter circle part are com-
Nodal values ofrs (normalized byp) obtained for the first two pared with the analytic solution in Fig. 6. From distributions of
meshes on the bottom and right-hand side are compared with tieemalized errors i, at nodes for finer meshes shown in Fig. 7,
analytic solution in Fig. 2. Analyzing distributions of normalizedt is possible to observe, as in the previous example, first a high

4 T ]
. !
— Analytical solution | |
3 O 12 nodes E
O 36 nodes ‘
2
2
g 1
©
0
-1
-2
0 0.5 1 15 2 25 3
s
Fig. 2 In-plane stress evaluated using boundary integral representation (14).

Beam discretization by meshes of 12 and 36 linear elements.

0.06 . [ g T ]
i i i 1 E\
i i i i i
0.04 F---mmmemm-- A . - - \mmmmmmm e
i i i i :
£ 0.02 ]
[
k]
5 0
i)
-0.02 -5~ 36 nodes
—<— 108 nodes
-~ 324 nodes
-0.04
-0.06

Fig. 3 Normalized errors of the in-plane stress evaluated using boundary integral
representation (14). Beam discretization by meshes of 36, 108, and 324 linear ele-
ments.
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Fig. 4 Convergence of the normalized error of the in-plane stress evaluated using boundary
integral representation (14). Beam discretization by meshes of 12, 36, 108, and 324 linear
elements.

convergence rate at each particular node, and second a moddrBi¢ using special BIEs given by E¢L0) with constant elements,
increase in errors at nodes approaching stress concentration ptiietaccuracy obtained by the present approach can be considered
for each particular mesh. Nevertheless, when comparing with excellent. Recall, however, that integration in B(R4) is per-

sults by other authors for similar discretizations of this problenfiprmed over the real circular boundalyin the present work. A

e.g., those by Paiand Caas[2] using the standard BEM proce- stable quadratic convergence of normalized errors oévaluated

dure with linear elements and also those obtained by Wu et at. points of polar angl##=0 deg, 90 deg, can be observed in

Fig. 8.
5 Concluding Remarks
- — . .
Following Wu's[4] procedure a novel nonsingular BIE system
p p of the second kind for isotropic materials has been developed
-« —> presenting explicit expressions of its integral kernels in complex
and real variable formulation. The physical interpretation of the
— singularity sources of these integral kernels has been elucidated.
- Whereas a complex variable formulation is advantageously ap-
plied in developing analytic integrations over straight boundary
-«— — elements(Calzado[17]), real variable formulation is usually
adopted by BEM programmers in numerical integration proce-
Fig. 5 An infinite plate with a circular hole subjected to dures. Note that an important advantageous feature of this BIE
uniaxial tension. Basic boundary element mesh.
3.5 oo o B el
3 o oo e o2 ;
R T: ------------------------------------------------
R S R . A
R dommmmmmee
a i
R T - (O
© i j
R e ettt ietetetiete e :
i — Analytical solution ’:
L S O 8 nodes -
05 Fommmmmm et ,5 _________________________ - O 24 nodes ___13
A F—— s L b :
| i |
-1.5 L 1 i
0 30 Angle 8 60 90
Fig. 6 Hoop stress evaluated using boundary integral representation (14). Cir-

cumference discretization by meshes of 8 and 24 linear elements.
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Fig. 7 Normalized errors of the hoop stress evaluated using boundary integral rep-
resentation (14). Circumference discretization by meshes of 24, 72, and 216 linear

elements.
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Fig. 8 Convergence of the normalized error of the hoop stress evaluated using boundary
integral representation (14). Circumference discretization by meshes of 8, 24, 72, and 216
linear elements.
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The Stress Field Caused by a
w. naseqaa | CIFCUIATr Gylindrical Inclusion in a
~= ¥ Transversely Isotropic Elastic

M. Kisaki

Graduate Student S 0 I i d

Department of Mechanical Engineering,
Meiji University, Exact solutions are presented in closed form for the axisymmetric stress and displacement
Tama-ku, Kawasaki 214-8571, Japan fields caused by a circular solid cylindrical inclusion with uniform eigenstrain in a trans-
versely isotropic elastic solid. This is an extension of a previous paper for an isotropic
elastic solid to a transversely isotropic solid. The strain energy is also shown. The method
of Green’s functions is used. The numerical results for stress distributions are compared
with those for an isotropic elastic solidDOI: 10.1115/1.1629755

1 Introduction and other components @fj equal zeroes. Her§( ) is a Heviside

The theory of inclusions has been successfully applied to coffeP function ance, is the magnitude of the eigenstrain. The
posite materials including fiber, precipitate, and martensite proBf€Sent problem is to determine displacement and stress fields
lems. A review of inclusion problems has been given by Murg2used by the eigenstrain of Ed). We express the elastic moduli
[1,2]. A number of results were shown for the stress fields caus@fj2 fransversely isotropic solid b9, and assume that the axis
by an ellipsoidal inclusion. A circular cylindrical inclusion prob-© '?'as_“c symmetry of the solid is coincident with thexis of the
lem has recently been solved by Takao effa].and Hasegawa CYlindrical inclusion. . o
et al.[4,5] who investigated the circular cylindrical inclusion with 't 1S Well known, [10-13 that the axisymmetric displacements
uniform axial eigenstrain and they obtained a closed-form solutidfi(":2), (i=1,2,3), due to the axisymmetric body fordegr,z),
for stress and displacement fields caused by the inclusion in & 1:2,3), are expressed by
infinite elastic solid or in an elastic half-space. Wu and[bu §] 5

2

gave a solution for the cylindrical inclusion with arbitrary uniform _ 7" ¢1 + i 1 i _ + I ¢3

; L AP . . . . U1=Cg3— 5 TCu (ré1) | —(CiztCas) ,
eigenstrain in an infinite elastic solid or in an elastic half-space. In Fa or | r or aroz
these papers mentioned above, the elastic moduli of the inclusion
are assumed to be the same as the matrix. Hasegawa and Yoshiie U= ¢y, 2)
[9] have studied an infinite elastic solid with a circular cylindrical
inhomogeneity under tension. Jd (1o 10/ dos P 3

This paper shows closed-form solutions for the elastic fields= = (Cia+Cad) | 1 = (T o) [+ Corm | T — = +C44?

caused by a circular cylindrical inclusion with uniform axial
eigenstrain in a transversely isotropic infinite solid. The straighereq, , (i=1,2,3), are stress functions satisfying the equations
energy of the system is also shown.

It is well known,[1] that the stress fields caused by an inclusion 1 1 F,
can be obtained by using Green’s functions for body force prob- ( ) ( vg— —2) dr1=—
lems. In a previous papefl0], the fundamental solutions for r
axisymmetric problems of a transversely isotropic elastic solid
have been shown by applying Leknitsky's stress functions, (V2_3> Fs

r? C11Cas’

[11,12. Therefore, we apply the fundamental solutions for axi- b2= =5 ®)
symmetric problems as Green’s functions for obtaining the dis-
placement and stress fields caused by a circular cylindrical inclu-

sion in a transversely isotropic solid. VIV2h= — —
C11Ca4

2 Definition of the Problem and Stress Functions where

We consider a circular cylindrical inclusion with lengtb 2nd P21 92
radiusc in a transversely isotropic infinite solid as shown in Fig. V?:—Z +— —+ci2—2, (i=1,2,3 4)
1. Cylindrical coordinatesr(6,z) or (i=1,2,3) are used, and the ar ror 9z

Nt e
axial eigenstrair; is given by andc3=cy/Cqg, andc?, (i=1,2), are root for the following

ey =eo{S(z+b)—S(z—b)}{1-S(r—c)} (1) algebraic equation:
C11C4aX*+ (Clgt+ 2C15C4s— C11C33) X2+ C33C44=0. )

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octobe8 Method of Solution
29, 2002; final revision, April 25, 2003. Associate Editor: D. A. Kouris. Discussion

on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depart-3.1  Green's Functions. For problems of inclusion with

ment of Mechanical and Environmental Engineering, University of California—Sanjg f . : ; ;
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months a?e]zlgensnam’ the Kelvin's solution for a point force has been Wldely

final publication of the paper itself in the ASMEDORNAL OF APPLIED MECHAN- used,[1]. However: for the present prpblem, it is convenient to
ICS. use Green’s functions for axisymmetric body force problems of
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7 ponent in the-direction at a pointi(,z) when a unit ring force in
the k-direction acts along a circlea(h) located atz=h with ra-
diusa.

/___ It was shown in the previous pap¢f0] that the stress func-
\\ tions ¢, and ¢5 for the axisymmetric body forces; andF5 are
expressed by
Q _ .
$i=dist dic, (i=13 )
where
0 C r
s i
o bis 7C11Ca4 Jo Jo (a +01B2)(a +c38?)
PP ———— Fic cospBz
g_ X[ Fis sinﬁz]dadﬁ 8)
——/ with
L I coshz| i 9
Fig. 1 A circular cylindrical inclusion in a transversely isotro- Fis| e Or i(,2)Jn(ar) sinBz rdz. ©)

pic elastic solid
In these expressiond,(ar) is a Bessel function of the first kind
of the ordem. Here we taken=1 for F; andn=0 for F5. Note

thatF,=0 andu,=0 for the present problem.
elasticity. The Green’s functions used here are defined as the soBy Eqs.(6) and (9), we have
lutions for the problem of a transversely isotropic infinite elastic

solid subjected to the axisymmetric body forces Fiel 1 cosph o
Fis = Z‘]n(aa) Sin,Bh . (i=13. (10)
P oo a(r—a)s(z=h) ®) Substituting Eq(7) into Eq. (2) yields

distributed along the circlera, z=h) as shown in Fig. 2. In K=uk+uf, (i,k=1,39 (11)
Eq. (6), & ) is the Dirac delta function andl,, (k=1,2,3), area
radial, a torsional, and an axial force, respectively. We represé’fo

k
the Green’s functions by(r,z,a,h) for displacements and Uic F . COSBZ
=5 aJ ar)Aq dadp

k Kk .
aij(r,z,a,h) for stresses. Here; denotes the displacement com- Uis FL.sin Bz

Uze C13+ Cag 1cSInBz
)= f J. G| i aop

o N (12)
- - 3 Fac.sinBz

Uze C13+ Cys
Fitss ffﬁ sian] bt

R u30 [ Fac cos,Bz]
o . ( r Uss ) aJo(ar A, F .. sin gz dadpB

/
/\
M / ,f/ whereA,, A,, andA; are shown in Eq(24) and
. 2

%\ D=ciCas(C5—CT) 13)
Yy - The superscripk in Eq. (11) implies the displacement component
B produced by the body forcE, . Expressions for the stressejéj
(@ can be obtained fronil1l) and the following Hooke’s law:
zZ 0, =Cp18, t C128 9+ C138,,

0¢=C1p8; T C11€4F Cy3€4, (14)

07=C138; t C138p 1+ Ca38;,
Trz=CaaYrzr  Tz0=Caa¥z0, Tro=Ce6Vro-

3.2 Stresses and Displacements due to EigenstrainsUs-
ing the Green’s functionslik(r,z,a,h) and aikj(r,z,a,h) shown
| above for transversely isotropic solids, the displacement and stress
0 a T fields caused by an inclusion can be expressed as

ul uk(r,z,a,h) 0
a'ijli_J‘Q ok(r.z,a,h) fu(a,h)d - o (15)

(b)

Fig. 2 The body force acting along a circle; (a) a radial force,
(b) an axial force with
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d &y
5(0118r+0128§+0138§)+c445 Yzt (Cu—C1p) )

R
fzzceeﬁ Yrot Cag> a7 Yo+ = C667r0

J 1 J
fomul Vit £ {Guter + 1) e

ar

In Eq. (15), Q is the region of inclusiond(} is a volume element,

o}, are stresses if) obtained by Egs(1) and (14), and o} =
outside of(2. We must take the summation fr=1,3 in Eq.(15).
From Egs.(1) and(16), Eqg. (15) becomes

[ui ]7 ut) oey . u?| dey 40 0
Tij B Q €13 O'ilj Ja Cs3 O'i?} ah U'Ekj '

17)
4 A Circular Cylindrical Inclusion

4.1 Displacements. Here we show the displacements

caused by a circular cylindrical inclusion in a transversely isotro-

pic solid. Substituting Eq(l) into Eq.(17) yields

b c
uj= 27TC£0C13J ul(r,z,c,h)dh+ 2ws0c33f a{u’(r,z,a,b)
—b 0

—ud(r,z,a,—b)}da. (18)
Integrating Eq.(18) with respect tch anda, we get

2C80

jfﬁ 1(ac)Jy(ar){Cciahs — Cs3(Ci3t Cas) Ag}

X sin gb cospzdad,
Us= — 2°8°fj (a0)dg (ar)+(013+c44)A31822 cgaAz]
X sin Bb sin Bz dadB, (19)
u,=0.

Integrating Eq.(19) by using integral formula$l3,14], we can
obtain

CeCqaC
U= o%1 442( 1)

(Cﬁ+ C_%) (dgn—dsan),  (b=|2])
4mD; =1 C13

c80c13[r c

u;= SIS seNe-1) | eqc—c2)
4D e r e or a2z M

CeoC13Cas
+ 2 ( 1) n+1

ch +—
47D; =1

(st dsan), (b=|2])
(20)

080(:13 n+1

X (710 = A72n),

(C1atCag)Cy teon

Cas Cas— C11Ch
Cn

with

Journal of Applied Mechanics

2 2

C
zmn="T| 2G2(Xmn) + ——— Q_1/2(Xmmn)

c—r 1
0 Cc+r or Zmnkmnn(p Kmn) — \/— {l-‘rSGl\(C—I’)}

Gomn=—— {r?+ >+ (r?~ c?)SGN(c— 1)}
mn 2\/a

- r)zkmnH(pvkmn)

- zchlIZ(an)

= (€2 +1%)Q_ 1A Xmn)} (21)

4cr

=|z+(—1)"bl/c,, _—
" (c+r)2+2%,

2 _
I(mn_

4cr

2,024 2 |2
B re+c<+z,,/cn
(c+r)?’

2cr

Ga(X)=XQ_14X)—Qyp(x), Dy=+/crD

whereQ,(x) is the second kind Legendre function of the order
SGN(c—r) is +1, 0, —1 according to positive, zero, or negative
value for (€—r), respectively, andI(p,k) is a complete elliptic
integral of the third kind.

Xmn= :

4.2 Stresses. Here we show the stresses; caused by a

circular cylindrical inclusion in a transversely isotropic solid. Sub-

stituting Eq.(1) into Eq. (17) yields
b

‘Tij:zwceoclsf oi(r,z,c,hydh
-b

c
+2778°C33J' a{a (r,z,a,b)—oj, (r z,a,—bh)}da— 0'

(22)

Integrating Eq.(22) with respect tch anda, we get

2080C13J f
1(ac

+ OZrJo( a/r){CllAl— C13(C13+ C44)A3}]Sian COSBZdadB

2cgqC
n 0 33f J’ Jy(ac)| =
2

—Jo(ar ){ C11(C13+ Cas) % Az

Ji(ar)(cip—Ci)Ay

B Ji(ar)(Cyizt Cag)(C11—C1o)Ag

-

X sin b cosBzdadp,

2080(:13 * *© o
=" D . OJl(aC)E[Jl(ar)(Cn*Clz)Al

+ardg(ar){c A1 — C15(Ci3t Cag)Az}]sin Bb cosBzdad B

2C8 0C33f J (ac)
1
2

—Jo(ar )[ C12(C13F Cas) %

Ji(ar)(CigtCas)(Cio—C1)Ag

Az— ClSBAZ] }

X sin Bb cosBzdadp, (23)

NOVEMBER 2003, Vol. 70 / 827



2ce 0C13

0=

ff 1(ac)J0(ar) {ClsAl C33(C13t Cag) Ag}

) 2C80C33 * *
X sinBb cosBzdadB+ ——— Ji(ac)Jo(ar)
mD oJo

a2

—A3] sinBb cospzdadp,

X C33BA27 B

C13(C13T Cay)

2C&0C15C44
ST 1(‘10)\]1(0“')“ (013"‘(344)’3 Asz—A;

2ceqC = (=
XsiansinBzdadﬁ+80—33C44f f adi(ac)dy(ar)

D 0 Jo

X{(Cq3tCaa)Az—Ay}sin Bb sin Bzdadp.

It holds always thatr, ,= 7,4=
(23, A,, (n=1,2,3), represent

2 2
_ C337C44C1 C33™ CuaC3
T2, ~2p2 2, 2p2"
a“+ciB a‘+c58
_ 2 _ 2
C447C11C7  Cuq—C11C3
T 202 2, 2p2° (24)
a“+ciB a“+c506
1 1
70[2_’_(:232 a2+czﬁz'
1 2

Integrals in Eq(23) can be performed by using integral formulas,

[13,14], as follows:
(1) Stresso,;
(i) for b<|z|;

CepCy3 —C11
oy 477D12 n“(f(css_cmcﬁ)(qgm—%zn)

+1{C11(Ca3— C44C§) —C13(C13F C44) } (U310 — A32n)

(C13+Cas)(C13—C1p)

Zi;)l(;sla Z -yt r (dgn—dgzn)
—C1113(U31n~ U32n) (25)
(i) for b=|z;
2(3-5‘0C13 080033 ol (€13F C42)(C11— C1))
T "42D O 4nD, & E r

X (dgint dgan) — C1113( 31+ %2:1)} (26)
with

828 / Vol. 70, NOVEMBER 2003

0 in the present problem. In Eq.

r

c
6_ F) SG’\(C— I')]

2
Clz_cll r C
B= 72, (=) cauc?{ =+ -+
2r =1 c r

1
+ ———(Ca3— C44Ch +
w\/a( 33~ C44C1) (dg1n Qan))

Cymm
+ %044(05—05){1—#86[\(0— r)}

2

(—1)™{C11(C33~ CasCh) — C13(C13+ Can)}

X (G310 + Jazn)
(2) Stressoy;
(i) for b<|z|'

(27)

CepCy3 C117C12
Tg= 477D12( 1)n+l( r (033 C44Cn)(%1n Js2n)

2
+1{C12(C33~ CaaCy)

—C13(C13% C44) }(U31n— U32n)

(C131Caa)(C12—C10)

CSOC33 nel _

4 D, nE (-1 r (dg1n—ds2n)
—C12131(Q31n—Q32n)} (28)

(ii) for b=|z;
2ce 0C13 C'90(333 ol (€137F C44)(C12— C1y)
70~ "42D °F 4D E r
1
X (Gg1n+ dg2n) — C1213( G310 T 32n) (29)
with

2
Cll_C12 Zr Cc
=—m D" chcii =+ -+
2r gl( V| Cadeal T H

r c
- F)SGI\(c—r)]

Cc
( 2)( n 2n)
+ ———=(C33—Cy4C q +q
l—cr 33 44%n 8 8

Cqo™
+ o= Cai S5 c{1+ SGN 1)}

2

—1)"{C1(Ca3— CasC3) — C13(Cr3+ Cag)}

X (G310t dz2n) (30)

(3) Stresso,;

(i) for b<|z|'

CeoCy3 1
0= 477D12 (—1)™ HC1y(Caz— CasCl) — Cax C1z+ Cag)}

0033
X (G310 = Gazn) + 2 (=) *C133m( U310 Uazn)
(31)
(i) for b=|z;
2080013 C80033
7= "242D O 4nD, & 2 (—1)"" 1333 (0a1n+ Gazn)
(32)

with
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3.0
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L __Z_o_e b/c=1.0
Fe=s== g
0.0 >
T 1z
_1 O | | [ I |
0.0 1.0 2.0 30 /40

Fig. 3 Distribution of stresses on the plane
sium and steel

z=0 for magne-

c
B= 137Tc44((:§fci){1+SGI\(cfr)}
102
- —1)"{C14(Caz— CasC2) — Ca5(CistC
2\/an=1( )™{€13(C33— CasCr) — Cax(Crat Cag)}
X (U310t d32n) (33)
(4) Stressr,,;
2 2
_, CeoC33Cas ~ gin+1) €337 CadCn
Tz = 2D, nzl( 1) B +Cn(C13tCas)
X{QuX1n) = QuaX2n)}, (34)
2 2
CeoC13Cag _ ine1 G183t €1l
27D, nzl( 2 Cn
X{QuX1n) = QuaX2n)}-
3.0
W v
J T — Transverse
= isotropy(Cd)
@] L s
; 2.0 e >oz ——— Steel
b/c=1.0
-1.0 ! ] ! ! | | !
0.0 1.0 2.0 3.0 r/c 4.0
Fig. 4 Distribution of stresses on the plane z=0 for cadmium
and steel
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2.0
w Transverse
Qg 15 o, isotropy(Mg)
tli_ /' ———- Steel

-~
=

—'0.5 L I 1 1 1 1
0.0

z/b 4.0

Fig. 5 Variation of stresses along the  z-axis for magnesium

and steel

In the above expressions;;y, anddsnm, represent
2
C44—C11Cyy
—
" (35)

Cijkin = Cij(C13% C4a) +Cy

Ccr
Q3mn:7{l+SGl\(C—l’)}

Z
- Q 1/2(an)Jr kmnH(p I(mn)

5 Strain Energy
The stability of microstructures of materials with inclusions can
be discussed in terms of the Gibbes free energy which is the
elastic strain energy when the material is traction-ffé¢, There-
fore, we show the strain energy in the cylindrical inclusion in a
transversely isotropic solid. The strain enellyf§j is expressed by
1
Q

whereoj; is the stress caused by the eigenstr@ﬂn From Egs.
(1) and(36), we have

W**_*f f (o,—Ca3e0)dd (37)

wherea, is that of Eq.(23). Integrating Eq(37) by using integral
formulas,[13,14], we can obtain

c2e2 2 b ¢,/ do
= Fclsngl (=" (C13(C33 Cadln )[4 3:7(407 2<:)]

Cn q
+C33(C13tCas) 3= 37 (40— %) )
Cqi3(Ci3tC
C13E (—1)"c (713( 1+ Cad (40— 2—?)

+C33(Cag— Cllcﬁ)(g— ac ) ) + b’y (38)
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2.0
w Transverse —— Transverse
1 5k isotropy(Cd) isotropy(Mg)
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F— z/b=2.0
~
50
0.0F
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Fig. 6 Variation of stresses along the  z-axis for cadmium and Fig. 8 Variation of stress o, for magnesium and steel
steel
_ above for transversely isotropic solids and the expressions for
with isotropic solids shown in a previous papkt], and both the nu-
5 merical results agree with each other. From these figures, we see
on=4C2G (X)) — ”bc+ ﬂ{Q (%) +Q_ 1%} that there are no essential differences between the stress distribu-
on 2 e, c2 eHAT e yAmn tions for transversely isotropic solids and those for isotropic solid.
(39) Figures 3, 4 show the stress distributions on the symmetrical
2b? plane ¢=0) and Figs. 5, 6 show the stress distributions along the
Xp=1+ @ z-axis (r=0), under the condition db/c=1.0. In these figures,
n

the stressr, has the largest value among the stress components.
6 Di . d | The largest value for magnesium is larger than that for steel and
Iscussions and Results the value for steel is larger than that of cadmium.

Figures 3—9 show the stress distributions around and in theFigures 7, 8 show the distributions of the streson the sym-
cylindrical inclusion in the transversely isotropic soliteagne- metrical plane £=0) for magnesium. Figure 7 shows the influ-
sium and cadmium, as examplesd the isotropic solidsteel, as ence of slender ratib/c of a cylindrical inclusion on the stress
an examplg The figures are sketched in nondimensional form. Idistributions. The stress increaseshds becomes larger and ap-
these figures, the broken lines show the results for the isotropimaches to the upper limit value which appears whén—«.
solid (stee), which are obtained from the expressions showiihe stress approaches to uniform distributions according to the
increase ofb/c. Figure 8 shows the stress variations due to the

0.8
—— Transverse © o
isotropy(Mg) | & 2/b=1.0
“0.6F -
——- Steel f —— Transverse
- isotropy(Mg)
0.4} ———- Steel
I A0® blc=1.0
- - c=1.
50 @ 0.2r -
0.0 ,, - 5 ——— 2 2.0
| 1.5 - 50 N0 0.0
-1.0 ‘!.Oﬁ : 1 ! i 0.0 __._—f—«===—— s
0.0 1.0 2.0 30 r/c4.0 ' L .
/ 0.0 1.0 2.0 3.0 r/c40
Fig. 7 Effect of the length of inclusion on distributions of
stress o, on the plane z=0 for magnesium and steel Fig. 9 Variation of shear stress  r,, for magnesium and steel
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Tubular Adhesive Joints Under
Axial Load

N. Pugno In this paper a general study on tubular adhesive joint under axial load is presented. We
e-mail: nicola.pugno@polito.it focus our attention on both static and dynamic behavior of the joint, including shear and
. . normal stresses and strains in the adhesive layer, joint optimization, failure load for brittle
A. Carpmten crack propagation, and crack detection based on free vibrations. First, we have consid-
e-mail: alberto.carpinteri@polito. it ered the shear and normal stresses and strains in the adhesive layer to propose an
optimization to uniform axial strength (UAS) and to reduce the stress peaks in the bond.
Department of Structural Engineering, The stress analysis confirms that the maximum shear stresses are attained at the ends of
Politecnico di Torino, the adhesive and that the peak of maximum shear stress is reached at the end of the stiffer
Corso Duca Degli Abruzzi 24 tube and does not tend to zero as the adhesive length approaches infinity. A fracture
10129 Torino, ltaly energy criterion to predict brittle crack propagation for conventional and optimized joint

is presented. The stability of brittle crack propagation and the strength of the joint, as well
as the ductile-brittle failure transition, are analyzed. A detection method to predict crack
severity, based on joint dynamic behavior, is also proposed. The crack detection is
achieved through the determination of the axial natural frequencies of the joint as a
function of the crack length, by determining the roots of a determinantal equation.

[DOI: 10.1115/1.1604835

1 Introduction makes it possible to produce adhesive bonded joints which are

Based on modern synthetic adhesives, light, stiff, and econorrlﬁ th lighter and stronger under axial load. An analogous optimi-

constructions can be fabricated from a variety of materials withofl tion for uniform torsional strengiTS) has been presented in

. 1].
the Qefects cat_Jsed by c_onv_entlonal assembly methods,_ suc a%he brittle failure load for a tubular adhesive joint under axial
welding, soldering, and riveting. Furthermore, together with me

) ; i oad, as well as a dynamical approach to crack detection are in-
chanical stre_ngth an_d stlffn_ess, a nu_mber of extra ber_leflts co tigated. A very general formula has been obtained by means of
along free, like sealing action, electrical and thermal msulatlth

corrosion, and fretting resistance. As a consequence, various kiﬂg%fG”mth [12] energy balance and the application of linear elas-

. 3. ' ) racture mechanic¢see Carpinteri's papefd3-17,19). It is
Qf adhesive-bonded joints have been used_ln the mam‘.'facwr'ngs%posed that crack propagation at the interface between the two
light structures. For example, an analysis was carried out

bonded airf f inal C . Qherends takes place in mode | in the adhesive at the point of
‘r’]r.‘ r? ar ramgocompon?adntsR (rjom ?]n Orl!gmih omet aircrallignest stress concentration, deduced by stress analysis. An en-
which was over S0 years old. Redux phenolic adnesives Were Usily najance is formulated for a small growth of the debonding:
extensively to bond stringer/panel assemblies. By careful remo anges in the strain energy of the joint and in the potential
of the bonded areas from the stiffener flange/panel it was possilige gy of the loading device are equated to the characteristic en-
to obtain lap and wedge cleavage test pieces. The same gengfif needed for debondinfl9,20. As a consequence, a general
adheglve product continues to be used in current _alrframe C88rmula to predict the brittle failure load for a tubular adhesive
struction. It can be seen that strength and durability of the o int with or without UAS tapered adherends can be obtained.
Comet tfesr: pl((ja%es are only abgut 109/8 Iov‘t’)?r tha_n new Joints, aiffis formula generalizes an analogous formula already presented
Sr?me 0 tdi I erenches rrrl]ay de attg Utay i tﬁ |m|;()jr9v¢z]ments ifthe literature for tubular joint between a perfectly rigid and an
t eS_new ah esive rather than egrba aéloln Odt eg RJOH ]‘; elastic nontapered tubegl9]. The greater sensitivity to brittle
. b'l?.(:e tdeRplloneeIgng péipers y Olanb 28 e'S% %r collapse is emphasized for the conventional geometry, if it is com-
ubkin and Reissnef3], and more recently by Adams and Pepy,, e with the UAS optimized profile one. The stabiiity of brittle

piatt [4], Renton and Vinsorj5], Delale and Erdogaf6], and : : : )
Chen and Chenij7], several theoretical, numerical, and experiﬁraCk propagation and the size effects on mechanical collapse be

tal s tubular bonded ioints h b ‘ é\vior, as well as the ductile-brittle transition are emphasized.
mental analysis on tubular bonded Joints have been periormeda yetection method to predict the crack length, influencing the

Only recently nontubular structures have been investigated E@fength of the joint, based on the joint dynamic behavior, is also
Pulgntc;]_et al[8-10]. o ¢ wbular ioint witbréSented: The study of the joint dynamics provides a system of
n clis %eliqper Vée propc;)se 3 Epemad.ype Oh ubuiar JO'?.l wi upled differential equations with partial derivatives. The crack
tapered adnherends, produced by modifying the joint profile angyection is achieved through the determination of the axial natu-
thereby optimizing the tubular joint fo_r uniform axial strengtl} | frequencies of the damaged joint as a function of the crack
E]UA.S)' As a consequencel, the prﬁdomlr;_arét co_mlp?ontejnt of the g54th, by determining the roots of the corresponding determinan-
esive stress tens@equivalent to the applied axial loRlecomes 15 equation. This approach has already been successfully applied
constant, and the stress peaks of the other components are drgﬂhe study of undamaged bonded joints under tordipt]
cally reduced. This result is of considerable practical utility an Relevant general works on bonded joints and compovsite mate-

- _ o rials can be founded if22-28§.
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Fig. 1 Tubular adhesive joint subjected to axial load
0.0 L x

—c 0 +c

thicknessh, axial length 2, and radiusR), is considered to be Fig. 2 Qualitative diagram (a=1, B=1/3) for dimensionless
subject to axial loadFig. 1). Under these conditions, the axial@xial load transmission  f(x)

equilibrium along thex-axis permits to obtain the predominant

component of adhesive stress tensor, equivalent to the applied

normal thrust:

1 dNy(x) dNy(x) . 2mRG
T(X)= = 5 1 G = KMAue, KE=T ©

where N1(x) is the axial load of the outer tube in a genexic whereK* is the adhesive stiffness per unit length.
section. As a consequence of the axial symmetry, the other cominserting the displacement expressidisin the compatibility

ponents of the stress tangential field can be neglected: Eq. (9), and recalling Eqg5) and(6), gives the following second-
order differential equation ifi(x):
710(0=0,  7g(x)=0. @ “ )
The strain componeng,, in the adhesive can be obtained as d*f(x) K*(EiA+EA;)  K*
2 EAEA NS EA,
Tex(X) 1 dNy(x) dx 1A1E2A, 2R2
Yix(X) = G, _727TRGa dx ' 3) . f(x==c)=1
_ _ _ _ boundary conditions ¢, _ ., _ (10)
whereG, is the shear elastic modulus of the adhesive. Obviously f(x=c)=0
we have This differential equation, together with the boundary conditions
Y, 9(X)=0,  yy5(X)~O0. (4) shown alongside, makes it possible to determine the load section

) ) ] ) ) by section at the overlap. The solution of Efj0) is
The axial load\;(x) in a generic sectior of the tubei can be

written as [K* (E1A1+ ExA)
=Ce™+Cre” '+ =\NN——F=3 7
f(x)=C.e”*+C,e B, « EAEA,

N1(x)=Nf(x), Na(x)=N(1-f(x)), ®) !
as the sum of the forces absorbed by the two elements must be _ BiA
equivalent to the applied axial load at each cross section B= E.A +ELA,° (1)

Satisfying the load boundary conditions implies ]
The constantC,; and C, can be obtained from the boundary

f(x==c)=1, f(x=+c)=0. (6) conditions as
Functionf(x), and thus the load absorbed by the two elements e-ac pac_ g—ac

at the joint, can be found thanks to the compatibility established C,= +8 , (12a)
for the displacements of the two tubes in a given cross sections. g 2¢C_g2ec T g2ac_ g2ac
These displacements are expressed as follows:

. N (t) C B eaC +B efacieac (1m)

ul(x): 1 dt-‘,—uo’ (7a) 2 eZaC_erZaC eZaC_ejZaC :
—c ElAl

Comparing the differences between E@8.with the same ob-

_ [ Na(t) 0 tained by Eq/(9), makes it possible to determine the constat
Ua(X) = dt+u;, (7b) . e
_EA; once the reference system has been establlshed.n%ﬁrﬁ).

whereE; is the Young’s modulus4; is the cross-section area, and
ui0 is the displacement of the initial sectior= —c), of the tube
i. Through an appropriate choice of reference system, we can . ) )
always haveu’=0 (displacements calculated starting from the, Functionf(x), being known(see Eqs(11), (12), and Fig. 2,
strained configuration of the first tube’s initial section inally we can obtain the predominant shear stress in the adhesive:
The compatibility equation can be written noting how, after the N df(x)
joint deformation, the relative displacemeitu between two TrX(X):—ﬁd—.
points of interfaces, internal tube-adhesive, and adhesive-external ™ X
tube, must be the same if we consider the tubes’ relative displaceThe maximum shear stresses are reached at the ends of the
ment or the shearing adhesive’s stréiith a very small thickness adhesive and the higher stress peak appears at the end of the
h): stiffer tube. When the stiffnesses of the two tubes are ggiral/
AU= Uy— Uy =hyry(X) ®) 2), the stress peaks become lower and symméFig. 3. The
27 U= 1Y) presented stress approach has already been validated numerically
Substituting Eq(3) into Eq.(8), the compatibility equation can for the case of nontubular bonded joints. The discrepancy on
be rewritten as stress peak appears lower than §%4)].

O_Na C aC*C —aC 13
Uz—K_*( 2€ 1€ %). (13)

(14)
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Dimensionless tangential stress

0.6

0.4r

B=0 x

+c

0.2 -
e 0
Fig. 3 Qualitative diagram for the dimensionless tangential
stress —df(x)/dx

Dimensionless normal stresses

0

+c

Fig. 4 Qualitative diagram (a=1, B=1/3) for the dimensionless
normal stresses (f(x)—1/2)

This analysis does not include transverse shear deformation & dly means that the strain in the adhesive layer along the
because of this maximum shear stresses occur very near to butfigrection is simply imposed by the elongation of the tubes sup-
at the ends of the joints. Obviously, the shearing stresses mustigsed loaded with a constant force equal to its mean value. In
zero at the ends of the joint because there can be no shear strefgg hypothesis the normal stresgd$) assume the form
on the adhesive free surface, hence no shear stresses in the aghes(X)~B+D(f(x)—1/2) with B, D constantgFig. 4). Being
sive at the joint end because of equilibrium. For more details dfh>1 (B/D~0) the stress peaks, at the end of the adhesive

transverse shear deformation $22].

3 Normal Stresses

layer, become o:xﬁzx~1vav/((l+ v)(1—2v,))E.RN/(EhA),
mmax%(lfva)/vaax‘ﬂ, i.e., proportional t&e,RN/(EhA).

max

If vi(r,x)=-w;N;/(E;A)r is the radial displacement of the4 Stress Concentration Factor

tubei (»; is its Poisson’s ratip we can obtain the dilations im-
posed to the adhesive layar£R):

The main problem related to the stress peaks is connected to the
predominant tangential stress fie{dl4), that in fact cannot be

v1(RX)—va(RX)  NR{vy(1—-1(x)) wif(x) deleted, being equivalent to the applied axial load. On the other
e (X)= - h  ° T( EA EA ) hand, the normal stress fie{@6) has a mean value equal to zero
22 1 (15) With maximum stresses independent of the funcfiothat must
satisfy the boundary condition®). For these reasons we focus
AR v (RX)+va(R,X) N vy(f(x)—1) wif(x) our attention on the tangential stress fi€ld).
&9(X)= R - 2R = E( EA " EA ) Considering Eq(14) it is possible to define a stress concentra-
z ! (iSb) tion factor which indicates the extent to which maximum shear
stress departs from the mean. The higher stress peak appears at the
_d(uy(x)+uy(x)) N ( f(x) (1—f(X))) end of the stiffer tubex=c):
exX)= 20% "2 EA T T EA, ) Net B B
(15¢) T, = Tx(X=0C)= m(—cleawcze—m),
and the normal stresses by the constitutive equations for the ad- max
hesive, 18], 1
—C 0<B<z
(1-vy)E, - 2 17
o= 12wy &% ¢ 1 @
[ -<pB<1
7= 2
+ m(er(nge(x))' (168)  The mean value of the stress is
(1~ va)Ea T :i +CT X)dx= ——— 18
0= A2 ) w20 ) O aRe 4o
vEa Consequently, the stress concentration factor is given by
+ (1+ Va)(l_zVa)(SX(X)+80(x))l (1&) T,
_ A= —"=2ac(—C.e+Cre ). 19
o= 2 " R .
(1+vy)(1-2v,)
Of importance is the gain parametet, i.e., the index of the
vaEa (84(X)+£/(X)) (160) gain in maximum stress leveling which can be obtained by in-
X r 1

+ (1+vy)(1-2v,)

whereE,, v, are the Young modulus and the Poisson’s ratio fi

the adhesive material.

It is interesting to note that if we consider identical material and

cross-section areas for the two tubes=(v,=v,, EA=E;A;
=E,A,) we obtaine 3= —ve, with £,=N/(2EA). This physi-
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creasing the bond length. In this context, it should be noted that as
the bond length tends to infinity, the maximum stress tends as-

cﬂ?mptotically to a minimum nonzero value:

i Nap
Tix — IMT7Tyx =7——=.
max ¢, Max 27R
min

(20)
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1.0 " ; that represents the equation governing the UAS profile. From Eq.

7 (o) (24) we can seen that the cross-section area of the two optimized
B=0.5 tubes must go to zero at the end of the adhesive layer.
0.8} 1 Though the number of possible shapes which satisfy the rela-
=03 tions indicated above is infinite, the following additional condition
B=0.1 must be considered in order to obtain the solution entailing tubes
0.6 i with symmetric stiffness section by section:
E1A1(X) = E2Az(—X), (25)
0.4¢

that permits to have an identical stiffneés# for the two tubes out
of the bonded area. As a consequence, we obtain the following
0.2} ] optimized UAS profiles:

C—X cC+X
EiAL(X)= 5 EA ExAg(x)= 5 —EA (26)

0 1 2 3 4 5 For example, if we consider identical material and cross-section
areas for the two tubes, supposed with thin thickreessve have
si(X)~(c—x)/(2c)-s, s,(X)=~(c+x)/(2c)-s with s;+s,=s.

For this particular case the optimization is corresponding to a
perfectly linear tapering of the adherends.

For example, if we consider identical material and cross-section" this context, it should be noted that as the bond length tends

T TEASh to infinity, the stresgequal to the mean value expressed by Eq.
areas for the two tubes, we havﬁ;_ Ga/(EARDN/(2\/m). (18)) tends asymptotically to a minimum zero value. This is a very

Fig. 5 Gain parameter \*(ac)

The gain parameter can thus be defined as important behavior of the UAS joint because theoretically, differ-
ently from a nontapered joint, the adhesive can withstand every
T rx axial load simply modifying its length surface. This upper bound
. e B of force, increasing the adhesive length, for nontapered adherends
N (ac)= T (—Cle“€+ Cze“ﬁ)’ 21 s (supposing identical material and cross-section areas for the

max two tubes, and the collapse whermr, =7) N¢(c—x)

and must be as close to unity as it is compatible with the need fer,/AzRhEAG,7, and is infinity for the optimized joint.
a compact joint. Under this assumption the stress concentrationrhe optimization permits to have a constant tangential stress

factor, prudently overestimated, is detailed as follows: and also a large reduction in the normal stresses. Putting28y.

N=2aBc for \*=1 (22) into Eq. (14) we obtain the tangential stress in the UAS joint:
Figure 5 shows that gain parametet presents little variation S N @7
after a certain value of the nondimensional parameten(~3); uxs 4mRc

consequently, further increases in bond length are pointless for
axial strength. Furthermor@ must be equal to 1/&same stiffness

EA for the two tubes to have a symmetric stress field. Unde
these assumptions the stress concentration factor appears tﬁgﬁ'
close to 3, an often-used value in elastic problems. This value

the stress concentration factor is very common for the stress pegQ

g&tting Eqgs.(23) and (26) into Egs.(15), supposing to simplify
}he equationsy=r,=v,, we obtain the dilations in the UAS
jojnt: €,=0, e,=—vN/(EA), e,=N/A. Putting them into Egs.
we obtain the normal stresses in the UAS joint that appear
pstants along the-axis:

in the adhesive layer of tubular and nontubular bonded joints, 1-v,—vv, EN
(10,11 1+ va)(1-2v,) EA’ (289)
Va— VY, E.N
5 Optimization for Uniform Axial Strength (UAS) I A+ v)(1-2v, EA’ (280)
In order to obtain a unit value for the stress concentration factor N E.N
given by Eq.(19) it is possible to modify the joint profile. This is %:& - (28&)
achieved by chamfering the edges, which are in any case not (1+vy)(1-2v,) EA
involved in the tube stress flow induced by the axial load. i.e., proportional t&E,N/(EA). For nonoptimized joint the maxi-

The procedure used is a reversal of that employed for a joint Qfym normal stresses are of the ordeEgRN/(EhA), so that the
known geometry: rather than starting from the geometry in ordggimization has provided a theoretical reduction by a faBidr
to determine the stress field, the procedure starts with the str 2, or 3 order of magnitude
field and determines the geometry capable of ensuring it. However, it is important to note that adhesive bonded joints

In order to make the predominant stress compom&hton-  ¢qy|d be susceptible to brittle collapse. In order to take advantage
stant, it must be independent of theoordinate. In other words, f the UAS joint geometry it is essential that appropriate techno-
as shown by relatiofl4), the load must be linear along the jointjogical measures be introduced to ensure that joint collapse cannot
X-axis: involve mechanical fracture phenomena.

FOx) = 1 x
=137 3¢ 6 Energy Balance During Crack Propagation

Inserting Eq.(23) in Eq. (10) yields the following relation, which By virtue of the energy balance, the following relationship be-
defines the geometry of a uniform axial stren@thAS) adhesive tween the variation in the total potential enerdd/ é@nd the frac-

. (23)

bonded joint: ture energy:s dS must hold:
ExAx(X)  c+x ” Ggds+dw=0, (29)
E;A(X) c—x’ (24) where & represents the incremental fracture surface area.
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N, c—Ax/2 Ng(x) c+Axi2 N2
AT Lzzf —dx+f = dx, (36)

Unloaded —c+axiz 2E2A2(X) c—axiz 2E2A(X)
A that are integrals of known functions—see E@, (11).
5 The elastic strain energy absorbed by the adhesive of the
R cracked joint is equal to
N A, a /( N c—Ax/2 Vv,
e > [—> L= f 36, [oX00+ 0700 + 05001~ [0 (X)
// l) —Cc+Ax/2 a
h
2¢ Ax N Trzx(x)
+ 0y (X) 0 5(X) + T 9(X) o (X) ]+ 27Rhdx, (37)
N, 2G,
Fig. 6 Adhesive debonding for tubular adhesive joint sub- that is an integral of known functions—see E¢56). Applying
jected to axial load Eq. (31), we can obtain the strain energy release ratewhere

dS=27Rd(Ax). Equation(32) represents the condition of brittle
crack propagation. Equatio33) shows whether the fracture
propagation is stable, metastable or unstable.

Considering an imposed axial load, the variation in the total
potential energy is equal to
8 Strength and Stability Under Crack Propagation

If we suppose that the heightof the adhesive layer tends to
zero(and as a consequentg—0), the functiond; will assume

where d. denotes the variation in the elastic strain endigyalu-  the physical meaning of coefficients of distribution:
ated by virtue of Clapeyron’s TheorgymN is the external load,

1
dW=deNdu=d(§Nu)deu=de, (30)

i i i E;Ai(x
andq its dual displacement. The strain energy release rate can be fi(x)= iAI(X) . _c<x<c. (38)
rewritten as E;1A1(X) + E>Ax(X)
dw  dL In the case of constant high profiles, functi@@8) are constant
Sy (31) along x(x# +c) and, putting them into Eq¥35) and (36), we

obtain the joint elastic strain energi £L,+L,). From Eq.(32)
Brittle crack propagation really occurs whénreaches its criti- we obtain the strength of the joint, i.e., the critical value for the

cal values,, characteristic for the adhesive: axial load corresponding to the crack propagation:
. E,A E,A,
= 5= a (32) Nc 47RY /aE A, 2 (E,AL+ELA,), ﬁ< 1. (39)

The propagation will be stable, metastable, or unstable depend#gplying Eqg. (33), or observing thaNc is not a function of the
on the sign of the second-order derivative of the total potentigfack length, we can deduce that the propagation will be meta-
energy: stable:

<0, stable &
d(Ax)

Equation(39) represents an extension of the critical condition

presented, and experimentally verified for the particular case of
: : . E;A;—x, [19]. In addition, the presented approach to study the

7 Joint Elastic Strain Energy strength of the joint against brittle crack propagation has already

To solve the problem of the crack propagation it is necessarylyeen experimentally validated for the case of nontubular joints,
evaluate the elastic strain energy of the joint as a function of tfig0].
crack length(in the overlap zone, during crack propagation it For uniform axial strength joint, connecting tubular bars with
being constant out of the overlaprhe energyL absorbed by the identical stiffnessEA, the adherends must be tapered with the
joint is the sum of three quantities, i.e., the elastic strain energyofiles of Eq.(26). These profiles are the best from a tensional
absorbed by the two tubular bajsedex 1,2 and by the adhesive point of view. In this case, Eq$35) and (36) must be rewritten
(pedex 3: taking into account the symmetrical propagation by the length

Ax/2 of the crack at the end of the two tubular bars:
L=L;+Lp+Lg. (34)

W dy L =0=metastable. (40)

= =35° = =0, metastable (33)

>0, unstable

c—Ax/2 NZ(X) —c+Ax/2 N2
As previously shown, the predominant shearing stress field in the | —f —dX+J ———dx=L,
adhesive(equivalent to the applied normal thrustas its maxi- —craxz 2E1A1(X) e 2E;A1(X)

mum positive value at the end of the stiffer tubular lihere A2 5 )
indicated by 1. The initial separation at the interface between the [ %2 N3(x) Xt ¢ N

two adherends is supposed to take place in this point: the debond | _ ., . 2E,A5(x) c-axiz 2E2A2(X)
is a crown-crack of length x (Fig. 6). The elastic strain energy of

the cracked joint along the overlap can be calculated, noting hdwguation(39) becomes

dx.  (41)

the portions of the joint are loaded. Fixing the origin of thaxis do—Ax
at the middle of the ligament of lengtit2Ax of the adhesivésee Ne= \/4wa§5 EA (UAS joint). (42)
Fig. 6), we have AX
c-ax2  N2(x) Applying Eq.(33), or observing that for UAS joint an increase in
lef l—dx, (35) the crack length causes a reduction in the load of brittle failure,
“craxz 2E1A1(X) we can deduce that the propagation will be unstable:
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dNc o UAS and UTS[11], (i.e., uniform torsional strengttthe optimi-
m<0:unstable(UAS joint). (43) zations coincide for thin tubes. This means that optimized thin
tubes present a global optimization design.
Summarizing, for conventional joints the load of brittle failur . : .

is independent of the crack length and the propagation will e‘k?e Ductile-Brittle Transition
metastable, when the load reaches its critical value of &j. On The effective critical load is provided by the lower between the
the other hand, for UAS joints an increasing of the crack lengthad of brittle crack propagatio39) or (42) and the load of
causes a reduction in the load of brittle failure and the propagatidnctile collapse. If we assume that the latter is achieved when the
will be unstable, when the load reaches its critical value of Egraximum shearing stress in the ligament of the adhesive layer
(42). In this case, for vanishing pre-existing defects in the adhequals its ultimate stresg , and thatc is not too short &c=3, in
sive layer Ax—0), the critical value of E¢(42) tends to infinity. the hypothesis of Eq22)), we obtain the following ultimate load
This simply means that the joint will collapse due to a differenf ductile collapse for conventional and optimized joint:
mechanismwe will discuss this transition in the following sec- S TRNEA EA
tion). As a consequence, the UAS joint, good bonded, is stronger ) — \/ il 2 2(E A +E,A)T 22 9 (44)
than the conventional one against brittle collapse. In addition, it is G, E,A, V1 TERe EA T
interesting to note that tubular joints are “shape-resistdttie _ -
strength is different from zero also without adhegiwéth respect Ny=2aR(2c—Ax)7, (UAS joint). (45)
to shear and flexure but not with respect to thrust and torque. ForComparing the critical values of the loads of brittle—see Egs.
these reasons, axial load and torsional moment are more criti€39), (42—and ductile collapse—see Edgd4), (45—the brittle-
than shear and flexure for this kind of joints. Furthermore, faress numbes of the joint may be defined13,14,2Q:

w=12; s= ;
Nc \/HTu

S = MS;
Ny \/1 4c/Ax—1 A JZ.E
.

(46)

(UAS joint).

T (2¢/Ax—1)% Ax? R,

Considering different sizes of self-similar joints the introduced To obtain a closed-form solution, we have to consider tubular
parameteju is a constant. The brittleness numiethows how the bars of identical materials and cross-section areas. In these hy-
brittle collapse tends to occur with a low fracture energy, a lowothesis, Eq(49) becomes
elastic modulus, a high ultimate stress and/or a large structural

size. It is not the individual values of the parameters that are FPuy(x,t) F?uy(x,t) .

responsible for the nature of the collapse mechanism, but rather Px PA P HREX)(u(x,) —ua(x,1))
only their functions. By Egs.(39), (42), and(45), (46), we can

predict the strength of conventional and UAS joints. =0, 12 (50)

If we considerp—0 in Eq.(50), it reduces to the static equilib-
. . . rium of the joint. On the other hand, K* —0 we obtain the
10 Crack Detection by Axial Natural Frequencies conventional dynamic equilibrium equation for a tubular bar.

The crack lengthAx is a priori unknown. In this section we In order to derive the equations, and due to the different field
present a theoretical approach to evaluate this parameter as a fengations ruling the axial vibrations in and outside the bonding
tion of the axial natural frequencies of the cracked joint. It can hegion, it is necessary to divide both tubular bars in different sec-
used as a detection method to predict crack severity. The axi@ins. As a consequence, Sections 1 and 2 of the first tubular bar
natural frequencies can be experimentally obtained from conveidefine the region out dthe corresponding dynamic equilibrium is
tional nondestructive tests of axial vibration. imposed by Eq(50) in which we putk* =0) and insidgEq. (50)

The equation of motion of the overlap in a dynamic regimeyith K* #0) the bonding. For the second tubular bar, Sections 3
[21], can be written introducing the inertia of the tubular bar in thgng 4 define the region itEq. (50) with K* #0 and 1-2) and
joint equilibrium Eq.(9): outside(Eqg. (50) with K* =0 and 1-2) the bonding, respectively.
Section 5 is the cracked region for the first tubular . (50)

IN;(x,1) Puy(x,1) S )
———— P1(X)AL(X) ——— FKF(X)(Ux(X,t) —uy(X,1)) with K* =0). See Fig. 7.
2 at For all these cases, E¢50) can be written in the following
—0. 152 (47) unified mannerfby sum and subtraction of the two equations for
’ ' which K* #0):
wherep; is the mass densitiandu; the displacementof theith 5 5
tube. Furthermore, Fp(x,t)  dp(xt)
T E———+{e(x,)=0, (51)
Nt = Ex ()AL 00 28 48 9 ax
16D =E00A00 —5 =, 102, (48) where¢é=E/p and
Putting Eq.(48) into Eqg.(47), we obtain the dynamic equations e(x,t)=uy(x,t) =0, (52)
J guy(xt) FPug(x,t) 2K*
X E1(X)A1(x) ox _Pl(X)Al(X)T @(X,t) =Uy(X,t) —us(X,t) §:p—A, (53)
+K*(X)(Ua(X,t) —uq(x,1))=0, 12, (49) o(X,t) =uy(x,t) +uz(x,t) =0, (54)
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Fig. 7 Regions 1-5 of the cracked tubular bonded joint gov-
erned by different axial dynamic equations. Coupled regions
(by the adhesive ) are 2-3.

P(X,)=Uy(x,t)  ¢=0, (55)

@(th):us(xvt) gzor (56)
where, to simplify the notation, we have indicated withthe
displacement in the mentionéth section.

By applying the separation of variables, the solution of (€)
can be written as superposition of solutions of the form

e(X,1)=(X) (1), (57)
so that Eq(50) becomes
2 2
L det) ¢ fv_ o, (58)

() dz (%)

dx?

where the natural circular frequeney is a constant. We have,

therefore,
d(t) =sin(wt+93), (59)
P(x)=Asin(Ax)+B cog\Xx), (60)
with
2_
o= ¢ (61)

3

By introducing Egs.(59) and (60) into Egs. (52)—(56), it is
possible to determine the corresponding expressionuftr,t)
=u;(x)sin(wt+9):

u(xX)=Aq sin(AXx)+B; cogAx), (62a)

Up(X)= %[A2 SIN(AX) + B, COS AX) + Ag SiN(AX) + Bg cog Ax)],

(620)
Us(X) = %[fA2 SIN(AX) — B, COS AX) + Ag SIN(AX)
+ B3 cogAX)], (62c)
|
s S 2(C+C,S) -C
~Cc* -C 2(S-C,C) -s
ct C 0 —s
[M]=| -S S 0 -C
-c* C 0 s
-c* C 0 —s
. s s 0 c
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uy(x)=A, sin(Ax) + B, cogAX), (62d)
Us(X)=Ag SIN(AX) + Bg CO\X), (62¢)
where
2P 2 2_P 5 2K*
A E w*, E w EA (63)

If w—0, we obtain the static solution. If.2is the overall length
of the joint, the boundary conditions at the left and right end are
('=d/dx):

u(—L)=uy(=L)=0, (64)

for free ends, or

ug(L)=uy(L)=0, (65)

for clamped ends.
The remaining boundary conditions impose the continuity of
the axial displacement and of its derivative, i.e., of the axial load

(Fig. 7).

Uy (—(C—AX/2))=Uy(— (c—AX/2)), (66a)
uj(—(c—Ax/2))=uj(—(c—Ax/2)), (660)
us(c—Ax/2)=ug(c—Ax/2), (66c)
Us(C—Ax/2)=us(c—Ax/2), (66d)
ul(c+Ax/2)=0, (660)
uj(—(c—Ax/2))=0, (66)
uz(c—Ax/2)=u,(c—Ax/2), (669)
us(c—Ax/2)=uy(c—Ax/2). (66h)

Equations(64) and (65) and (66e) can be rewritten taking into
account Eqs(62) as

A;=—tan\L+n,m/2)B,=C,B,, (67)
A,=tanA\L—n,7/2)B,=C,B,, (670)
Ag=tan\(c+Ax/2))Bs=CsBs, (67c)

wheren, andn, refer to the left and right end, respectively, and
they are equal to O or 1 if the corresponding end is whether free or
clamped. The entire system of algebraic boundary conditions can
be rewritten taking into account Eq&2) as

[M(wn(Ax) {X}={0}, (68)
where

-C 0 0 i

-S 0 0

-s 0 2(S—-CCq)

C —2(C+C,9) 0 , (69)
-S  2(5-C,0) 0

S 0

C 0 —2(C+SG) |
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Mathematical models, for the stress analyses of unidirectional end notch flexure and end

notch cantilever specimens using classical beam theory, first, second, and third-order

B. K. Raghu Prasadz shear deformation beam theories, have been developed to determine the interlaminar
Professor, fracture toughness of unidirectional composites in mode Il. In the present study, appro-

Civil Engineering Department, priate matching conditions, in terms of generalized displacements and stress resultants,

Indian Institute of Science, have been derived and applied at the crack tip by enforcing the displacement continuity at
Bangalore 560 012, India the crack tip in conjunction with the variational equation. Strain energy release rate has

e-mail: bkr@civil.iisc.ernet.in been calculated using compliance approach. The compliance and strain energy release

rate obtained from present formulations have been compared with the existing experimen-
tal, analytical, and finite element results and found that results from third-order shear
deformation beam theory are in close agreement with the existing experimental and finite
element results.[DOI: 10.1115/1.1607357

1 Introduction gave compliance and SERR expressions based on Timoshenko
am theory in the uncracked region and an approximate elasticity
lution in the cracked region for ENF specimen. Further, Carls-

on et al[8] presented an analysis of ENF specimen for the char-

cterization of mode Il IFT using first-order plate theory under

: . - cylindrical bending and shear stress singularity at the crack tip.
Ing or _shea)r, or mode III(gntlpIang shearHere, we c_on3|der the yWhitney et al [9§]J and Whitney{ 10] analszed tr{e homogeneoug
analysis of the mode Il interlaminar fracture specimens namecl)¥ :

. . thotropic ENF specimen using first-order beam theory and
end notch flexure(ENF) specimen and end notch cantilever - . . .
(ENC) specimer(aléo cgledpthe end-loaded SHIELS) laminate modified version of Whitney and Suil] laminated plate theory

o hFig. 4 an 22, respocively ENE and ENC specr-Under oyindicl bring, espectvely, n e frmer,a sgular
mens are assumed to be made up of unidirectional laminated com- Y y

posites. Laminated composite structures generally contain britfie° considered in the section ahead of the crack. Whifey

matrix and thus they have poor resistance to delamination gro alyzed ENF and ENC specimens for mode I interlaminar frac-

Laminated composites containing delaminations behave in a li e #Zlngr]darigig]htlar orrtrd]e;]tbeiﬁr?hthﬁ]ci)ri.nThe ther%% Its ba:]sdeid gn
ear elastic manner and thus they can be treated using linear elagyjeond-order displacements in the ) ckness coordinate and Is de-
fracture mechanics to derive the strain energy release r ?d in conjunction with Reissner’b13] Va”a“oﬂa'. p“”C'P"?
(SERR), [1]. A critical value of SERR known as interlaminar frac-V ich allows the direct development of constitutive relations
ture toughness$lFT) is being widely used to characterize the onW'thF"%t the need for shear correction factors. .

Williams [1] gave a general method for calculating the energy

set and delamination growth in laminated composite structures . X
[2] 9 P release rate5, using conventional beam theory, from the local

The state of art in the subject of interlaminar fracture toughne glues _Of_ bending moments a_nd loads in a cracked Iamlna_lte. Fur-
of laminated composites was reviewed by Carlsson and Gillespe": Williams[14] extended his work to study the shortening of
[3] and Sela and Ishd#]. The former covered the detailed techhe bend_lng arms due to Iar_ge dlsplace_ments during crack growth.
nical aspects of analytical, numerical, and experimental methdd@shemi et al[15,16 described a detailed study of the methods

to analyze ENF specimen for the mode Il IFT. Since the prese?'t‘?alysmg the experimental data obtained from fracture mechanics

work is related to the analysis of mode Il specimens using arf—Sts using DCB, ELS, and ENF. Wang and Williahi§] modi-

lytical methods, literature pertinent predominantly to analyticaled the compliance and SERR expressions, which are based on
methods has been covered here. classical beam theory, by introducing a correction factor to correct

Initially, Barrett and FoscHi5] utilized ENF specimen to char- the crack length for mode |1 fracture toughness te¢&NF and

acterize the mode Il interlaminar fracture of cracked wood beants-—~/- . . ) )
Later, Russell and Streg6] used this specimen, by considering Anhalysis of ENF specimen was carried out by Chatteffs&]
Euler-Bernoulli beam theory, to characterize mode |l critical strai#Sing €xact stress analysis based on two-dimensional formulation
energy release rates of advanced composites. Carlsson[&} al.under plane stress or plane strain and approximate analysis based
on “beam type” or “plane strain version of laminated plate
Formerly Research Student, Civil Engineering Department, Indian Institute meory” Wh'Ch appears to be _f'rSt'order plate th_eory' Zhou and H_e
Science, Bangalore 560 012, India. [19] derived SERR expression for ENF specimen based on Ti-
2To whom correspondence should be addressed. moshenko beam theory by taking asymmetric flexure of the speci-
Contributed by the Applied Me_cha}nlc_s Division oHE AMERICAN SOCIETY OF men into account and further they improved SERR expression by
MECHANICAL ENGINEERSfor publication in the ASME OQURNAL OF APPLIED ME- . . . .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. lZ,COhSldermg the deforma_tlon at the crack tip. Co_r!eto and HOgan
2002; final revision, Mar. 24, 2003. Associate Editor: R. C. Benson. Discussion 20] presented an anlysis based on a new modified beam theory
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depdgyy ENF specimen which considers the solution of a beam on a
ment of Mechanical and Environmental Engineering, University of California—San : : ; +
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months a rnerahzed elastic foundation ar.]d Tlmosher_lko beam theory to
final publication of the paper itself in the ASMEOURNAL OF APPLIED MECHAN- Incorporate the_ effect of f:raCk'“p_ deformation and transverse
ICS. shear deformation, respectively. This approach showed that SERR

The most common problem in laminated composite structur
is the delamination along the resin rich ply interfaces. In gener
a delamination will be subjected to crack driving forces resultin
from a combination of mode (bpening or peeling mode Il(slid-
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matching conditions at the crack tip becomes more involved. In
order to apply the third-order beam theory to analyze ENF and
T ENC specimens, stress analysis models proposed by WHit2g¢y
(based on second-order beam thedrgve been found to be suit-
T n able to extend further, but with modifications to the stress analysis
L L models. The modifications are mainly due to the incorporation of
e the variationally derived matching conditions at the crack tip of
P2 L P2 ENF and ENC specimens. Hence, in the present study, mathemati-
(a) ENF Specimen cal models or stress analysis models for the analyses of unidirec-
tional ENF and ENC specimens, using classical beam theory
z PR (CBT) and first(FOBT), second SOBT), and third(TOBT) order
Uncracked Region Uncracked Region shear deformation beam theories, have been developed to deter-
(L-a) L mine the mode Il interlaminar fracture toughness of composites.
In these mathematical models, appropriate matching conditions, in
h|l @ A~ a x terms of generalized displacements and stress resultants, have
n i e b;een derived and appliid at thke crack tip by enforcri]ngr;] the dis-
— — placement continuity at the crack tip in conjunction with the varia-
N Tp=0 1= Ty (@2=2) =q) tional equation. This method of applying variationally derived
f matching conditions at the crack tip becomes the key feature of
P/4 L L P/4 present stress analysis models of ENF and ENC specimens and
(b) Stress Analysis Model (Upper half of the ENF specimen) makes the present stress analysis models different from the avail-
able stress analysis models in the literature. It may be further
Fig. 1 ENF specimen and its stress analysis model noted that this may be the first time that the third-order shear
deformation beam theory is being used to analyze ENF and ENC
specimens.
fThe compliance and SERR, obtained from the present study,
ave been compared with the existing experimental, analytical,

Cracked Region
L a

.

is only affected by crack-tip deformations and is independent ﬂ
transverse shear deformations. Davidson ef2dl] presented the o . ; N
finite element results in the literature. The contribution of

deflections and energy release rates of ENF specimens by u . - .
one-dimensional modelg“generalized plane stress or planeShear deformatioribased on the theories FOBT, SOBT, and in
+9 P P rticular TOBT), in compliance, SERR and interlaminar shear

strain”) of classical and shear deformable laminated plate the . . e )
) b OII)%ess at the crack tip and its distribution ahead of the crack tip,

and three-dimensional finite element analysis. Recently, Ding a b ined and its i has b highliahted. F
Kortschot[22] developed a solution for the ENF specimen using 325 Peen examined and its importance has been highlighted. Fur-
er, the significance of variationally derived matching conditions

modified classical beam theory, in which the effect of crack-ti the crack tip has been clearly brought out. The influence of
f ion i | i h i f :
deformation is analyzed by assuming that a region of certd ?Ck length, ratio of Young's modulus to shear mod ar
f

length close to the crack tip rests on an elastic shear spri . ) >
fougr]ldation. P P ormation and span-to-deptfthickness ratio of the ENF and
From the above literature review, it can be observed that cldsNC SPecimens on the compliance, SERR and interlaminar shear

{rgss distribution ahead of the crack tip have been studied in

sical, first, and second-order beam and/or plate theories were u | Certain inf ) d ful lusi h b
to analyze unidirectional ENF and ENC or ELS specimens. To t tail. Certain informative and ‘useful conclusions have been
rawn from the comparative and parametric studies.

authors’ knowledge, analysis of unidirectional ENF and EN
specimens, using third-order shear deformation beam theory, has
not yet been explored. It will be seen later that as the order of the

theory increases, present study results converge towards the 2x- Higher-Order Shear Deformation Beam Theories

perimental and finite element results. However, the problem of . i o . .
The displacement field for unidirectional laminated composite

beam, according to thirdTOBT), second(SOBT), first (FOBT)
order shear deformation, and classi¢@BT) beam theories, can
P be written in an unified form using the tracera;” and “ «,” as

a
4 U(X,2) = Ug(X) + Zfy(X) + a2y (X) + a2Z°E,(X);
h ¥ @)
T 3‘1 W(X,2) =Wo(X)
L The tracera, takes the value “unity” for TOBT and SOBT and
b - + “zero” for FOBT and CBT. The tracer, takes the value “unity”

(a) ENC Specimen for TOBT and “zero” for SOBT, FOBT, and CBT. Further, it
should be noted that the terms, equations, and relations, associated
with the tracersy; anda,, exist only if the tracer is “unity” and

z do not exist if the tracer is “zero.” For classical beam theory
P12 Cracked , (CBT), =—dwp/dx in Eq. (1) and in subsequent derivations.
Region Unczck;d Region Strain displacement relations corresponding to @gare
a -8,
du d d d
T EXX:_O +Zﬂ + alzz ¢X + a223 gx'
h| @ & X dx dx dx dx @
4
\_.___f =0 dWO 2
=0\ - =l —+y |+ + .
Xz u=0, Typ(@z=-12) =qx) Yxz dx Iy | T @122+ @p37°¢,
L . . . .
F ~ The stress-strain relations for each orthotropic layer of unidi-
(b) Stress Analysis Model (Upper half of ENC specimen) rectional laminated composite beam are
Fig. 2 ENC specimen and its stress analysis model UXX=EH€XX; Txz= G13Vxz- 3)
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In Egs.(3), En: E., for plane-stress-type constitutive relation d N, b dM b
andE ;=E;;/(1— vy,vy,) for plane-strain-type constitutive rela- “ax P o+ | =5~ Quzt bllaxz | Sty
tion. E4, is the Young’s modulus of elasticity in the fiber direction,
G3is the shear modulus, and, andv,, are the Poisson’s ratios. ds, Pyx

The strain energy of the unidirectional laminated composite ~ +@1| —5,~ 2Rt DOay;| Syt az ax 3T
beam, having width b” and thickness ‘h,” is

1 hr2 + bq3XZ) 5§x ( QXZ + quz) 6\/\/0 dx+ [( ﬁxx) 6“0
U= 2 b (Oxx€xxT TxzYxz)dzZdXx (4)
X

e (M= M) 8 1 (S Se) Sebt o P P 88

The work done by the external surface forces and edge forces is =
y 9 + (sz_ sz) ‘S\NO] at x=xg
W= bf {(?XZU+;ZZW)BIZ:|’1/27 (?>(zu+;zzw)alz:—h/2}dx =0 (9)
X in which Ny, Myy, Sy Pyx, Qxz» Rz, Ty are stress resultants
and N,,, M,,, S, Py, Qx; are the external edge forces and

+ () have the following definitions:

h2 .
bf (o U+ 7 w)dz
—hi2

atx=Xg hi2
_ 2 3
wherex, represents any beam end at which boundary conditions [Nxx: M Scx s Pl bj,h,zcr”[l’z’z z’ldz  (10)
are to be specified. o
The total potential energy is
P v [QuzRez Tual =b f 12212 (11)

M=U—W. (6)

_ he -
According to the principle of minimum potential energy, first [NXX,MXX,SXX.PXX,QXJij [oxd 12,2%,2°],7,]dz
variation of total potential energy is zero and can be written as —hi2

(12)
8ll=6U— sW=0. (") From Egs.(10), (12), (3), (2), and (1), the stress resultants are
o ) ) related to displacements as given as follows:
By substituting Eq.(4) and Eq.(5) in Eq. (7) along with the |n_plane stress resultants
displacement fieldEqg. (1)), the variation of total potential energy 5
can be written as N, = E,jbh| 0 dUO h*dey)
" PN g T ax )
5H:bJ’ J (O yxO€xxTt szg'yxz)ddefbf (Qoxz0Ug Ellbhs dify 3h? dé,
xJ —h/2 X M,.= ——tayr=——|;
XX 12 dx 20 dx/’ 13
+ Q1x0xt 10,0+ @pU3x, 064+ P,,0Wg) AX — 3 5 (13)
2 S .- E.sbh (duo+ 3h dd)x).
_M {0 BUo+ 28+ 12 Sep+ 1z 58, U2 ldx T 20 dx
—h/2 —
_ Eubh® ( diy . 5h? dgx>
+?XZ‘SWO}dZ} =0 (8) =480 | dx | 28 dx
atx=xe Interlaminar shear stress resultants
in which dwo h?
sz=G13bh[(W+¢x +a27§x )
(et o 2] :
Qoxz™ ) Txz| ALZ= 5| = Ty ALZ= —— | (,
2 2 Ryz alel3b Oy
(14)
_ hy _ h 3 2
_ N - h [/ dw, 9h
o a3 - 2 . [CINIE A
h_ h_ —h We now introduce four independent shear correction fadtprs
dixz= | 5 Txz atz= > + 5 T2 atz= > k5, ks, andk,, which will be determined later, into Eq&l4) to

account for the difference between the shear stress distribution

h2 h 5 “h over the thickness from constitutive equations and the exact shear
Qsz=[—sz atz= _) — — 1l atz _)] stress distribution over the thickness from equilibrium equations
4 2] 4 2 and hence Eqg14) are rewritten as
and dw, h2
Quz= Gleh[ kl(a + iy |+ CYZKAT Ex(
h3_ S
quzz[—rxz atz= 5|+ 5 7y atz )] h3
8 2/ 8 2 R=a1koGigh 5~ by (15)
Substituting Egs(3), (2), and(1) in Eqg. (8) and carrying out the 3 w )
integration through the beam thickness results in the following _ o “Wo ) o
variational equation: Txa= 2G5 ) Ka| 5= | T a8y -
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Present interest is to get the equilibrium equations for the bedf@®BT:

subjected to surface tractiong™ (sheaJ at the bottom surface.

For this purpose, we need to sgi(at z=—h/2)=q, 7 (at z 1 12 z

—h/2)=0 anda,at z==h/2)=0 in Egs.(5) and(8). Conse- Oxx= g Nt bRz h Mo (20)
quently, we getdo,=—0, qu=9qh/2, gy ,= _qh2/4: Q3xz

=qh%8 andp,,=0 and these substitutions are to be made in Eq. From classical theory of two-dimensional elasticity

(9). In the variational Eq(9), the variationsduy, 8¢, , Sy,

8¢y, anddw, are completely arbitrary. Thus E) can vanish as o xx " 19sz_0 1)
required only if the coefficients of the variations of each vanish X Jz '

individually as the generalized displacements are independent of o )

each other. From the vanishing of the coefficients of the variationsBY substituting Egs(18), (19), and (20) in Eq. (21), respec-
SUg, SWo, Sy, Sy, and 8¢, under the integral sign of varia- tively, fpr TOBT, SQBT, gnd FOBT and then integrating w.et.
tional Eq. (9), we can obtain the following five equilibrium @nd using the relations given by Eq46), the exact interlaminar

equations: shear stress distribution through the beam thickness can be written
as
dN d dM bh .
xx_quo; QXZZO; XX_sz+_q:0; TOBT:
dx dx dx 2
2 3 () 15 [3 40(2)24—112(2)1(2 + 30 Z[l 4(2)2 R
ds, bh dP bh Xz~ 2ann| ° Py _ x2T TSRt R Xz
105 z\2 z\*4 z z\2
along with the boundary condition,, (or ug), My, (or i), - 3[1—24(— +80( —) Tyt 3+24(—) —12({—)
1Sy (OF a1y, asPyy (OF ayé,) andQ,, (or wy) that are need 4bh h h h h
to be specified at the beam ends. 3 4
16 2 56 z) | 4 22
~1e%5) 295 |16 (e2)
2.1 Exact Interlaminar Shear Stress Resultant Expres- ]
sions. For unidirectional laminated composite beam subjected ®ROBT:
surface traction ¢” (sheaj at the bottom surface, Reissner’s 5 )
variational principle[13], can be written in the following form as , _3 1-4 z O+ 30z 1-4 z R
given by Whitney[12] ¥z 2bh h ¥z ph2 h h xz
U Oy oW AU Ty, 04y z z\? z\%q
e e e L s ‘{1‘6(5%12(5) a3 @
Iy Ty FOBT:
+ Su— SW|dzdx— | (7y4(X,—h/2)—q)sudx
szzm 1—4(5) }QXZ— 1+4(E)—12(H) }Z (24)

2 Interlaminar shear stress distribution expressions given by Egs.
(22), (23), and(24) satisfy the shear-free condition at the top of
the beam and applied shear tractiogy ‘tondition at the bottom
of the beam.

TOBT:

In the above equation, denotes the beam efglon which one ~ For TOBT, substituting Eqs(1), (18), and(22) into Eq. (17),
or both of the stressas,, or ,, are prescribed ankl denotes the and then integrating w.r.z, we obtain the required stress resultant
beam ens) on which one or both of the displacementandw  expressions, equilibrium equations, and boundary conditions. The
are prescribed. Vanishing of terms inside the double integrii-plane stress resultants and equilibrium equations along with
which are multiplied by stress variations yield the stress resultdp@undary conditions obtained are exactly similar to Ef8) and
expressions, while vanishing of terms multiplied by displacemefit6), respectively. Further, the exact interlaminar shear stress re-

+ f (Uxx(zz) _;xx) oudz+ f ( sz(ZZ) _?xz) owdz

+J’oxx(§<,z)5udZ+Jrxz(i,z)bwdz:o. 17)
z z

variations yield the equilibrium equations. sultants obtained from E{17) are as follows:
From Egs.(3), (2), and(13), the distribution of normal stress )
o, Over the beam thickness can be written as 0,,=Gybh 14 %Jr +‘_1(h_ £+ bhq
TOBT: xem P15  dx X 514 )% 30
7  bh? bh2q
3 z\? z z)? Ri=72G1aa by —m (25)
_ _ - - = _ - XZ 13 X '
a'xx—4bh[3 2o(h) N, + —h 5 28(h) M, 10¥ 6 40
) 5 TG bhd (4 (dw, N 2 (9h? N bh3q
e PP K I P PP xx= G155\ ax %) T3\ 20)% " 120
bh® h/ 7% bhth hj [P

It is the usual procedure to satisfy shear-free boundary condition
(18) atthe top and bottom of the beam to determine the shear correc-
tion factors and hence by comparing Eg5) (havingg=0) with

SOBT. Eq. (15, we get the shear correction factors for TOBT las

3 2\2 12 7 15 7\2 =14/15,k,=7/10, k3= 2/3 andk,=4/5. _
Uxxz_[g_zo(_) }NXXJF T My _[1_12( _) Si Following similar steps as above, we can get the exact inter-
4bh h bh? h bh? h laminar shear stress resultant expressions for SOBT and FOBT

(19) and the corresponding shear correction factors as given below:
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SOBT: resultants(Egs. (25), (26), and(27)) for uncracked region based
on TOBT-E, SOBT-E, and FOBT-E can be written in an unified

sz:GlehZ (% + ‘px) + %]; form as i
7 bh? bh?q QXZ=G13bh[k1(M+wx)+a2k4(h—)§x +f4bhg;
Ra=75C15 & 0 (26) dx 4
3
andk, =5/6, k,=7/10. R~ al(kz%% ¢X,frbhzq);
FOBT: (28)
Q=G rJhE(%Jmp)Jrmq @7)  Tu=ayG b—hs(k(%+¢;)+k(g—hz £ +Tbh3q
Xz 13 6| dx X 12 Xz 2 13 12 4 dx X 3 20 X t .

andk; =5/6. In the above Eqs(28), k,=14/15, k,=7/10, ky=2/3, andk,
=4/5 for TOBT-E, k;=5/6 andk,=7/10 for SOBT-E andk;

; ; =5/6 for FOBT-E. Furtherf,=1/30, f,=1/40, andf;=1/120 for
3 Mathematical Modeling of End Notch Flexure TOBT-E, f,=1/12 andf, = 1/40 for SOBT-E andfq=1/12 for

(ENF) and End Notch Cantilever (ENC) Stress Analysis ropT.E  |nterlaminar shear stress resultant expressions for
Models cracked region can be obtained by substitutipg0 in the Egs.

The unidirectional ENF and ENC specimens considered for &8)- o _ _ _ _ _
analysis have been shown in Fig¢alland 2a). The respective Further, it is possible to consider Fwo more choices of interlami-
stress analysis models have been shown in Fig.ahd 2b) and har shear stress resultant expressions for cracked and uncracked
these are similar to the stress analysis models proposed by WHgions and they are as follows:
ney [12]. However, present stress analysis models differ from Choice-1(TOBT-1, SOBT-1, FOBT-1 For both cracked and
Whitney [12] at the stage of application of variationally derivedincracked regions, m_terlamlnar shear stress resultant_s given by
matching conditions at the crack tip which will be explained lateEds.(14) or Egs.(15) with k; =k,=kz=k,=1 can be considered.
The stress analysis models consider only upper hataesve This choice has been named as TOI_3T—1/SOBT—1/FOBT—1 based
delamination planeof ENF and ENC specimens because of thén the beam theory under consideration.
fact that delamination is at midplane and lamination scheme isChoice-2(TOBT-2, SOBT-2, FOBT-2 For both cracked and
symmetric about the midplane of ENF and ENC specimens. Focracked regions, interlaminar shear stress resultants given by

ther, ENF stress analysis model has crackeca<x<0] and EGs.(15) can be considered witk;=14/15,k,=7/10, k3=2/3,
uncracked 0<x<(2L—a)] regions. The regiong—a<x=<0], @andk,=4/5in the case of TOBT and this choice has been named

[ngg(L_a)] and[(L_a)gxg(zL_a)] have been idealised as TOBT-2. Slm”arly, for SOBT—ﬂ,(1=5/6 andk2=7/10 and for

as three different beams 1, 2, and 3, respectively, with imaginan?BT-2, k; =5/6.

cuts at the crack tip and at the point of load application. Similarly, Here, it may appear that TOBT-E and TOBT-2 use same shear
ENC stress analysis model has cracfeda<x=<0] and un- correction factors, but they differ with each other w.r.t. shear
cracked[0=<x=(L—a)] regions idealized as beams 1 and 2, reStress resultant expressions in the uncracked region whef
spectively. In the uncracked region, at the bottom of the stre88d they coincide with each other in the cracked region where
analysis model§i.e., at the midplane of the actual ENF and ENC=0. Similar explanation is valid for SOBT-E and SOBT-2 and
specimenj surface traction & (shea exists and axial displace- also for FOBT-E and FOBT-2.

ment “u” is zero. Further, it has been assumed that the delami-3 1 1 cracked Region-fa<x<0]—Beam 1 (Figs. 1(b) and

nated faces slide over each other freely which means that $ig))y  The governing differential equations for cracked region in
frictional effects between the delaminated faces have been ims of generalized displacements can be obtained by using the

glected. It may be noted that Carlsson et[@]. showed that for stress resultant expressiofgs. (13 and (28) (with g=0) or

reasonable values of frictional coefficients d&d/G13, the ermor (15 in the Egs.(16) (with a=0) and th
in SERR induced by neglecting friction is only 2—5%. (19) in the Eqs.(16) (with g=0) and they are

. _ . . — [ d?up h? d®¢,

3.1 Governing Differential Equations for Cracked and E,bh —2+alﬁ—2
Uncracked Regions. Equilibrium Egs.(16) can form a set of dx dx
governing differential equations for uncracked region, as those
equations have been derived for the laminated composite beam
with applied surface tration and can simulate the uncracked re- Gigbh
gion. Further, in the case of cracked region, governing differential
equations can be obtained again from Ed®) by puttingg=0
(i.e., delaminated faces slide freely over each gthéext, Egs.
(13) form as corresponding inplane stress resultants for both 12
cracked and uncracked regions. However, in the case of interlami-

d)(2 * dx

d’w, d
kl( 0 ¢x

h? dfx}

Fakig g

Ebhd(d2y,  3h?d%, dwy,
dx2 +a22_0W —Gl3bh kl W-ﬁ-{ﬁx

K . 2
nar shear stress resultants, the following three choices can be h _
considered. + a2k47 §X] =0 (29)
Interlaminar shear stress resultants .
TOBT-Exact, SOBT-Exact, and FOBT-Exadthe interlaminar E;bh®(d%u, 3h2d2¢, bh3
shear stress resultants based on TOBT, SOBT, and FEB8S. ) 5 > T 50 G —szmT ¢y =0
(25), (26), and(27)) simulate the uncracked region of ENF and dx dx

ENC specimengFigs. 1b) and 2b)) exactly as these stress re- _
sultants have been obtained from the exact interlaminar shear |Eqybh®|d?y, 5h? d?¢,| Gyh® dwg
stress distributions which satisfy shear free condition at the top %2 “gg | 4,2 t 28 2| 4 Ky ax
and applied shear traction condition at the bottom of the beam.

This choice has been named as TOBT-E/SOBT-E/FOBT-E based 9h? ]

on the beam theory under consideration. The exact shear stress +k32—0 & |=0.
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3.1.2 Uncracked Regions fx<(L—a)] and [(L—a)sx<(2L (6+4+4), and 14(6+4+4) unknown constants for TOBT, SOBT,
—a)l—Beams 2 and 3 (Figs. 1(b) and 2(b))ln the uncracked FOBT, and CBT, respectively. Similarly, in the case of ENC speci-
regions[0=x<(L—a)] and[(L—a)=x=<(2L—a)], q#0. Fur- men, there will be 1810+8), 14 (8+6), 10 (6+4), and 10(6+4)
ther, axial displacement alorng=—h/2 has been assumed to beunknown constants for TOBT, SOBT, FOBT, and CBT, respec-
zero (z= —h/2 is the bottom surface of the stress analysis modetively. These unknown constants can be determined from the ap-

This can be written as propriate boundary and matching conditions which will be derived
in the next section. Once the unknown constants are determined,
u(@z=—-hi2)=0. (30) corresponding displacements, strains, stresses, and stress result-
By using the first part of Eqsl) in Eq. (30), u, can be ex- ants can be easily obtained. It should be noted that the present
pressed in terms af,, ¢,, and&, as solutions of ENF and ENC specimen are perfectly compatible
with deformations that occur in the lower halves of the ENF and
h? h3 ENC specimen$Whitney[12]). In other words, solutions can be

Uo=75 ¥k~ a1y byt aog & (31)  obtained to the lower halves of the ENF and ENC specimens

N which will produce the same distribution of shear stress in the

and now the surface tractiorg” is the unknown. Consequently, yncracked region as the present solutions. Since axial displace-
by using Eq(31) in Egs.(13), the in-plane stress resultant expresment “y” is zero along the centerline of the ENF and ENC speci-

sions ofN,, andS,, will be modified as mens in uncracked region and the vertical displacemeritdoes
E..bh? dy h de h? dé not vary over the depth, complete compatibility of the upper and
-1 X g X TSX) lower halves of the ENF and ENC specimens will be assured.
> 2 dx  “13 dx %4 dx)’

x— a1

Ellbh4(d¢’x h %+azf %) (32 4 Boundary and Matching Conditions

24\ dx 5 dx 4 dx In this section, appropriate boundary and matching conditions
By using the two modified in-plane stress resultant expressiowd! be derived. Special attention is necessary for continuity con-

of Nyy, S (Egs.(32), stress resultant expressionsMf, , P,, ditions at the crack tip. In the present study, appropriate matching

(second and fourth parts of Eq613)) and interlaminar shear conditions, in terms of generalized diSplaCGmentS and stress re-
stress resultant expressions@f,, Ry,, Tyz, (EqS(ZS)) in Egs. sultants, have been derived that are to be applied at the crack tip

(16), we get the following governing differential equations irand at the point of load application by enforcing displacement
terms of generalized displacements and surface tractigrfdr ~ continuity conditions at the crack tip and at the point of load

“each” uncracked region separatelpeam 2 and beam)3 application in COﬂjUﬂCtiOﬂ with variational equation.
_ The total potential energy, for the stress analysis models of ENF
Eibh? [ d?y, h d?¢, h? d2¢, and ENC specimens, is
—agy a,———|—bqg=0
2 dx? 3 dx? 4 dx? =11V +11@+11® (34)
d2w,  di, h? dég, dq where, IT®, T1?, and TT® are the potential energies of the
Gagbhy ke[ —— I +a2k47 ax fqabh=0 beams 1, 2, and 3, respectively. Further, it may be noted T3t
dx does not exist for ENC specimen in the above and subsequent

equations.
For equilibrium, the first variation of total potential energy of
ENF and ENC stress analysis models is zero and can be written as

Eybhd(d2y,  3h?d%, dwy,
12 W-ﬁ-azz—oﬁ —G13bh kl W-ﬁ-l//x

h2 1 Sl =611+ 5112+ 6113 =0. (35)
Fagkig &t E_fq)th_o B3 or simplification, Eq(35) can be split as
E,bh* [d2p, h d%, h? d2¢, bh3 ST = STISY + STILY + ST1Z) + STI(Y + SIS + 111 =0
a; = a7 —— | —KGig—o— by (36)
24\ dx* 5 dx® 4 dx? 3
where, the subscriptseq” and “ bt” represent equilibrium equa-
1 tions and boundary terms of the potential energy, respectively.
+| 2f, — Z)thz =0 Based on TOBT, SOBT, FOBT, and CBT, variational E86)
can be expressed as
Eybh® [ d?y,  5h? d?&, bh®( [dw, ST+ (N —NE) sush + (ME — ML) 591 + ay (S
780 |me 28 ae) =4 |Mlax T « »
~ S 0B+ (P~ P 680 Q1

9h? O = N
Ry b+ -0 — Q) WGz o ST + (N =N sug” +(MZ

1 3
g~ 3fiabh

~M@ 592 + 0, (S2 - S2) 52 + ap (PP — P2)) 5¢2)
The solution of Eqs(29) and (33), for cracked and uncracked R § * * “ o
regions, can be easily obtained. The details are omitted here for  +(Q2 —Q{2) owP 12X 24~ + SIS +[ (N

the sake of brevity and available elsewhégs|. However, it may — — —

be worth mentioning here that in the process of writing solutionto ~ — Nix) 8ug” + (M) = M{3) 8y% + a1 (S5) — S7) 54
Egs.(29) and(33), one will come across with second and fourth- (3)_ 503 <(3) (3) (3 o (3)1@%=(2L—2)
order differential equations whose auxiliary equations can have +ap(Pid —Pix) 067+ (Qir — Q2 ) Ws™ Jgx=(L-a) ~0-
real roots or complex roots or combination of real and complex (37)

roots. In the present work, for the material properties considered,_. .
roots are found to be real, distinct, and nonzero and hence solutiorr"c€ ENF and ENC specimens are loaded only at the center

has been written for this case only. In the case of the ENF spe@nd free end, respectively, externally appl@g, exist only at the
men, there will be 2610+8-+8) (ten constants for cracked regionPoint of load application in the variational E(7). Further, it
and eight constants for each uncracked regi@o (8+6+6), 14 may be noted tha®,, (at places other than point of load applica-
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tion), Ny, My, Sex and Exx_do not exist or zero in the varia-  STIGY + STTE) + STIS) — [N sugt + M{Y oyt + a S s
tional Eq.(37). Hence, variational E37) can be rewritten as D) <x1) W = "
+a2p><>< 5§x +(sz _sz )&NO ]@xzfa
BTG + STILE + STIE + NG dug” + MY syt + ar S 5

h h
N R (RN Ve

+
+ @Y 0E N + QL WG 1@y~ [N Sug” + MY sy 2 2
(1) g4 (1) (1) 5¢(1) (1) _ D)y s(D) h? h?
ta1S 8¢y + aaPi 067+ (Qz —Qiz ) W Jax=-a by Silx)—ZN(xlx))—(Sf&)—zN(xi)))M(xz)
+[NZ oug + M 8P + .S 647 + a, P 667
e h® 2. P @) 52
+(QF — Q) W @ (1o~ [N SU? + MY 5y +ag | P g NG || P+ g N | o8

2 2 2 2 2 2 3 3
+C¥]S§(})§¢§( )"FCYZP( )5§( )+Q(Z)M0( ) @X—0+ N;x)éuo( )

3 3 3 3 3 3
D500+ a3 507+ P35

@x=0
+Qg)&NgS)]@X:(ZLfa)_[Nﬁ) 5“83)4_ Mﬁ) 5‘#&3) (2) h (2) (3) h (3) (2)
3 3 3 3 3 + Mxx+§Nxx - Mxx+§Nxx Oty
+ay S 667+ a,P 58S +(QF
_ h2 h2
STV @ [ s2-Gna (52T au
In order to combine beam 1 with beam(& the crack tip and , h o , h® 5
beam 2 with beam &at the point of load application only for ENF +a,| | PP+ T Nﬁ(x)) —( P+ 5 N§<X)> ) s¢?)

specimely the following displacement continuity conditions over

the depth(thicknes$ of the ENF and ENC stress analysis models _

have to be applied at the junctions of the above beams. +(QP-Q¥)—(Q2-Q¥)) sw
Displacement continuity conditions

At the crack tip(x=0):

@x=(L—a)

h2
i (s2- ) o

h
M+ SN | |+ ey

ut + 2V + a2 + @, 286N =ulP + 2y P + @, 22 2
2). (2 h
a2 W) @) e [P NG o2 QR ow o
@x=(2L—a)
At _the point of load applicatiofx=(L—a)]: (only for ENF (43)
specimeit
In the above equation, terms related to beafteBns with super-
ugz)+2¢;2>+ a122¢£(2)+ a223§§(2>: ugs)+2¢§(3>+ a122¢§3) script (3)) do not exist for ENC specimen.
+ a2 wR=w. (40) 4.1 Boundary and Matching Conditions for ENF and ENC

Specimens. From the variational Eq(43) and displacement
2 _ @) _ 12 h2) 30-(2)y continuity conditions(Eqgs.(41) and (42)) at the crack tip and at
In Eq(s?’.)(_\’sg) an?3§40), u% ((2)/21’//X 3 al(hg)md)x T azh*/BE7) the point of load application, the following boundary and match-
andug” = (h/2y,” — a h*/Ad, + azh 18¢y ) ) ing conditions, which are variationally consistéas they are ob-
_From Egs.(39) and(40), continuity conditions for generalized tained from the variational equatiprcan be written for ENF and
displacements can be written by equating the coefficients of likg\c specimens.
terms. This results in the following continuity conditions in terms _ _
of generalized displacements that are required to maintain the dis4.1.1 ENF Specimen.Left Simple Suppor{x=—a):
placement continuity over the depth of the stress analysis models (1) _ . 1_n. 1)_A. 1) _A. (1) _
at the crack tip and at the point of load applicationly for ENF Wo =0, N=00 My=0i a155=0;  a;P=0.

specimei (44)
At the Crack Tip(x=0): At the Crack Tip(x=0):
h h? h3
h h? h? W @ == @~ g P+ g £ |-
ult=u@= E‘ﬂ(XZ)_alT ¢<X2>+a2? (X2>); Ug =Ug (29//)( g b Farg &7
41
(D_ 4@ 5 @ (D 2 “ S0 mdll=ad® af=a?;
wx =y ald)x :a1¢x ; a2§x :a2§x ; W(l):W(z)'

0 o (45)

2

(1) —\w(2
W =wg” . h h h
( Mg()‘*' E Ng()) = ( Mg()‘*' E Ngg ;o ag SE(:)L()— Z N%()

At the Point of Load Applicatiorfx=(L—a)]: (only for ENF

specimen h2
o[ 82 SN2 );
U= adP=ads af?=arfd; . .
(1) ] = (2) 2. (1) _ 2
az(P + —N )—az(P + —N y = .
W(02)=WE)3) ] (42) XX 8 XX XX 8 XX Xz Xz
At the Point of Load Applicatioix=(L—a)]:
Substitution of generalized displacement continuity conditions @ (3 @ 3 2 3)
(Egs.(41) and(42)) in the variational Eq(38) gives b= eI =andy” ) U= s
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w@=w; and TOBT. And hence, the derivativd¢/da) has been evaluated
using thefinite difference metho¢by adopting thecentral finite

h h h? difference approximation Then the compliance derivative can be
(M ong| =M Ing] o s2-TNE) s
h2 d_C :Cn+lfcn—l
= al( o~ ZN(&’) ; (46) da) ~ 2a 53)

_ in which (dC/da), is the compliance derivative at delamination
Nﬁ(f’()); Q2-Q@=Q@  lengtha,, Cy., is the compliance when delamination length is
an; 1, Ch_1 is the compliance when delamination lengthajs ;

h3 h3
ol P2+ NG = P

—0B®=_p/2 and A is the spacing between two successive delamination
xz ' lengths.
Right Simple Supporfx=(2L—a)]: Hence, we can obtain SERR from the following expression:
h h? P?2[Chi1—Chs
wE=0 (M4 aNG|=0: w52 TN =0, Gmg| o). (50

5 In the case of CBT, the following compliance and SERR ex-
N(xx)) =0. (47) pressions can be derived/obtained for ENF and ENC specimens
which are similar to those available in the literaturg2]:

h3
wl PR

4.1.2 ENC Specimen.Free End(x=—a):

c,L3+3a° 9a?p? -3P
NY=0: MWB=0: a.SP=0- azp(l)zo. CCBTzl_—s; ﬁBT:_—“; q:m
XX ! XX ! N 1-xx ! XX ! CzEllbh 2C2Ellb h C3
@ = Qe =PIz “o h 2 (ENF), 1(ENO) 8 (ENF), 2 (ENC) ((155)
S where ¢, = , , Co= , , and cz
At the Crack Tip(x=0): =2 (ENF), —1 (ENC).
D (2 h 2 h?2 @ h3 - It may be worth mentioning here that FORTRAN programs
Up =Uo =5 - @1, bx +a2§ &7 have been written for all the required mathematical steps to ana-
lyze unidirectional ENF and ENC specimens using the theories
PV=y2: a1 pV =002 ; V=02 ; TOBT, SOBT, FOBT, and CBT.
(1) — (2 -
wy ' =wy”; . .
° 0 (49) 6 Results and Discussion
1 h 1) 2 h 2) . . . . .
MY+ §N§<x =M@+ §N§<x ; 6.1 Comparison With Earlier Research. First, in order to
validate present formulation, the compliance and the SERR, ob-

h2 h2 tained from the present stress analysis models of unidirectional

al( sh— ZN(Xlx)) =al(S(x2X)— ZN(XZQ); ENF and ENC specimens considering various theories CBT,
FOBT, SOBT, and TOBT, have been compared with the available

3 results,[7,10,12,17,18,22,24,25in the literature.

h 3
ol P+ N =

h
2 2)|. 1) _ 2
Pg(x)+ Q Ng(x)) ' 5(2)_ Qi(z) .

8 8
Clamped Supporix=(L—a)]: Table 1 Comparison of compliance and SERR values obtained
WBZ):O; ¢;2>:0; a1¢§<2):0; azf(XZ):O- (50) from the present work with the experimental results of Sela

et al. [25] for unidirectional ENF specimen
Boundary and matching conditions for classical beam theo;\% P R —
can be obtained by substituting = — dw,/dx in the above equa- Yateral Froperties: trapnie/=poxy B
tions. From the Eqs(44)—(50), it can be observed that TOBT, Ggg;gg&?%ﬁ%&#gﬁPa’G13_6 GPa andvy5=0.34
SOBT, FOBT, and CBT have 26, 20, 14, and 14 boundary amg-half-spar=50.8 mm,b=width=25.4 mm
matching conditions, respectively, for ENF specimen. Similarly, in=half-thickness-1.524 mm, 2=3.048 mm,
the case of ENC specimen, TOBT, SOBT, FOBT, and CBT hayllo: of laminae=24, lamina thickness0.127 mm

18, 14, 10, and 10 boundary and matching conditions respectivqa_rga%ﬁ%f &irgé%.?kg:rgg]o.zm N

5 Determination of Compliance and Strain Energy ModelTheory  Compliancémm/N) SERRGc (J/n?)
Release Rate Sela et al[25] 0.00316 527
The compliance C” can be obtained from the following Present Work
relation: Pl €' Pl. o* Pl €' Pl. o*
o 9 (51) CBT 0.00307 0.003092  490.6896  494.7750
P FOBT-E 0.003126  0.003152  491.3822  495.4677
FOBT-1 0.003121  0.003147  490.6896  494.7750
in which “ & is the deflection under the load. ggg]’l_—ZE %88%%% 8.88%32 g?g.gggi g%.gg(l)
lT ?edsgra't?] e?e”rgy.re'iase rf@ERR and the compliance are  Jqpp 0.003159  0.003185  509.2989  513.4609
related by the Tollowing formula. SOBT-2 0.003180  0.003205  512.9724  517.1494
P2 4C TOBT-E 0.003182  0.003208  524.1528  528.3746
_r ot (52) TOBT-1 0.003177  0.003203  520.7998  525.0084
=5p da” TOBT-2 0.003195  0.003221  527.4948  531.7303

In the present studyd(C/da) has not been determined explic-tp| ¢ plane-strain-type analysis.
itly as it is tedious, particularly in the case of beam theories SOB®I. o: plane-stress-type analysis.
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Table 2 Comparison of normalized SERR values obtained from the present work with the existing results for ENF specimen

Normalized Strain Energy Release Ra@&gs/G;®"

Geometry: span2L=76.2 mm (3 in), depth 2h=3.39979 mm(0.13385 in), and breagth=25.4 mm (1 in)
Material: E;,;=115.1425 GPa (16:710° ksi), E33=E»,=9.6527 GPa (1.4 1C° ksi), G,,=4.4816 GPa (0.6810° ksi), andv;3=0.3

Loading: P=4.44822 N (1 Ibf)

Salpekar Chatterjee Ding and Whitney Whitney Carlsson
a/L et al.[24]" [18] Kortschot[22] [12] [10] et al.[7]
0.2 1.305 1.315 1.298 1.388 1.448 1.256
0.3 1.205 1.247 1.298 1.114
0.4 1.142 1.152 1.16 1.181 1.360 1.064
0.5 1.121 1.143 1.171 1.041
0.6 1.090 1.100 1.108 1.118 1.133 1.028
0.7 1.085 1.101 1.121 1.021
0.8 1.064 1.074 1.082 1.088 1.104 1.016
0.9 1.050 1.066 1.073 1.079 1.071 1.013

FOBT-2 FOBT-E SOBT-2 SOBT-E TOBT-2 TOBT-E

Present Work—Plane Strain
0.2 1.0 1.0215 1.1828 1.1894 1.3079 1.2808
0.3 1.0 1.0095 1.1202 1.1210 1.2007 1.1828
0.4 1.0 1.0054 1.0895 1.0888 1.1488 1.1354
0.5 1.0 1.0034 1.0713 1.0701 1.1182 1.1075
0.6 1.0 1.0024 1.0592 1.0578 1.0979 1.0891
0.7 1.0 1.0018 1.0503 1.0491 1.0830 1.0759
0.8 1.0 1.0013 1.0423 1.0419 1.0696 1.0648
0.9 1.0 1.0010 1.0275 1.0310 1.0484 1.0496
Present Work—Plane Stress

0.2 1.0 1.0213 1.1821 1.1886 1.3066 1.2797
0.3 1.0 1.0095 1.1197 1.1205 1.1999 1.1821
0.4 1.0 1.0053 1.0891 1.0884 1.1482 1.1349
0.5 1.0 1.0034 1.0710 1.0698 1.1177 1.1071
0.6 1.0 1.0024 1.0589 1.0576 1.0975 1.0888
0.7 1.0 1.0017 1.0501 1.0489 1.0827 1.0756
0.8 1.0 1.0013 1.0421 1.0418 1.0693 1.0646
0.9 1.0 1.0010 1.0275 1.0310 1.0483 1.0495

TSERR values obtained from virtual crack closure technigt@CT) and two-dimensional plane-strain finite element analysis

Compliance and SERR values, obtained from present wotte, the earlier ones in the literature except that the matching or
have been compared with the experimentally obtained complianmentinuity conditions are applied appropriately which incorporates
and SERR values of Sela et f25] for ENF specimen made up of the contribution of stress resultag, into the matching or conti-
graphite/epoxy material without any tough adhesive layers andity conditions. Because of this change in the matching condi-
presented in Table 1. By closely examining the Table 1, the fdions, SERR values from SOBT are much lower than those of
lowing observations can be made. In general, as the order of ®alpekar et al[24]. It can also be seen that SERR values from
theory increases compliance and SERR values are convergingr @BT (with proper matching conditions at the crack)tgre close
the Sela et al[25] results and hence it can be concluded that the the finite element analysis results of Salpekar ef2d]. This
performance of present formulation of the stress analysis mod@idicates that as the order of the shear deformation increases
is good. Among all the beam theories considered, SERR valuBERR values from the shear deformation beam thedméth
obtained from TOBT are in good agreement with the SERR valupsoper matching conditions at the crack)tqgwnverge towards the
of Sela et al[25]. Hence, it can be said that higher-order shea88ERR values obtained from finite element analysis. This observa-
deformation theories are important to be considered for SERRnN highlights the fact that it is equally important to apply proper
calculation. Further, it can be observed that there is no differencetching or continuity conditions at the crack tip for more reliable
between the SERR values of CBT and FOBT-1,2. This indicatesid accurate analysis apart from considering higher-ds#®ond
that transverse shear deformation up to first of#@BT-1,2 has and third shear deformation effects to obtain compliance and
no influence on SERR valuébut not in the case of FOBT)EA SERR.
similar observation was pointed out by Corleto and Hoz0. Present work results have also been compared with those of

In Table 2, normalized SERR values from the shear deform#/ang and Williamg17] for ENF and ENC specimens in Tables 3
tion theories considere(BERR values of shear deformation beanand 4 respectively. Once again it can be observed that, among all
theories have been normalized with SERR values from d&ie the theories, compliance and SERR obtained from third order
been compared with those from earlier research works. From thisam theory(TOBT-E) are in better agreement with those from
table, it can observed that TOBT-2,E theories are in good agré¥ang and Williamg17].
ment with those of Salpekar et &24], Chatterjed 18], and Ding
and Kortschof22]. Further, the following points can be observed 6.2 Comparison Between Plane Stress and Plane Strain
and discussed from Table 2. Whitng¥2] presented the results Analyses. In order to clarify the point that whether plane stress
based on second-order beam theory in which it appears, to threplane strain conditioficonstitutive equationto be considered
authors knowledge, that while applying the matching or continuifipr the analysis, a parametric study has been carried out by vary-
conditions at the crack tip, contribution from stress resulfapis ing the valuesE,,/E,, for fixed a/L, L/h, E;;, G43, v13, and
left out. This approach gives the SERR values which are on tlead (P) values and the results have been presented for both com-
higher side when compared to Salpekar ef24]. SOBT-1,2,E of pliance and SERR in Table 5. It can be seen clearly from this table
present work are also based on second order beam theories sintiat asE;;/E,, increases the difference between plane stress and
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Table 3 Comparison of compliance and SERR values obtained from present work with Wang and Williams [17] results for ENF
specimen

Material: S;;=6.8X 10 3 (GPa) !, S,,=128x 10 ° (GPa) !, S;c=362x10 % (GPa) !, andv;,=0.3
Geometry:.L =50 mm,b=1.0 mm, anch=1.5 mm. LoadingP=1.0 N.

Present Work—Plane Stress

Wang and Williams CBT FOBT-E SOBT-E TOBT-E
a (mm) [17] Compliance(mm/N)
10 0.068876 0.063719 0.066931 0.067663 0.067637
20 0.075197 0.069007 0.072265 0.073545 0.073823
30 0.091374 0.083363 0.086666 0.088856 0.089646
40 0.121900 0.111319 0.114667 0.118123 0.119627
SERRX 10° (N/mm)
Semi-
FEM Empirical
10 0.151 0.151 0.113 0.116 0.134 0.144
20 0.551 0.526 0.453 0.456 0.492 0.513
30 1.182 1.128 1.020 1.022 1.077 1.108
40 2.025 1.957 1.813 1.816 1.887 1.927
Effect of shear deformationH;,/G,3) on SERR: a=20mm
E11/G13
26.62 0.527 0.508 0.453 0.455 0.480 0.495
53.24 0.551 0.526 0.453 0.456 0.492 0.513
106.47 0.587 0.552 0.453 0.458 0.510 0.538
212.94 0.637 0.592 0.453 0.462 0.536 0.575
735.29 0.783 0.719 0.453 0.485 0.614 0.682

Note: S;1=1/E 1, S;,=1/E,,, Sg6=1/G1,, andG3=G1,

plane strain conditions reduces and becomes less than 5% TQ@BT-E for higherE,,/G,3 ratios. TOBT-E shows good agree-
Ej1/Exp=2 and 1% forE,;/E,,=>10. Hence, one can considerment with the results of Wang and Williath$7] when compared
either plane stress or plane strain condition for the analysis whgn SOBT-E and FOBT-E as th&;,/G;; ratio increases. This
E11/Ey; is sufficiently large. proves the fact that thir¢higheh order shear deformation beam

6.3 Influence of Crack Length (a/L Ratio). From Tables theories are necessary WhEEJl/Gls ratios are high.er. Further, it
3 and 4, it can be observed that compliance and SERR increas€a3 be seen that d5;,/G,3 ratio increases SERR increases for a
crack length increases. given crack length.

The material, geometrical properties, and load have been takeThe material, geometrical properties and load have been taken
from Salpekar et al.24] to present the results in Figs. 3 to 5. Thefrom Gillespie et al[26] to present the results shown in Figs. 6
length (), breadth(b), and depth () of the ENF specimen are and 7. The material properties argE;;=126.1 GPa, Eg,

76.2 mm(3.0 in), 25.4 mm(1 in), and 3.39979 mnf0.13385 i,  =9.7 GPa, andv;3=0.3. The geometrical properties are Length
respectively. The material properties ar&,;=115.1425 (2L)=101.6 mm and breadthbj=25.4 mm. The loading i
GPa(16. K 10°ksi), Ej,=E33=9.6527 GPa(1410°ksi), G135 —100N.

=4.4816 GPa (0.681C°ksi), and »13=0.3. Loading is P Figure 6 shows the normalized shear stress distribution ahead
=4.44822N (1 1bf). __of the crack tip based on TOBT-E for variotts,/G,5 ratios and

Figure 3 shows the influence of crack length on the normalizgg, given crack lengthg/L=0.5). From this figure, it can be
SERR values obtained from various shear deformation theories, that test : it | /G tio will h high
The SERR values of TOBT-E, SOBT-E, and FOBT-E approach <" that test specimens with lovéef; /G ratio will have hig
those of CBT as the crack length increases. pegk shear stress where as test specimens wlth hBhés 3

Figure 4 shows the normalized shear stress distribution ahd&@i® Will have low peak shear stress. Further, it can also be ob-
of the crack tip obtained from various beam theories for a giveigrved that in the case of test specimens with |ditgr G5 ratio,
crack length &/L=0.5). It can be observed that TOBT-E andTOBT-E decays to CBT more steeply when compared to the test
SOBT-E give high peak shear stress at the crack tip which decagecimens with higheE;;/G,3 ratio. In other words, for higher
exponentially to that of CBT as distance increases from the crackder shear deformation theories, shear stress decays more steeply
tip. It can also be observed that shear stress given by FOBT-Eristhe case of test specimens with lowy, /G5 ratios while the

constant ahead of the crack tip and is equal to that of CBT. decay of shear stress is gradual in the case of test specimens with
implies that first-order shear deformation does not affect the sheggherE,, /G, ratios.

stress distribution ahead of the crack tip. Also it can be noted that

peak shear stress values of TOBT-E are greater than those of

SOBT-E.

Figure 5 gives the influence of crack length/t.” on the nor- 6.5 Influence of Thickness or Depth of the SpecimefiL/h

malized shear stress distribution ahead of the crack tip fpyyi0)  |nfluence of thickness on SERR has been shown in the
TOBT-E. It can be observed from this figure that as crack leng ble 6. It can be observed from this table thatlk ratio in-

increases peak shear stress increases and for all crack Iengthscregses SERR increase for the aiven crack lenath. Normalized
shear stress distribution decays exponentially. 9 gtn.

shear stress distribution ahead of the crack tip, based on TOBT-E,
6.4 Influence of Shear Deformation (E;;/G;3 Ratio). has been shown in the Fig. 7 for variduh ratios and for a given
Tables 3 and 4 show the performance of FOBT-E, SOBT-E, amdack length &/L=0.5). It can be observed from Fig. 7 that as
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Table 4 Comparison of Compliance and SERR values obtained from present work with Wang and Williams [17] results for ENC
specimen

Material: S;;=6.8X 10 3 (GPa) !, S,,=128x 10 ° (GPa) !, S;c=362x10 % (GPa) !, andv;,=0.3
Geometry:.L =60 mm,b=1.0 mm, anch=1.0 mmP=1.0 N

Present Work—Plane Stress

Wang and Williams CBT FOBT-E SOBT-E TOBT-E
a (mm) [17] Compliance(mm/N)
2 0.9215 0.7345 0.7459 0.7480 0.7476
5 0.9234 0.7357 0.7472 0.7496 0.7494
10 0.9347 0.7446 0.7563 0.7599 0.7604
20 1.0160 0.8160 0.8280 0.8365 0.8397
30 1.2260 1.0098 1.0220 1.0388 1.0466
40 1.6280 1.3872 1.3997 1.4279 1.4422
50 2.2820 2.0094 2.0222 2.0650 2.0878
55 2.7220 24314 2.4443 2.4955 2.5229
SERRx 107 (N/mm)
FEM Semi-
J-Integral empirical
2 0.0134 0.014 0.0061 0.0075 0.0107 0.0123
5 0.054 0.056 0.038 0.040 0.048 0.052
10 0.183 0.186 0.153 0.154 0.171 0.180
20 0.672 0.677 0.612 0.613 0.646 0.665
30 1.466 1.474 1.377 1.378 1.427 1.455
40 2.567 2.577 2.448 2.449 2.515 2.552
50 3.972 3.987 3.825 3.826 3.908 3.954
55 4.752 4.806 4.628 4.630 4.708 4.747
Effect of shear deformationH;,/G,3) on SERR: a=20mm
E11/613
2.94 0.647 0.634 0.612 0.612 0.620 0.624
26.62 0.661 0.662 0.612 0.6127 0.636 0.649
53.24 0.672 0.677 0.612 0.6134 0.646 0.665
106.47 0.697 0.700 0.612 0.615 0.661 0.687
212.94 0.727 0.735 0.612 0.617 0.683 0.720
735.29 0.877 0.842 0.612 0.631 0.754 0.820

Note: S;3=1/Ey;, Sp=1/Ez;, See=1/G1, andGy3=Gyp

L/h increases peak shear stress at the crack tip increases. In otherConclusions
\k/]v_ords it can be said that shallofhin) test Specimens will have Mathematical models, for the stress analyses of unidirectional
igher pe_ak shear stresses at the crack tip when comparedEN)F and ENC specimens using CBT, FOBT, SOBT, and TOBT.
gﬁ:gfrgt?;ks) Eztrisb%?igrr?%r;slrg;'ﬁ TE a(l:ztr)wl:: ggs?(;v%dB_T_ha:]gé?]%ve been developed to determine the interlaminar fracture tough-
sharply for test specimen with highéshallow tesgt specimen./h fess of unidirectional composites in mode Il. In the present study,
arply P nignesn P . appropriate matching conditions, in terms of generalized displace-
ratio when compared to specimen with sm@eéeper test speci-

men L/h ratio ments and stress resultants, have been derived and applied at the
Table 5 Comparison between plane-stress-type (Pl. o) and 1.7 T

plane-strain (Pl. e)-type analyses for various E;;/E,, values -©- FOBT-E

ENF specimen -5~ SOBT-E

( P ) 169 -6~ TOBT-E

Theory: TOBT-E .

Geometrical propertiesa/L=0.5,L/h=22.4 157 ENF Specimen

Material propertiesE;=115.1425 GPa (16710 ksi), Uh=224

G1s=4.4816 GPa (0.6810° ksi) andv;3=0.3 1.4] Plane Strain Type .

Compliance< 10° (mm/N) SERRX 10° (N/mm)
Ei/Expy Plo Pl.Le %difff Plo Pl.e —% diff

1 123.1337 112.7151 9.24  12.2529 11.2038 9.36
2 123.1337 117.9256 4.42  12.2529 11.7287 4.47
3 123.1337 119.6614 290 12.2529 11.9035 2.94

4 123.1337 120.5299 2.16 12.2529 11.9909 2.19
5 123.1337 121.0501 1.72 12.2529 12.0433 1.74 A
10 123.1337 122.0916 0.85 12.2529 12.1481  0.86 3 DS S )
15 123.1337 122.4388 0.57 12.2529 12.1831  0.57 01 02 03 04 05 06 07 08 08
20 123.1337 122.6124 0.43 12.2529 12.2005 0.43 alL
25 123.1337 122.7169 0.34 12.2529 12.2110 0.34
Fig. 3 Influence of crack length on normalized SERR for vari-
Topdiff=(PI. e—Pl. o/Pl. €)X 100 ous shear deformation beam theories
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-©- FOBT-E
-8 SOBT-E
-6~ TOBT-E

ENF Specimen
Lh=224
alL=05

Plane Strain Type

quCBT

- E"/G13=18.3
-© E,/G,=269
-5 E /G =122

- E,/G,;=183

ENF Specimen
Theory: TOBT-E
Plane Strain Type
Lh=25

a/L=0.5 (a/h = 12.5)

0 R " R A
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05
x/L

Fig. 6 Normalized interlaminar shear stress distribution ahead
of the crack tip for various  E;;/ G435 values

0 1 i i I s I A A i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

10
x/L S Un=10(a/h =5)
-©- Un=15(ah=7.5)
Fig. 4 Normalized interlaminar shear stress distribution ahead -8 LUh=20(@ah=10
of the crack tip based on various shear deformation beam theo- - Uh =25 (ah = 12.5)
ries < Lh=30(ah=15)
ENF Specimen
Theory: TOBT-E
crack tip by enforcing the displacement continuity at the crack tip Plane Strain Type
in conjunction with variational equation. SERR has been calcu- all=0.5
lated using compliance approach. The compliance and SERR ob- E,/G,;=183
tained from present formulations have been compared with the
existing experimental, analytical, and finite element results and
found that TOBT is in close agreement with the experimental and
finite element results. It has been proved that it is very important

to apply proper matching or continuity conditions at the crack tip
for more reliable and accurate analysis of ENF and ENC speci- o y
mens apart from considering higher-ordeecond and thindshear 0 0050101502 0,;,2L5 03 035 0.4 045 05
deformation effects to obtain accurate compliance and SERR.

One can use either plane strain or plane-stress-type conditféa. 7 Normalized interlaminar shear stress distribution ahead
(constitutive equationfor the analysis of unidirectional ENF and of the crack tip for various L/ h values
ENC specimens wheB,,/E, ratio is sufficiently large. Compli-
ance and SERR increase as crack length increases. The SHRBRe 6
values from TOBT-1,2,E, SOBT-1,2,E, and FOBT-E theories ajnd shear deformation beam theories
proach SERR values from CBT as the crack length increases. =
the case of TOBT and SOBT, peak shear stress at the crack tip
increases as crack length increases and decays exponentiallg/to=0.5,E,,/G,;=18.3

Influence of L/h ratio on the SERR based on classical
(ENF specimen )

Present Work—Plane Strain

L/h CBT FOBT-E SOBT-E TOBT-E
10 \ i Strain Energy Release Rakel0* (N/mm)
— alL=0
9 -© all=02 10 3.3791 3.4206 3.8457 4.0792
I alLl=0.4 15 11.4044 11.4667 12.4256 12.9616
81 all=0.6 20 27.0327 27.1157 28.8182 29.7767
- all=0.8 25 52.7982 52.9020 55.5593 57.0617
7| 30 91.2353 91.3599 95.1838 97.3516
ENF Specimen
. l‘ Lh=224
8c_ Plane Strain Type
° Theory: TOBT-E

CBT as distance increases from the crack tip. For a given crack
length, asE,/G,; ratio increases SERR increasgs, /G5 ratio
(shear deformationwill not affect the SERR of FOBT-1,2 theo-
ries and the SERR is similar to that of CBT. Test specimens with
small E;,/G43 ratio will have high peak shear stress at the crack
tip where as test specimens with lardgey; /G5 ratio will have

low peak shear stress at the crack tip. For a given crack length, as
L/h ratio increases SERR increases. Shal(thin) test specimens

will have high peak shear stress at the crack tip when compared to
deeperthick) test specimens.

0 s N N
0 01 02 03 04 05 06 07 08 09 1
xL

Fig. 5 Influence of various crack lengths on the normalized
interlaminar shear stress distribution ahead of the crack tip
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Fiber-Reinforced Membrane
Models of McKibben Actuators

A McKibben actuator consists of an internally pressurized elastic cylindrical tube covered
by a shell braided with two families of inextensible fibers woven at equal and opposite
C. R. Rahn angles to the longitudinal axis. Increasing internal pressure causes the actuator to expand
r O radially and, due to the fiber constraint, contract longitudinally. This contraction provides
a large force that can be used for robotic actuation. Based on large deformation mem-
brane theory, the actuator is modeled as a fiber-reinforced cylinder with applied inner
pressure and axial load. Given the initial shape, material parameters, axial load, and
pressure, the analytical model predicts the deformed actuator shape, fiber angle, and fiber
and membrane stresses. The analytical results show that for a long and thin actuator the
deformed fiber angle approaches 54° 4 infinite pressure. The actuator elongates and
contracts for actuators with initial angles above and below 54°ddgrees, respectively.
For short and thick actuators with initial angles relatively close to 0 deg or 90 deg,
however, a fiber angle boundary layer extends to the middle of the actuator, limiting
possible extension or contraction. The calculated longitudinal strain and radius change
match experimental results to within 54©OI: 10.1115/1.1630812
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1 Introduction ally symmetric problems. McDonald 4] provides a more recent
treatment of the finite deformation of elastic membranes. Kydo-

A McKibben actuator consists of a cylindrical flexible tube surz. ¢ - 4 Spencét5] obtain an exact solution for initially cylin-

rounded by a braided shell. Pressurization of the tube causes a*ﬁ%m elastic membranes with axisymmetric deformation when

and high percent straifapproximately 20—-30%make these at- memprane, longitudinal stretching of a tube, and flattening of a
tractive actuators for many applicatiorfd,], including robotics, hemispherical cap. Matsikoudi-lliopoulou and Liafis7] found

[2], and mobility enhancemerii3,4]. In addition, McKibben ac- gnalytical solutions for axisymmetric deformation of membranes
tuators are _S|mple_to manufacture, compact, and have a hi@\'&luding torsion.

power-to-weight ratiof5]. . o _ Kydoniefs [18] investigates axisymmetric deformations of an

Biologists have found crossed fiber arrays in animals as diverggially cylindrical membrane reinforced by two families of inex-
as squids|6], and worms[7]. They observe that if the fiber angletensible fibers with fixed fiber angles. [29], Kydoniefs extends
(relative to the IOngitudinaI aX)SiS Sma“, the structures Contracthis previous work to include fiber ang|es that vary with deforma-
when pressurizede.g., lizard tongugs [8]. At an angle of tion. Matsikoudi-lliopoulou[20] combines fibef21] and mem-
cos(1#3)=54°44, the hoop and longitudinal stresses balanderane[17] solutions to obtain the solution of a pressurized cylin-
and increasing volume tensions the fibers without causing eithdrical membrane reinforced with one family of inextensible fibers.
contraction or elongation. This angle also provides the maximumThis paper combines the theory of Kydonief&8] and
enclosed volume for a given fiber length and produces the straviatsikoudi-lliopoulou[20] to generate and solve the static equa-
gest structure. Hence, 54°44s often used for fiber-reinforced tions for initially cylindrical elastic membranes with two family
pressure vessels and hosepipf8]. For wind angles above fiber reinforcement under inner pressure and axial load. The ac-
54°44 (e.g., starfish tube fedt]0]), the structure elongates undertuator shape and fiber and membrane stresses are calculated and
pressure. compared with experimental results.

A number of researchers have developed simple and/or empiri-
cal models of McKibben actuators. Chou and Hannafddd use
energy conservation to find the tension as a function of pressuye
and actuator length without considering the detailed geometric
structure. Based on virtual work theory, Tondu and Lop2z 2.1 Coordinate System. Figure 1 shows a McKibben actua-
extend the static modeling §11] to dynamic contraction includ- tor modeled by two families of inextensible fibers reinforcing an
ing friction between the fibers. elastic, isotropic, and incompressible membrane with uniform un-

Using a continuum mechanics approach, one may model teformed thicknesstg, . The fibers form constant anglese with
actuator as a thin elastic membrane with continuously distributéite generators of the undeformed cylinder. Under the applied in-
inextensible fiber reinforcement undergoing finite deformatiomer pressur® and axial force~, the polar coordinate®, 0, 7) of
Adkins and Rivlin[12] and Green and Adkin§l3] formulate the undeformed configurationCg) becomel(r, 6, 2) in the de-
finite deformation theory for thin membranes and solve some aférmed configuratiorfC). The meridional arc length & is & and

the angle between the tangentG@@nd thez-axis iso (see Fig. 2

Contributed by the Applied Mechanics Division ofif AMERICAN SOCIETY OF  The structure is axisymmetric, so
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, August r= I’(‘f) (1)
20, 2002; final revision, April 28, 2003. Associate Editor: M.-J. Pindera. Discussion !
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depart-
ment of Mechanical and Environmental Engineering, University of California—Santa z=27(§), 2
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months after
final publication of the paper itself in the ASME)URNAL OF APPLIED MECHAN-
ICS. 0=0. 3)
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| //\ T T T 2hq

a
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7 2R
F
N )0
Elastic tube
Fig. 1 McKibben actuator model
2.2 Inextensible Fiber Constraint. Let ds, andds be the cosB=\, cosa. (11)

elements of length in the undeformed and deformed state, respec- _ _ )
tively, anda be the angle formed bgs, with a generator in the 2.3 Stress Tensor. Kydoniefs [21] and Matsikoudi-

undeformed state. From geometry, lliopoulou and Lianig17] found the stress tensor solutions for the
) inextensible fibers and the axisymmetric membrane deformation,
E —\2cofa+\2sira ) respectively. The stress tensor solution for McKibben actuators is
dsy 1 2 ' the sum of the fiber and membrane stresses. We assume the mem-
where brane has a Mooney strain-energy functig¥(l,,l,)=C[ (I,
—3)+TI'(I,—3)], whereC and I" are material parameters. We
dé assume that the fibers are embedded in the cylinder, forming an
)\l:d_‘ (5)  orthotropic material wher&,; and\, are the stretches of embed-
K ded meridional and azimuthal material curves, respectively. The
r components of the Cauchy normal stress resultant are
=T (6) .
R 27\, SiP N\, 1 '\, 1
n=—————+—|1- |+ —( \2= |, (12)
The strain invariants are ! A1 A1 NN N\ TS
l1=AT+NG+AS, (7) 2 cofa 1 ( , 1|, T ()\27\2 1 )
n,= - - ,
I 1 l 1 8 2 )\2 )\l)\z 1 )\%)\g )\1)\2 172 E
=tte ®) (13)
o _ - ny=0, (14)
where the stretch ratia;=1/A;\, due to the incompressibility
assumption[13]. In the fiber directionsa=« and, due to the
inextensibility assumptiorgs=ds,. Substituting into Eq(4) re-
sults in
l:)\i cog a—H\g Sir? a. 9)
To determine the deformed fiber ange we use geometry and ki T.ra?sﬁuc&? /
inextensibility to obtain PFCY —»
dé dy
= ——=dsy=—— 1
ds cosp dso cosa’ (10) bt
SO
DEFORMED (C)
¢=0
4
r
n =0 UNDEFORMED (CoN\$ =L 1=Lo
n )
R
O 2(L) z n
Fig. 2 Coordinate system definition Fig. 3 Experimental setup
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Fig. 6 Midpoint radius enlargement versus pressure (ly=5T
=0.0,&=30 deg): f=0.0 (solid ), f=1.0 (dashed ), f=2.0 (dotted ),
f=5.0 (dash-dotted ), and experiment with f=0.54 (*). Circled
point is shown in Fig. 4.

Fig. 4 Actuator shape (I'=0.0,a=30 deg,/;=5.0): unde-
formed (thick solid ), f=0.0 and p=3.2 (thin solid ) and experi-
mental (*), f=5.0 and p=6.327054 (dash-dotted ), and f=5.0 and
p=0.9538596 (dotted )

wheren,; andn, are the circumferential and axial stresses, respec- dr _
tively, ng is the shear stress, amg- T/2CA is the nondimensional A dn, +B7+D=0, an
fiber tension withT and A the fiber tension and spacing, respec-
tively. Although the fiber spacing is used to nondimensionalize Where
the fiber tension, the fibers are assumed to be continuously dis- 1
tributed in the membrane. A(\y)=2u"*cosq, (18)
2.4 Equilibrium Equations. The equilibrium equations for AN cosa S a
a membrane undergoing large deformation are B(\,)=— 2—ulﬁ (19)
d(Azny) 4 4 5
a, v (15) 3ucod a+Tud\j—\ju?—3\3cod a
+3M5cof a—TuPA5+Tu\3 cod a
N COS"+n2 d(cosa) =p, (16) —3I'\3cod a+3I'\5 cos a+T'u? cod a
)\2 d)\z D()\Z): A:;US/ZCOSC( !
where the nondimensional pressyre PR/2C, [20]. (20)
Substitution of Eqs(12)—(14) into Eg. (15) produces
asi2-19 -Usp u=1-\}sira. (21)
3
o} L L 30 L L il L L L I
0 5 10 15 0 05 1 15 2 25 3 35 4

p
Fig. 5 Strain versus pressure (a=30 deg, f=0.0,/;=5.0): solid

(I'=0.0), dashed (I'=0.20), dash-dotted (I'=0.35), and aster-
isk (Experiment ). Circled point is shown in Fig. 4.

Journal of Applied Mechanics

Fig. 7 Fiber angle distribution (I'=0.0,&=30 deg, f=0.0):
solid (/p=5.0,p=3.2), dotted (/,=5.0,p=17.7), dash-dotted (/,
=2.0,p=3.5), and dashed (/,=2.0,p=18.5)
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Equation(17) is a nonlinear ordinary differential equation with

the independent variabke, and dependent variabl€\,). Equa-

8IAS—TAS+16N5—4NS— 16\ 5+27
+ 24 N5+ 121" — 48C3\ 5+ 12C 30 5

tion (17) can be solved analytically, but in most cases the expres- (\y)= —— 5 . (22)
sion for 7(\,) is very complicated. For the following fiber angles, 3\3(A3—4)
however, the expressions are relatively simple«At30 deg, at =45 deg,
|
N 24T NS— 9T NS+ 1605 — 1205— 160\ 5+ 3+ 4T — 16C 4\ 5+ 12C 45\ 5 -
T( 2)_ )\3(3)\3_4)2 , ( )
at a=cos(1#3)=54°44,
N 36INS— 128 — 27T\ 5+ 2705 — 18\ 5+ 9T+ 3I'A 34+ 9— 36C5,\ 5+ 24C5 0\ 5 o
7(N2)= 4)\5(2)\5_3)2 ) (24)
and ata=60 deg,
N ATNS—TAS+4N3— 20— AT N4+ 3+ 20 + 2T \2—8Ce\ 3+ 4Ce\ 5 -
7(N\p) = 2)\3()\3_2)2 ) (25)
35 ‘ . : . . whereCsp, Cu5, Cs4, andCgq are integration constants. Substi-
T —— tution of \»(0) into Eqs.(22)—(25) relates integration constants to
3 T 1 7((0)).
77777777 \ 2.5 Boundary Conditions. Using symmetry and force bal-
285 T - \ 1 ance conditions, the boundary conditionstatL and¢{=0 are

0.5 1 L L L L I !
0 .

Fig. 8 Fiber n; (solid ), membrane n, (dashed), fiber n, (dot-
ted), and membrane n, (dash-dotted ) stress distributions (I
=0.0,a=30 deg, f=0.0,/;=5.0,p=3.2)

AL (%)

p

Fig. 9 (a) Strain versus pressure,

(b) midpoint radius enlargement versus pressure

No(L)=1, (26)

\,(0) f
ny(0)= 2= 5 vl 27)
a(0)=0, (28)

wheref =F/47CR. Equation(26) establishes the integration limit
No(L). From Eq.(16), we have

d(\,n, coso)

o (29)

:p)\z

Integrating the above equation and using &9) to determine the
integration constant,

100 - / T

so || .

60

AR (%)

40

p

(ly=2.0T

=0.0,/=0.0): @=10.0° (dashed), @=20.0 deg (dotted ), «=30.0 deg (dash-dotted ), and @=40.0 deg

(solid )
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Fig. 10 Strain versus pressure (I'=0.0,&=30 deg, f=0.0): /,
=1.0 (dashed), /,=2.0 (dotted ), /;=3.0 (dash-dotted ), and /,
=5.0 (solid )

L 30
coso= 2_r12 o, (30)
Using Eq.(28),
2n,(0) 2f
=—- : 31
A2(0)  N5(0) 1)
From the geometrical shape of the cylindrical membrane, V\t/
know
lo_ﬁ__ﬁz(o))\lsino' (32)
Z(X\) A2
Z(\p)= =— cotod\,. (33)
R A5(0)

Unfortunately, the integrands in Eq82) and(33) are singular at
N2=X,(0) (¢=0.0). The Fortran IMSL library function QDAGS

is used to integrate the singular functions.

5 10 15

Fig. 11 Strain versus pressure (/,=5I=0.0,=30 deg): f
=0.0 (solid ), f=1.0 (dashed), f=2.0 (dotted ), and f=5.0 (dash-
dotted )

Journal of Applied Mechanics

35 1 T T T T T
30+ e —— — T T

AL (%)
S

2 4 6 8 10 12 14 16 18 20

Fig. 12 Strain versus pressure (/,=2.0,'=0.0): dashed («
=20.0 deg, f=1.0), dotted (a=20.0 deg, f=5.0), dash-dotted
(a@=40.0 deg, f=1.0), and solid (@=40.0 deg, f=5.0)

2.6 Numerical Method. The solution procedure starts with
a given deformed midpoint radius,(0) and a trial value of
7(\5(0)). Equation(17) is integrated to obtaim(\,). Stresq, is
calculated from Eq(13) and\; from the constraint Eq(9). The
corresponding pressupeis determined from Eq.31) and substi-
tuted into Eq.(30) to solve forg. Finally, the initial lengthl, is
integrated from EQq(32). The trial 7(\»(0)) is adjusted according
gthe difference between the desired and calculgied

3 Numerical and Experimental Results

3.1 Experimental Setup. Figure 3 shows the experimental
setup used to validate the theoretical model. The McKibben ac-
tuator is mounted between a pivoting rod load and the top support
plate. Proportional flow control valveg®FCV3 inlet/exhaust air
to/from the actuator. Pressurization of the actuator causes it to
shorten and rotate the rod. A 4000 counts per revolution encoder
senses the rod rotation angle. A digital camera photographs the
deformed shape of the actuator. The experimental parameters are

120 o — , ; ; ; ;

100} 1
80} g

60 i

§ 4
o i
<
O |
-60 7
-80 - n 7
-100 L 1 L I L L I L

Fig. 13 Locked (B=54°44") strain AL* (solid) and midpoint
radius enlargement AR* (dotted ) versus initial fiber angle a.
Numerical results for large  p: AL (*) and AR (O).
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Fig. 14 (a) Strain versus pressure;
=0.0): =60 deg, /,=1.0 (solid ), and a=75 deg, /,=0.5 (dash-dotted )
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membrane stress to be slightly negative over much of the length.
In practice, the fibers can slide on the membrane, potentially re-

P=10-60 psi, lieving these compressive stresses.
10=5.0, p=05-3.2, «a=30deg, I'=0.0, f=0. 3.4 Parameter and Loading Effects. Figure 9 shows the
(34) effect of initial fiber anglg @) on the pressurization response. The

3.2 Experimental Validation of Theoretical Model.

Fig-

maximumAL and AR increase with decreasing fiber angle. At

low pressurizationf<0.9), however, thee=30 deg case outper-
forms thea=10 deg andv=20 deg cases. Thus, the selection of
initial fiber angle depends on the maximum pressure available or
V%ossible due to stress constraints.
igure 10 shows that the initial length of the actuator greatly
) - : affects the achievable strain. Ag=1 actuator has only one half
tbhees(:rﬁ:'acglhggt?hg)fa ??5 (():.jr’vgnv(\j/it%3;15'm2>]<?meuxneegrrpoerné?l S%Et%f theAL of anly=5 actuator. This can be explained using Fig. 7.
However. if we assam-E—O the error increases by 10% Figur;-the boundary layer thickness does not scale proportional to ac-
’ L - . - uator length. Thus the maximum deformed fiber angle is smaller
e o e et daff! e same aplie pressre and th resuiis maler
: P Figure 11 shows that applied loads increase the actuator length

o . o ar .
a?tﬁﬁs,[:‘% \/I\:Ir:mg %)(f) é’xwgnrg;tt;egéiﬂ?g::cutrxg f(ipoo'gég dhl'irsléo decreasé\L). The actuator shape changes with applied loading.
P Y prop I Fig. 4 the applied load reduces the diameter and eventually

accurately predicis the experimental performance of a MCKibb%%cks down the actuator for sufficiently largeelative to the

actuator. The remaining figures explore the interesting physics % yplied pressure. Figure 12 shows that actuators with small initial

hind McKibben actuators and predict the effects of parameters af : :
inputs on the actuator response. iber angles can support higher loads. In both loading cases shown

(f=1.0 andf=5.0) thea=20 degAL is much greater than the
3.3 Mechanics of Pressurization. Figure 5 shows the a=40 degAL.
McKibben actuator contracting with increasing internal pressur- 35 Locked Solutions. If we neglect boundary and mem-

ization. Fora=30 deg, the maximuniL approaches 30%. Simi- brane effects and assume the fibers are locket=ad, we obtain

larly, the maximum radius change in Fig. 6 approaches 60%. This ) o .
: ; ; ; ﬂ}% locked solution3=54°44. From Egs.(30) and (16) with o
saturation effect can be explained by Fig. 7 showing the deformet and the locking conditionl(cos)/dh,=0, we obtain

fiber angle distributiorB(z). At relatively low pressurizationg
=3.2) there is a broad boundary layer where the fiber angle in- .
creases from the boundary conditiar+ 30 deg toB=49 deg at . L
z=0. At high pressurization {=17.7), the boundary layer N2=>% =%
shrinks andB saturates below the lock angle of 54°4Zhus,AR
andAL saturate as boundary layer shrinkage requires higher pregere ()* indicates a locked solution. Substitution of E¢&2),
surization to obtain smaller incremental dimension changes. (13), and(11) into Eq. (35) yields

Figure 8 shows the circumferentiah{) and axial f,) stress

ure 4 compares the theoretidablid) and experimental*) actua-

tor shape fop=3.2. The theoretically predicted change in lengt
(z(L)=3.87) and maximum radius (0)=1.51) agree within 3%
and 2% to the experiment, respectively. Figure 5 shows se
experimental data points &fL =1,— 2/l versusp compared with

(35)

distributions for the fibers and membrane. The circumferential and 2 cog Bg* =1—cog B*, (36)
axial fiber stresses are at least 2.5 and 10.0 times larger than the

corresponding membrane stresses, respectively. This shows ﬁ]a}%*:cos‘l(llﬁ):54°44 From Eq.(11), we obtain

the membrane primarily acts to apply the pressure loading to the ' e

fiber network. The response to pressurization is primarily gov- "

erned by the fiber equilibrium conditions. This also explains why «_COsp 37)
the membrane propertiés.g.,I") have little effect on the pressur- 1" cosa ’

ization response. The fibers and membrane are constrained to
move togethefi.e., no relative motionand this causes the axial Substitution of Eq(37) into the inextensibility Eq(4) produces
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In conventional analyses of composite laminates, the assumption of perfect bonding of

) T.Y. Ng adjoining layers is well accepted, although this is an oversimplification of the reality. It is
School of Mechanical and Production possible that the bond strength may be less than that of the laminae. Thus, the study of
Engineering, weak bonding is an interesting focus area. In this study, an elastic bonding model based
Nanyang Technological University, on three-dimensional theory of elasticity in a layerwise framework is used to study com-
Nanyang Avenue, posite laminates. The differential quadrature (DQ) discretization is used to analyze the
Singapore 639798 layerwise model. The present model enables the simulation of actual bonding stress states
Mem. ASME in laminated structures. The interfacial characteristics of transverse stress continuity as

well as the kinematic continuity conditions are satisfied through the inclusion of the
N.R elastic bonding layer. The present model is employed to investigate the free vibration of
J. N. Eddv thick rectangular cross-ply laminates of different boundary conditions and lamination

Advanced Computational Mechanics Laboratory, schemes|[DOI: 10.1115/1.1604838
Department of Mechanical Engineering,

Texas A&M University,
College Station, TX 77843-3123
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1 Introduction refining the accuracy of solution for the distribution of stress com-
) o _ ponents at the ply level. Noting the restrictions of the traditional
1.1 Background. Composite materials in the form of lami- pjate and shell theories, Reddy—3] proposed and advanced a
nates have been utilized in a broad range of engineering striguerwise theory that is based on independent displacement fields
tures, including space, underwater, and aircraft structures, elgg- each material layer; the theory allows a possibility for accom-
tronic and medical components, and high-end sporting equipmegojating the interlaminar kinematic characteristios., continu-

ent materialgor orientatior) are bor)deq together to fprm a Igmi- ate. The layerwise theory is a special form of three-dimensional
nate, and_ the resulting 'am'f!ate IS, 1N ge_neral, anisotropic. T ory in which the variation of the field variables in the trans-
anisotropic nature of composite laminates is responsible for coqs,

plex and coupled modes of mechanical response. This in turp se(or thicknes,_$directi_on is approximated using.a des_ired de-
leads to difficulties in the analysis of laminated structures, es%::e of polynomials. This has also been further investigated by

: : : >FSpldatos and Watsdd, 5], Soldatos and Li(i6], and Messina and
gfég’rat\glr;en interlaminar - stresses  have to be  determin oldatog7]. Srinivas and Ra@8] adopted the three-dimensional

Laminated composite plate and shell structures are often aﬁf&@ory of elasticity in the study of vibration of laminated rectan-

) . i ; -gular plates and results were presented only for simply-supported
lyzed using two dlmensmnal plate and shell t_heorle_s. The classi ;Iuare sandwich laminates, and these are widely cited as bench-
plate theory(CPT) is based on the assumption of infinite trans:

iaidity in the t direcii d therefore it mark solutions. Three-dimensional solutions were also obtained
\éerse L'g'b' yI'(T el radnsve:jse_blre(_: 'O?’ and there oredl O\Qerprﬁ)'r other boundary conditions, see Savoia and Rd@dlyand Teo
icts the buckling loads and vibration frequencies and underpigsq | jew[10]. A full three-dimensional theory is computationally
dicts the deflections, see Reddy. The first-order and third-order  eypensive to be efficient for most practical structures.
plate theories, which include the effect of transverse shear deforag stated earlier. in the two-dimensional analysising equiva-
mation, provide a crude remedy to this situation. All twojent single-layer plate and shell theodies laminated composite
dimensional plate theories are based on the assumption of perfagictures, the interface between layers is always assumed to be
bonding between layers, and the laminate is treated as if it is garfectly bonded, i.e., the displacements on the interface are
equivalent single-layer plate. These equivalent single-layer thesingle valued. Since the ply interface is mainly dominated by the
ries (ESLT) directly evolved from plate theories used for singlelow shear modulus matrix material, with possible additional de-
layer theories, and they still leave a lot to be desired in terms f#ctive bonding occurring during manufacturing or its service life,
the interface may not be perfect. It has been recognized, see Lu
*To whom correspondence should be addressed. and Liu[11], that low shear moduli of polymer matrix materials
" Comf'bme"Eby the Apg"ed '\f)?Cha}”'C_S D;]V'SAOS[‘MOSEAMER'CANASOC'ETYMOF have significant effects on the transverse shear deformation, and
ECHANICAL ENGINEERSfor publication in the URNAL OF APPLIED ME- . . .
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 4,C0nsequent|y the |nterfa(_:|al Stress_and deformation can strongly
2002; final revision, Feb. 5, 2003. Associate Editor: D. A. Siginer. Discussion on ti@ffect the service behavior of laminates. In order to accurately
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmeniiriedict the performance of composite laminates, it is necessary to
Mechanical and Environmental Engineering, University of California—Santa Bak; ; ; ; ; _
bara, Santa Barbara, CA 93106-5070, and will be accepted until four moniégcoum for the bondmg layer n a.n a_pproprlqte way, 1.e., the tra’?S
after final publication of the paper itself in the ASMEDURNAL OF AppLIED ~ VerSe shear effect and the continuity requirements of both dis-
MECHANICS. placements and interlaminar stresses on the interface. One of the
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Fig. 1 Laminated plate structure with an elastic adhesive bonding layer

pioneering works in the study of imperfectly bonded interfaces in analytical approaches, numerical methods, supported by dra-
composite structures was by Newmark et[&R], who developed matic advances in computational speed and storage capability,
a linear shear slip in the layer interface by means of the Eulgrovide almost the only effective tools for the solution of compli-
Bernoulli beam theory. Toledano and Murakdrh8] developed a cated engineering problems. The finite element me{k&) is a
laminate theory that accounts for both transverse shear effect aredy popular numerical method for the analysis of a variety of
interlaminar shear stress continuity to study interlaminar effectsngineering problems. Without the simplifications of a ESLT, a
Elasticity studies of sandwich beams with imperfect bonding wetaminate can still be modeled with three-dimensional elements
also presented by Rao and Ghd4H]| and Fazio et al[15]. through standard FEM, but an excessively refined in-plane mesh
There are three types of weak bond models: a shear model witbuld be required because the thickness of an individual lamina,
slip between layers; normal separation model with an opening a large extent, dictates the aspect ratio of the elements, thus
between layers; and general weak bond that combines bothre$ulting in adversely high computational requirements. To take
these models. The main feature of weakly bonded layers is thdvantage of the full potential of composite materials, accurate
inclusion of a certain displacement jump, see Lu and[llili, Liu  tools of analysis and design methodologies of general applicabil-
et al.[16], and Soldatos and SHU7], at an interface, and con- ity are crucial. There is therefore a real incentive to develop more
necting it with the interlaminar stress through an appropriate copewerful modeling tools for composite materials in engineering
stitutive relation. Due to the high interlaminar stresses and weafplications. The differential quadratu2Q) method is one such
bonding between composite layers, delamination can occur at fhr@spective numerical alternative originated by Bellnjad] to
ply interface, which in turn reduces the integrity of structuresolve linear and nonlinear differential equations. The basic idea of
causing severe structural degradation. Recent works, such as ttbseeDQ method is that the partial derivative of a function with
of Willians and Addessi$18], Willians [19], and Shu and Solda- respect to a variable at a given discrete point can be approximated
tos [20], extended the concept of shear slip in weakly bondezs a weighted linear sum of the function values at all discrete
laminates towards modeling general delamination. points in the domain of that variable. Details of the interpolations
1.2 Rigid, Weak, and Elastic Bonding. Two laminae may E%?thte;a[g%l]]zr?él(\jlvmorl]rgt (él:tzebutlon schemes can be found in
. . . . . peated here.
be bonded together in two different ways: glue bonding and gjnce its introduction, the DQ method has been widely applied
warm-pressed bonding. In both, a new layer is formed betwegn ,ario,s mechanics problems such as bending, vibration and

the original layers. The rigid bonding model prohibits transversguckling of beams, columns, and plates. The successful imple-

strain while ‘imposing the continuity of transverse StresseRientation of this method have been widely reported in a number

whereas the weak bonding model, and also the present elagliG, pjications; see Bert et dl24], Jang et al[25], Farsa et al.
bonding model, tolerates shear slip and transverse opening agg Han and Liew[27], and Liu and Liew[28]. For a review of

the lamina interface. Although usually extremely thin, the exigpe geyelopments and applications of the DQ method in compu-
tence of a bonding layer causes the rigid bonding model to yielthi,na| mechanics one may consult the article by Bert and
incorrect stress distributions along the lamina interface a alik [29]

through the thickness as well. The weak bonding model is a sim-
plified model that relaxes the rigidity in the rigid bonding model. ) ) )
The rigid bonding models is obtained when the stiffness of thd Interface Modeling of Elastic Bonding

weak bonding model tends to infinity. However, the weak bonding 21 Physical Model of Elastic Bonding. Consider a rectan-

model excludes the effect of in-plane deformation of the bondin lar lami dof | h: bei he thick f
layer on the global behavior as well as the stress distributiél‘ ar laminate composed o, fayers,h; being the thickness o
e ith lamina, as depicted in Fig. 1. For two adjacent laminae

through thickness. ) I - . : .
In this paper, the authors present an elastic bonding modgpnded together, the material entity in the interfacial region of the
' laminae is considered independently as an isotropic or anisotropic

analogous to that developed in Liew et f21] for the bending > X .
problem. In this model, an elastic material layer acts as the phy@Yer of finite thickness. It will be termed as the natural layer.
ince such a layer will consist of the matrix material with ran-

cal bonding entity between two laminae. This model will amen | ed fib his | b bl ded
some of the drawbacks of existing weak and rigid models. In tff@M!y mixed fibers, this layer may be reasonably regarded as

present work, details of this model, which is based on a Iayerwi?@\}\;_oﬁ'_c' bonding ch stics. th | laver i q
framework and utilizes differential quadrature discretization, wijl VIth Its bonding characteristics, the natural layer is assumed to

be presented for free-vibration analysis of thick laminated cross¢ r(ijgi_dly bofnded to the neighboring Ian;inaeaar;d thehco_ntinl;ity
ply composite plates. conditions of transverse stresses are enforced along the interfaces

between the natural layer and the neighboring laminae. It must be
1.3 Differential Quadrature (DQ) Method. Circumvent- emphasized, however, that the existence of a distinct thin material
ing the difficulties of often very complex mathematical derivatiomegion connecting two adjacent laminae presents new challenges.
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Both the rigid and existing weak bonding models are oversimpldonding modelsee Fig. 1b)). At the interface between the lower
fied to that of a three-dimensional linear spring linking two matdamina and the bonding layer, the continuity conditions are
rial points initially on opposite sides of the interface via constitu-

. . - . . i BL

tive relations describing the displacement jumps and U(z_l) U(z :

corresponding stresses. The present elastic bonding model fully A =1 ABY i=1,2,... N —1 8)
incorporates the natural layer, integrating it into the governing Q) 7BL)

equations, thus sharply distinguishing from previously existing 27 top #Y 7 bottom

models, not only in concept, but also in physical meaning. Fuind at the interface between the bonding layer and the upper
thermore, the concept of elastic bonding allows detailed analygignina, the conditions are

of the bonding effect through examining the mechanical param-

etersE, v, p, andh of the bonding layer. olBY oty
. . . @ul  _) i+ _
2.2 Theory of Elastic Bonding Model. To establish a the- T2x =\ Tax i=2,...NL=IN.  (9)
oretical basis for elastic bonding, three-dimensional theory of ot o 7o Y ) patiom

elasticity is integrated within the framework of the layerwise o o
theory. We first define the displacements in thgy and Where the superscriptsori+1, indicate the layer numbers, and

zdirections,U; , V; andW;, of theith layer as BL refers to the bonding layer.
All the governing equations can be expressed by the derivatives
Ui=ui(x,y,2), Vi=vi(xy,2), W;i=w(Xy,2) of displacements through the DQ methodology, and satisfied nu-

merically. It should be noted that the kinematic equations,(Bqg.

1=1.23...N.. @ constitutive relations, Eq3), equations of motion, Eq4), and
The strains in théth layer are interlaminar continuity conditions, Egé8) and (9), are all three-
dimensional in nature. These equations are based on the theory of
8(i>:‘9_Ui sza_vi e(i)zﬁ_wi elasticity, and not on plate theories. Thus the numerical results
X ooox Y gyt TR oz obtained from this model are numerical analogs of exact three-
(2)  dimensional solutions. The DQ method is(element-freg nu-
i Y N NV W W dUs merical method that provides the flexibility of arranging the grid
YTy T e ez Ty YT ox T oz points (not elementgin the domain of interest.
- . Substituting Eq(2) into Eq.(3), and assuming orthotropic ma-
The constitutive relations are terial behavior, we obtain
{nya'y,O'ZaTyzysz,Txy}T=[Cij:|’{8x,Sy,Szr'}/yzv'}’zxr'}/xy}T(S au ) IW

(Tx:clla"‘(:le‘FCls_ﬁz ,
where oy, o,, o, are normal stresses,,, 7,4, T, are shear

stresses, arﬁij (i,j=1,2,...,6)denote the stiffness coefficients. u Jv IW
The equations of motion for each lamina and bonding layer are oy=Car +C22@ +Cor—
2 2
9% I | Oz U 00y Ty ITyz OV o ow
ox | ay | oz a2 ay x| oz o2 @ 07=Car -+ Csz@ +Cag (10)
do, 0T 0Ty, W v ow oW du
9z ax | ay o2 7y2=Cad 57+ Gyt T g T gz
Herep denotes the mass density of the layer. Equatiyrcan be au  du
written in terms of the lamina displacement field. Tyy= Ceg 7y + x|

It is important to note that the bonding layer is so thin that it is
deemed unnecessary to establish the true displacements, straingher following nondimensionalization is used:
stress distributions within it. However, to reflect the dynamic ef-

fect of bonding layer on the overall response of the laminated X _y _Zz

structure, three sets of grid points within the bonding layer, two X= a Y= b Zi_h_i

surface sets and one set in the middle of the layer thickness are (11)
used. At the two surface sets, continuity conditions of transverse — U — v - w

stresses are enforced, and equations of dynamic equilibrium, Eq. U=— =— W=

(4), are satisfied at the midpoint set.

_For simply-supported laminate the boundary conditions a{gherez; is the thickness coordinate of tith layer anda andb
given by are the length and width of the laminate, respectively. Further, let

w=o,=1,,=0, atthe edges ok=constant

©®) H=3 h+(N.—1)-h
w=o,=1,,=0, atthe edges of=constant (12)
and clamped edge conditions are b B h; b H H
u=v=w=0, at the edges ok,y=constant (6) a Poa Uy Y
with the surface conditions written as The three normalized equilibrium equations for tbe lamina

' (i=1,2,...N,) interior have been given in Liew et d23] ex-
0,=1,,=Ty;=0, at bottom and top of laminate.  (7) cept that the right-hand sides of the current dynamic equations are

Obviously, the interfacial characteristics of rigid bonding, i.e.r,low' respectively,

continuity and discontinuity of displacements, strains and stresses, o7 Ny 20

; X . o°U Vv I*W
are no longer valid, and the corresponding constraints are trans- -b>—-, p-a®>— and p-aH, . (13)
ferred through the material bonding layer based on the elastic at? at? at?
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The support conditions in Eq&5) and(6) can also be normal- Ny o

ized. For simply-supported edge conditions, we have C{Zil}k—l ]k O(Xe,Y1,Z HC{'}E Ag(ll]mv(l X Y Zp)
w=0, Cllau +C1219V Clsﬁw 0, . —
B > Z4 +c{2'§Hiq21 AWO(X;,Yy,Z9)=0
19U Vv
GG(B_pWJerW) =0 at the edgex:constant(l%) or X
NN oW CHL D, ARLUD (X, Yy ,zf>+c{'}2 AR V(XY Z0)
W=0, (321 +C22 ngﬁz =0, k=1

Nzi .
+C{2‘3}Hi2 AFWI(X;, Yy, Zg) =0,

C ! BU+B &V =0 t th d = tant
66 B_pW x|~ 0 at the edgey=constan
and for clamped edge conditions, we have {I} pE A[l] V(')(Xk Y1.Z0)
U=V=W=0 at the edgex,y=constant. (18) N
1 Jd3 —
The normalized DQ equilibrium equations at a lamina interior +— 2 AP U(X; Y, 20 |=0
grid point or bonding layer middle point have been given in Liew Bp =1

et al.[23] except that the right-hand sides of the current dynamig;
equations are now, respectively, N

p bZU( (Xk me :Zr ,t) p azvftlt)(xk meer ,t), } Bkal Ag(Ji]kV(l)(xk 'YM 'Zf)

and  p-aZ HWQ (X, Y. Z, ). (15) 1N
_ [l] U
Similarly, the normalized simply-supported edge conditions are B zf AVNmU ™ (X}, Y, Ze) | =0
given by
0 ] at the edges ofy=constant. (18)
(Xy 0r Xy, ¥, 20 =0 1=1,2,... Ni; The normalized clamped edge conditions take the form
9=12,...Ny; f=12,... N, UD(Xy or Xy, Yg.Zp)

=VO(X; or Xy, Yg.Z)=WI(X; or Xy ,Yq,Z)=0

y
{'}Z A[”u(')(x Yg.Z0)+CH > A[Ylgmv“)(xl,vm,zf)
mot i=12,...No; g=12,... Ny,

N .
- 1 f=1,2,... N, at the edges of constant
+ClH Y, AWO(X,,Y,,Z4) =0 _ Nai g (160)
a=1 U@(Xx;,Y; or Yn, Zo)
or —. —.
| =Vvi(X;,Y; or YNy,zf)zvv“)(xj Yy or Yy, Zp)=0
y _ .
{'}2 AR UK, Yg, Zo+ClE Y AR VO (X, Y Zy) i=1,2,...N_; 9=12,... Ny,
m=1 f=1,2,... N, at the edges of constant.
Nzi The normalized surface conditions at interior grid points
2 [”W(') (Xk,Yq.,Zg)=0, (Xx,Ym0) and ,,Y,,,H) for the bottom of the bottom layer
4= and the top of the top layer, have been given in Liew ef28]
N, and will not be repeated here.
clillB E ._“)(X Y,.Z)) The normalized interlaminar continuity conditions at interior
Cés| B2 9 grid point (X,Ym,H]), whereH! is the thickness coordinate at
N, the interface between the lower lamina and bonding layer, are
. 2 AHUO(X,, Y, Z0) | =0 — e
By =1 {"2 AU G Yo, HD+ CELD, AV V(X Y HD)
&=
or N
il S T +CBH; 2, A WO (X, Y Zp)
Cié| By, 1 AR jV (X, Yg,Zs) f=1
i= 3
H —
N [1]
1 . [ v)— > ALLWX, Y. Z))
+ B—pm:1 Ag{lgmu(l)(xK'mezf) =0 (1+ V) (1 21/ h f=1 m

NX
v El ALK, Y HT)
e

|
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at the edges ofx=constant

wWi(X;,Y; or Yn,Z0=0 =12, Ni;
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Table 1 Material properties used in the examples

Example 1
E,/E,=0.543103
E /E =0.23319
ny/E =0.262931

E,,/E,=0.010776
G,,/E,=0.159914

E,/E,=0.530172
E,,/E,=0.098276
G,,/E,=0.26681

Example 2
E,=55.8979 E,=13.7293 E,=13.7293
ny:0.277 v,,=0.068 vy,=0.400
G,y=5.5898 G,,=5.5898 G,,=4.9033
Examples 3 and 4
E,/E,=20, 40 E,=Ej;
G1,=G13=0.6E, G,3=0.5E,
V1= v13=0.25 v,3=0.49
Ny—1
i+1
G-|Hi.y 5, QE AW DX, Y HE, )

b3
Hz Z3fv(xk Y, Zs)

i |+1
=Ci | Hisa EA VDX, Y HE, 1)
Nzi+1 .
; |
5 2 ABVITI (X Y Z0) |
i+1 f=1

Here G denotes the shear modulus of bonding layer.

In the next section, several examples of the free vibration of
thick laminates with different edge conditions are presented to
demonstrate the accuracy and efficiency of the present model and
computational methodology.

3 Results and Discussion

In the first example, we consider the vibration three-(@y/
90°/09 simply-supported square sandwich plates, see Srinivas and
Rao[8]. The moduli, and the properties of the surface layers are
listed in Table 1. The thickness of the top and bottom plies is
taken to be one tenth of the total thickness of the laminate; and the
side-to-thickness ratio is taken to be 10. The through-thickness
mesh consists of three grid points that describe the transverse field
in the top and bottom plies, and five grid points are correspond-
ingly used for the core layer. A convergence study is carried out
with respect to the in-plane grid point distribution. From the re-
sults shown in Table 2, it is observed that the convergence is rapid
and stable. The converged results were obtained witkx @ @rid
point distribution. Further, in Table 2, comparison is made be-
tween the frequency results obtained from the present three-
dimensional elastic bonding model and the rigid bonding model of
Srinivas and Ra¢8], where analytical solutions were presented.
Note that “DQR” refers to results based on the rigid bonding
model (without in-plane flexibilitie$, but using the present layer-
wise theory with DQ implementation. The results in Table 2 are
noticeably different from those of Srinivas and R&) stemming
from the modeling of elastic bonding layers. It appears that Young
modulusE of bonding layer has the dominant effect on the fre-
quencies. Further, the thickndssf the bonding layer has slightly
more significant influence as compared to the Poisson’s tatio
especially wherk is relatively larger. An important observation
here is that stable results can be obtained within a rather flexible
and broad combination of values of the material parameters.

In the second example, the free vibration of two-f0/90°)
and three-ply(0°/90°/09 square laminates with various thickness
ratios is considered, see Bhimaraddi and Stey86s The mate-
rial properties are listed in Table 1. The fundamental frequencies
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Table 2 Comparison of fundamental frequency ~ (normalized by pH?/E,,) of simply-supported

square sandwich laminates, [0°/90°/0°] (material properties are given in Table 1;  E,, is the
modulus of surface layers and  E,, is the modulus of the second layer )
9%x9 11X11
Eq1 /Eoy E h v 5X5 (grid) 7X7 (grid) (grid) (grid)
1 0.1 1073 0.03 0.043421 0.045008 0.045294 0.045366
0.3 0.043437 0.045018 0.045301 0.045371
5x10°4 0.03 0.043363 0.044952 0.045240 0.045312
0.3 0.043371 0.044957 0.045243 0.045315
1 1073 0.03 0.044268 0.045913 0.046208 0.046281
0.3 0.044485 0.046090 0.046373 0.046443
5x10°4 0.03 0.043789 0.045407 0.045700 0.045773
0.3 0.043899 0.045496 0.045764 0.045855
Srinivas and Ra¢8] 0.047419
{DQR} 0.047338
5 0.1 1073 0.03 0.071175 0.073025 0.073193 0.073209
0.3 0.071214 0.073077 0.073218 0.073233
5x104 0.03 0.070782 0.072597 0.072802 0.072815
0.3 0.070802 0.072667 0.072811 0.072827
1 1073 0.03 0.073166 0.075164 0.075209 0.075221
0.3 0.073702 0.075543 0.075663 0.075675
5x10°4 0.03 0.071796 0.073683 0.073827 0.073842
0.3 0.072072 0.073927 0.074060 0.074074
Srinivas and Ra¢8] 0.077148
{DQR} 0.076936

Table 3 Comparison of nondimensionalized fundamental frequency

of simply-supported two-ply square laminates
E,, is the modulus of the second layer, and
second layers, respectively )

(normalized by \pHY E,,)

[0°/90°] (material properties are given in Table 1;
h, and h, are the thicknesses of the first and

11x11 13X13
h,/h;  Hl/a E h v 7X7 (grid)  9%X9 (grid) (grid) (grid)
1 0.1 10 1072 0.05 0.063518 0.063837 0.063938 0.063954
0.4 0.063456 0.063814 0.063915 0.063930
5x10°3 0.05 0.063213 0.063573 0.063675  0.063692
0.4 0.063202 0.063562 0.063664  0.063680
50 1072 0.05 0.063620 0.063984 0.064087 0.064104
0.4 0.063583 0.063947 0.064050 0.064066
5x10°3 0.05 0.063283 0.063647 0.063750 0.063766
0.4 0.063265 0.063628 0.063731  0.063748
Bhimaraddi and Steveri80] 0.06572
DOR 0.065447
0.3 102 0.05 0.440447 0.440411 0.440342  0.440310
0.4 0.440308 0.440270 0.440200 0.440168
5x10°3 0.05 0.440095 0.440060 0.439991  0.439959
0.4 0.440027 0.439990 0.439920  0.439888
50 1072 0.05 0.440938 0.440931 0.440868  0.440838
0.4 0.440852 0.440837 0.440773  0.440743
5x10°3 0.05 0.440319 0.440315 0.440253  0.440223
0.4 0.440283 0.440269 0.440206  0.440175
Bhimaraddi and Stever80] 0.47275
DQR 0.46312
5 0.1 1072 0.05 0.068507 0.068824 0.068913  0.068925
0.4 0.068538 0.068851 0.068939  0.068951
5x10°3 0.05 0.068377 0.068693 0.068782  0.068795
0.4 0.068393 0.068707 0.068795 0.068808
50 1072 0.05 0.069078 0.069399 0.069487  0.069498
0.4 0.069243 0.069549 0.069633  0.069643
5x10°3 0.05 0.068668 0.068986 0.069074  0.069086
0.4 0.068752 0.069062 0.069149  0.069160
Bhimaraddi and Steveri$0] 0.07061
{DQR} 0.070604
0.3 10 102 0.05 0.464416 0.464359 0.464300 0.464283
0.4 0.464439 0.464380 0.464320 0.464303
5x10°3 0.05 0.464251 0.464194 0.464135 0.464117
0.4 0.464262 0.464204 0.464145  0.464127
50 1072 0.05 0.465295 0.465219 0.465156  0.465137
0.4 0.465577 0.465499 0.465436  0.465417
5x10°3 0.05 0.464705 0.464630 0.464566  0.464547
0.4 0.464844 0.464771 0.464707  0.464689
Bhimaraddi and Steveri80] 0.48536
{DQR} 0.48418
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Table 4 Comparison of nondimensionalized fi

pH?IE,,) of simply-supported square sandwich laminates
given in Table 1; E,, is the modulus of the second layer, and
h,=h,lhy=h,/h3)

of the first, second, and third layers, and

undamental frequency (normalized by
[0°790°/0°] (material properties are

hy, h,, and h; are the thicknesses

11X11 13%X13
h, H/a E h v 7X7 (grid)  9X9 (grid) (grid) (grid)
1 0.1 10 1072 0.05 0.068544 0.068837 0.068919 0.068932
0.4 0.068529 0.068817 0.068897  0.068909
5x10°3 0.05 0.067942 0.068235 0.068319  0.068332
0.4 0.067935 0.068225 0.068308 0.068321
50 1072 0.05 0.068955 0.069265 0.069351 0.069365
0.4 0.069078 0.069376 0.069459  0.069472
5x10°3 0.05 0.068139 0.068445 0.068532  0.068546
0.4 0.068202 0.068502 0.068586 0.068600
Bhimaraddi and Steveri80] 0.07304
R} 0.073006
0.3 10 102 0.05 0.447945 0.447932 0.447916  0.447926
0.4 0.447624 0.447604 0.447585 0.447594
5%x10°3 0.05 0.447134 0.447123 0.447106 0.447116
0.4 0.446977 0.446960 0.446941  0.446950
50 102 0.05 0.449196 0.449250 0.449254  0.449275
0.4 0.449376 0.449407 0.449405 0.449422
5%x10°3 0.05 0.447696 0.447755 0.447759 0.447779
0.4 0.447807 0.447842 0.447840 0.447857
Bhimaraddi and Steveri80] 0.49119
DQR] 0.48923
5 0.1 102 0.05 0.060645 0.060966 0.061083  0.061115
0.4 0.060769 0.061076 0.061188  0.061218
5x10°3 0.05 0.060141 0.060457 0.060574 0.060606
0.4 0.060204 0.060512 0.060627 0.060658
50 102 0.05 0.062401 0.062772 0.062897  0.062929
0.4 0.063062 0.063373 0.063480  0.063506
5x10°3 0.05 0.061019 0.061373 0.061497 0.061531
0.4 0.061362 0.061681 0.061795 0.061825
Bhimaraddi and Stever80] 0.07424
{DQR} 0.073300
0.3 10 1072 0.05 0.426236 0.426503 0.426570 0.426609
0.4 0.426393 0.426637 0.426697 0.426733
5x10°3 0.05 0.425453 0.425722 0.425788  0.425828
0.4 0.425540 0.425793 0.425855  0.425892
50 1072 0.05 0.429361 0.429781 0.429897 0.429958
0.4 0.430821 0.431149 0.431238 0.431286
5%x10°3 0.05 0.426897 0.427324 0.427438 0.427498
0.4 0.427681 0.428035 0.428128  0.428179
Bhimaraddi and Steveri80] 0.53438
{DQR} 0.49934

of two-ply laminates are presented in Table 3, while those of tleglges along opposite edges(constant), and clamped along the

three-ply laminates in Table 4. Converged results were obtain
with a 11X 11 in-plane grid point distribution. Similar to the first

gther opposite edges/ & constant), is considered. The material
properties of the layers are listed in Table 1, and this example has

example, the results in Tables 3 and 4 reveal that the presgakn considered previously by Khd¢B1], Reddy and Khdeir
elastic bonding model is quite different from that of rigid bonding32], and Khdeir{33]. Both square and rectangular laminates are
model, as the structural rigidity of the laminate is reduced. Froghalyzed. Results for the two-ply laminates are presented in

these numerical results, we note that when the thicknebFas
=0.1(in which ais the in-plane dimension of the laminate, athd
is the total thickness of the laminat¢he present results are quite,

Tables %a) and 5b), and those of the three-ply laminates are
presented in Tables(® and &b). Converged solution is obtained
again with a 1X11 in-plane grid point distribution. Present re-

close to the results of Bhimaraddi and StevgB@], who used a sults show reasonable agreement with the results of Khdeir
two-dimensional but higher-order plate theory. However, when tig1,33, and Reddy and Khdeif32], who used the third-order
thickness is increased td/a=0.3, a larger difference betweenplate theory of Reddja,34]. From the results in Tables®, 5(b),

the two sets of results is observed. From the results of Bhimaradia), and @b), it can be observed that the rigid bonding model is
and Steveng30], it is noted that the stiffness of the two andslightly stiffer than the elastic bonding model when using an iso-
three-layered laminates consisting of equally thick plies is genefopic elastic bonding layer with modulus equivalent to the matrix

ally softer than that of laminates with unequal lamina thicknes

Material of the composite.

However, for the present elastic bonding cases, the observationg the fourth and final example, the vibration of fully clamped
are different. For two-ply laminates, the stiffness of the laminat@yo-ply (0°/909 and three-ply(0°/90°/09 rectangular laminates
consisting of equally thick plies, is softer than that of the lamipf various aspect and thickness ratios is studied. The material

nates with unequal lamina thickness; however, for the three-
laminates, the converse is true, where the stiffness of the la
nates consisting of equally thick plies, is stiffer than that of th
laminates with unequal lamina thickness. Since the present an
sis is based on a three-dimensional model, the difference may

operties of these laminates are the same as that of the previous
BZampIe. This problem has no known analytical solution. Results
 the two-ply laminates are shown in Table 7, while those for the
three-ply laminates are presented in Table 8. Again, converged

attributed to certain limitations of higher-order plate theory igolution is obtained with a 2411 in-plane grid point distribution.

modeling thick laminates of the present configuration.
In the third example, the vibration of two-plg0°/90° and

It is interesting to observe here that, unlike the simply-supported
cases of Example 1, the influence of bonding parameters for the

three-ply(0°/90°/09 rectangular laminates with simply-supportedully clamped plates is less obvious.
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Table 5 (a) Comparison of nondimensionalized fundamental frequency (normalized by

Vpa*l H?E,) of two-ply square laminates  [0°%/90°] with SCSC edge conditions  (material proper-
ties are given in Table 1 )

11Xx11 13X13

H/a E,/E, E h v 7X7 (grid) 9%9 (grid)  (grid) (grid)
0.1 20 1 1073 0.1 12.7302 12,7192  12.7135 12.7102
0.4 12.7280 12.7169 12.7112 12.7079
5x 1074 0.1  12.7566 12.7457  12.7400 12.7366
0.4  12.7555 12.7445 12.7388 12.7355
20 1073 0.1  12.8599 12.8454  12.8385 12.8349
0.4 12.8668 12.8495 12.8413 12.8370
5% 1074 0.1 12.8214 12.8086 12.8023 12.7988
0.4 12.8250 12.8107 12.8038 12.8000
Khdeir [31] 12.990
{DQR} 12.7672
40 1 1073 0.1  14.4896 14.4769  14.4700 14.4665
0.4  14.4877 14.4750 14.4680 14.4646
5x10°4 0.1  14.5301 145175 14.5105 14.5071
0.4 145291 145165 14.5096 14.5061
40 1073 0.1 14.6836 14.6611  14.6506 14.6459
0.4 14.6919 14.6655 14.6533 14.6478
5x10°4 0.1 14.6281 14.6096  14.6007 14.5966
0.4  14.6323 14.6120 14.6022 14.5977
Khdeir [31] 15.218
{DQR} 14.5471
0.2 20 1 103 0.1 9.6745 9.6670 9.6631 9.6598
0.4 9.6720 9.6645 9.6606 9.6573
5% 104 0.1 9.6813 9.6737 9.6698 9.6666
0.4 9.6800 9.6725 9.6686 9.6653
20 103 0.1 9.7158 9.7055 9.7009 9.6974
0.4 9.7157 9.7055 9.7008 9.6971
5x10°4 0.1 9.7021 9.6929 9.6887 9.6853
0.4 9.7020 9.6930 9.6887 9.6852
{DQR} 9.6733
40 1 1073 0.1  10.3278 10.3191  10.3157 10.3132
0.4  10.3257 10.3170  10.3136 10.3110
5x10°4 0.1  10.3358 10.3271  10.3237 10.3211
0.4  10.3347 10.3260  10.3226 10.3200
40 1073 0.1  10.3842 10.3694 10.3643 10.3610
0.4  10.3837 10.3692 10.3641 10.3607
5x10°4 0.1  10.3647 10.3524  10.3481 10.3451
0.4  10.3642 10.3523  10.3480 10.3445
Reddy & Khdeir[32] 11.890
{DQR} 10.3294
Table 5 (b) Comparison of nondimensionalized fundamental frequency (normalized by

\Vpa*lH?E,) of two-ply rectangular laminates (alb=2, alH=10) [0°/90°] with SCSC edge
conditions (material properties are given in Table 1 )

<11 713
E,/E, E h v 5X7 (grid) 5x9 (grid)  (grid) (grid)
20 1 103 0.1 33.5409 33.0988 33.0278 32.9968
0.4 33.5219 33.0811 33.0104 32.9792
5x10°4 0.1 33.5720 33.1352  33.0642 33.0332
0.4 33.5625 33.1264  33.0555 33.0244
20 1073 0.1 33.8307 33.3637 33.2728 33.2369
0.4 33.8854 33.3774  33.2871 33.2502
5x 104 0.1 33.7188 33.2681 33.1864 33.1528
0.4 33.7464 33.2748  33.1937 33.1597
{DQR 33.0712
40 1 1078 0.1 35.0134 34.7512 34.6763 34.6451
0.4 34.9958 34.7349  34.6603 34.6288
5x10 4 0.1 35.0487 34.7923 34.7173 34.6861
0.4 35.0399 34.7841  34.7093 34.6779
40 1073 0.1 35.4280 35.1029 34.9845 34.9411
0.4 35.4835 35.1127  34.9965 34.9523
5x10°4 0.1 35.2667 349731 34.8733 34.8351
0.4 35.2930 34.9769 34.8793 34.8408
Reddy & Khdeir[32] 40.925
{DQR! 34.7269
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Table 6 (a) Comparison of nondimensionalized fundamental frequency (normalized by

\pa*lH?E,) of square sandwich laminates  [0°/90°%0°] with SCSC edge conditions (material
properties are given in Table 1 )

H/a E,/E, E h v First Mode Second Mode Third Mode
0.1 20 1 5% 1074 0.2 13.7852 23.1748 23.2471
0.4 13.7817 23.1718 23.2357
5% 10°° 0.2 13.8124 23.2372 23.2818
0.4 13.8120 23.2369 23.2807
20 5x 104 0.2 13.9016 23.4361 24.6940
0.4 13.9179 23.4759 24.4845
5% 10°° 0.2 13.8223 23.2589 23.4295
0.4 13.8242 23.2636 23.4075
Khdeir [33] 18.124 e “e
{DQR} 13.8124 23.2337 23.3057
40 1 5x 1074 0.2 16.4612 23.4604 25.7236
0.4 16.4536 23.4485 25.7178
5x 10°° 0.2 16.5040 23.4952 25.8069
0.4 16.5032 23.4940 25.8063
40 5x 1074 0.2 16.6274 26.0682 26.3859
0.4 16.6477 25.9813 26.1169
5% 10°° 0.2 16.5174 23.8012 25.8336
0.4 16.5200 23.7568 25.8399
Khdeir [33] 20.315 ‘e -
{DQR} 16.5051 23.5289 25.8047
0.2 20 1 5x 1074 0.2 10.5456 11.5640 16.8450
0.4 10.5423 11.5611 16.8410
5% 10°° 0.2 10.5557 11.5731 16.8602
0.4 10.5554 11.5728 16.8598
20 5x 104 0.2 10.5860 11.9295 16.9119
0.4 10.5895 11.8761 16.9180
5% 10°° 0.2 10.5587 11.6068 16.8646
0.4 10.5592 11.6018 16.8656
{DQR! 10.5568 11.5839 16.8552
40 1 5x 1074 0.2 11.5028 11.6498 17.5349
0.4 11.4984 11.6467 17.5304
5% 10°° 0.2 11.5146 11.6590 17.5517
0.4 11.5141 11.6587 17.5512
40 5x 1074 0.2 11.5528 12.3992 17.6153
0.4 11.5564 12.2934 17.6217
5% 10°° 0.2 11.5179 11.7306 17.5564
0.4 11.5185 11.7202 17.5576
Khdeir [33] 12.333 ‘e oo
{DQR} 11.5159 11.6739 17.5473
Table 6 (b) Comparison of nondimensionalized fundamental frequency (normalized by

Vpa*lH?E,) of rectangular sandwich laminates  (a/b=2, a/ H=10) [0°%90°0°] with SCSC edge
conditions (material properties are given in Table 1 )

E h v First Mode Second Mode Third Mode
E,/E,=20
1 5x 1074 0.2 41.2896 43.6831 47.7328
0.4 41.2424 43.6390 47.7092
5x 10°° 0.2 41.3565 43.7639 47.8023
0.4 41.3517 43.7594 47.8000
20 5x 104 0.2 41.6812 44.1331 50.7335
0.4 41.6654 44,1241 50.2981
5% 10°° 0.2 41.3966 43.8119 48.1046
0.4 41.3947 43.8104 48.0596
{DQR} 41.3640 43.7730 47.8102
E,/E,=40
1 5% 104 0.2 43.0619 45.7661 47.8671
0.4 43.0135 45,7213 47.8431
5% 10°° 0.2 43.1323 45.8599 47.9366
0.4 43.1274 45.8553 47.9343
40 5x 104 0.2 43.5908 46.3842 53.8664
0.4 43.5656 46.3688 53.0386
5% 10°° 0.2 43.1903 45.9297 48.5636
0.4 43.1864 45.9264 48.4726
Khdeir [33] 46.693 oo ‘e
{DQR! 43.1399 45.8701 47.9445
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Table 7 Comparison of nondimensionalized fundamental frequency (normalized by

\Vpa*lH?E,) of two-ply laminates (a/H=10, E,/E,=40) [0°/90°] with CCCC edge conditions
(material properties are given in Table 1 )

11x11 13X13
a/b E h v 7X7 (grid) 9% 9 (grid) (grid) (grid)
1 1 1073 0.1 17.8728 17.8296 17.8087 17.8000
0.4 17.8705 17.8274 17.8068 17.7979
5x10°4 0.1 17.9173 17.8744 17.8537 17.8449
0.4 17.9161 17.8733 17.8527 17.8438
40 1073 0.1 18.0997 18.0419 18.0155 18.0047
0.4 18.1288 18.0653 18.0363 18.0241
5x10 4 0.1 18.0321 17.9809 17.9569 17.9469
0.4 18.0469 17.9930 17.9678 17.9571
{DQR} 17.8893
7x<11 713
a/b E h v 5X7 (grid) 5X9 (grid) (grid) (grid)
2 1 103 0.1 36.5263 36.5154 36.2467 36.2444
0.4 36.5091 36.4982 36.2307 36.2284
5x10°4 0.1 36.5657 36.5548 36.2916 36.2893
0.4 36.5571 36.5462 36.2836 36.2813
40 103 0.1 36.9478 36.9327 36.6027 36.5998
0.4 37.0144 36.9980 36.6253 36.6221
5x 104 0.1 36.7865 36.7733 36.4741 36.4715
0.4 36.8189 36.8051 36.4848 36.4820
{DQR} 36.3340

Table 8 Comparison of nondimensionalized fundamental fre-

quency (normalized by Vpa* H?E,) of sandwich laminates

[0°/90°/0°] with CCCC edge conditions (material properties are proach that is adaptable to the actual physical characteristics of

given in Table 1: E,/E,=40) the variety of bonding mechanisms that may be present in a
laminate.
alb E h v First Mode Second Mode Third Mode
1 1 5x 104 0.2 21.1403 28.7202 402080 References
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{DQR} 43.8117 48.0332 56.7366 [7] Messina, A., and Soldatos, K. P., 2002, “A General Vibration Model of Angle-
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Stresses,” Int. J. Solids Struc89, pp. 617-635.
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Nonstick and Stick-Slip Motion of
a Coulomb-Damped Belt Drive
System Subjected to
Multifrequency Excitations

In this paper, the rotational vibration of a belt drive system with a dry friction tensioner
subjected to multiple harmonic excitations is studied. The work is focused on the impact
of the dry friction torque combined with the multiexcitation frequencies on dynamic char-
acteristics of the system. An analytical solution procedure is developed for the first time to
predict two kinds of periodic responses of the system, i.e., nonstop and one-stop motion
characterized by the nonstick and stick-slip vibration of the tensioner arm in the system,
respectively. Utilizing this method, parametric studies are carried out to obtain the fre-
guency response of a prototypical belt drive system subjected to harmonic excitations
from both the driving and driven pulleys. It is found that the tensioner Coulomb friction
torque has a significant impact on the amplitude response of the system—it reduces the
vibration amplitude of the tensioner arm, but for other components in the belt system it
can either decrease or increase the amplitudes under different situations. Furthermore, if
the excitation frequency from the driving pulley is larger than or equal to that from the
driven pulley, the system vibration amplitudes are much larger than those under the
opposite condition[DOI: 10.1115/1.1629754

G. Cheng
J. W. Zu'

Associate Professor
e-mail: zu@mie.utoronto.ca

Department of Mechanical & Industrial
Engineering,

University of Toronto,

5King's College Road,

Toronto, ON M5S 3G8, Canada

1 Introduction istics of belt drive systems consisting of multiple belts and pul-

Belt drive systems have long been employed in engine appliégys' An algor_ithm that derives the linear gquations of motion for
tions to power accessories such as alternator, air condition%rlk,)Itrary multicoupled belt systems was given.

power steering, and pumps. A typical automotive belt drive con- All of the above studies assumed no dry friction at the tensioner
sists of a crankshaft, accessories and a “serpentine” belt tensiormip or used approximate linear VIScous damping models. In real-
by a dynamic tensioner. Such systems can exhibit complex d§: h_owe\_/er, dry friction at the tensioner _hub represents a strong
namic behavior including rotational vibrations, which can be ifionlinearity that may produce rich dynamic responses that can not

duced by crankshaft excitation, applied moments on driven acc8€- captured with linear viscous damping models. The subject of
sories, pulley eccentricities, etc. dry frlct_lon has been _e_xtenswel_y s_tudled_ in recent years. S{ﬁ@w
The rotational vibration of a belt drive system has been studié§termined the stability of periodic orbits of a system with dry
in recent research. In 1991, HawKer investigated natural fre- f1ction. In the paper of Popp et a8], stick-slip vibrations in-
quencies of damped belt drive systems with a dynamic tension@!ced by dry friction were investigated both numerically and ex-
Barker et al[2] utilized a Runge-Kutta method to solve the tranP€rimentally. Later, Feeny et 4B] studied the chaotic dynamics
sient rotational response of a front end accessory drive system @2 harmonically forced dry friction oscillator. More recently,
to engine accelerations using experimentally measured torqyatsiavag10] presented a stability analysis for periodic motions
characteristics of the tensioner. Later, Hwang ef3]idetermined o_f a class of harm(_)nl_cally eXC|_ted piecewise linear oscillators with
rotational mode natural frequencies and mode shapes for the fré&cous and dry friction damping. .
response of a linearized system of equations for a serpentine belf® accurately model the dry friction at the tensioner hub,
drive system and applied the results to predict the onset of bbgamy et al[11] developed a nonlinear model that is capable of
slip. Beikmann et al[4] used the prototypical model of two pul- capturing the nonlinear effects of dry friction at the tensioner arm.
leys with a tensioner to examine the coupling between the rothhe tensioner dry friction is assumed to be governed by the clas-
tional and transverse motions, which led to new conclusions rgical Coulomb law. The derived equations were solved by an
garding linear free vibrations. The natural frequencies and modéaptive time-step Runge-Kutta explicit integration method. Fur-
shapes of an operating serpentine belt drive system were detbermore, Leamy et a[12] solved the system by the incremental
mined with analytical and experimental methods. In the p&per harmonic balance methodHB), which was proposed by Pierre
of Kraver et al., a complex modal procedure was developed &b al. [13]. This numerical method can efficiently compute the
analyze the frequency response characteristics of a flat belt pulgymary and secondary resonances in a FEAD system. The solu-
system assuming viscous belt and tensioner damping. Iwatsutmm clearly captures the stick-slip motions of the tensioner arm.
et al.[6] proposed a method for analyzing the dynamic character-In the aforementioned work, only a single excitation from the
crankshaft was considered. However, the excitation on the belt
To whom correspondence should be addressed. drive system is of multifrequency in nature since the vibration of
MECHANICAL ENGINEERSTor pUblication n the ASME GURAL of AppLIEDME. 16 SYstem can be excited by multiple sources such as applied
CHANICS. Manuscript receiveg by the ASME Applied Mechanics Division, Octer 15momen_ts_ _from_ the dnvmg p”'|e¥_ or driven acces_sorles, pu'_ley
2002; final revision, June 4, 2003. Associate Editor: J. R. Barber. Discussion on @gcentricities, irregular pulley radii and belt properties, or motion
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmengff pulley support. As a classic problem in the theory of nonlinear
Mechanical and Environmental Engineering, _University of CaIifqrnia—Santa Ba?scillations, multifrequency oscillation has been studied for one
bara, Santa Barbara, CA 93106-5070, and will be accepted until four months after . . .
final publication of the paper itself in the ASMEDORNAL OF APPLIED MECHAN- and two degrees-of-freedom systems with weakly nonlinearity,
IcS. [14-16. Most of the research effort in the above work has gone
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7. The geometric nonlinearities of the system are negligible.

Under the above assumptions, the equations of motion for the
belt drive system can be derived @s. [23]),

MO+CO+HKO=T=Te+Tep+T; 1)

whereM, C, andK arenXxn mass, damping, and stiffness matri-
ces, respectively, and in particul&, is diagonal:

M:diag{|2,|3,"',|n,|t}. (2)
In Eq. (1), @ is the rotational displacement vector taking the form
of
0:[021031'”10n10t]T (3)

with the subscripts 2,3 .. ,n denoting the driven pulleys and
denoting the tensioner arm. The veciorepresents the external
Fig. 1 A belt drive system excitation and contains three parts, namdly;, To,, andTy.
They are induced by the driving pulley motion, dynamic
torques of the driven pulleys and the tensioner dry friction torque,

into studying the special relationship between the natural frequerr?-SpeCtlvely'

cies and the multiple excitation frequencies of a system, nonlinear Ti1cowt+ ¢q9)

modal interactions and the resultant rich nonlinear phenomena, Ti,coq wit+ @)

such as combination resonances. The recent research in this area is T..= :

reported in the following. Eneremadu et &17] discussed the el ) '
vibration stability of a cylindrical shell subjected to two-frequency Ti(n-1) COL @11+ P1n-1))
excitations using Floquet’s theory. Subsequently, Wargj stud- Tincog it ¢1n)

ied the multifrequency resonances of flexible Iinkages. F{U@ T, cos ot + ¢,) 0
considered a weakly nonlinear beam system subjected simulta- T tt 0
neously to parametric and harmonic excitations by use of the av- 8 005(9’3 ¢3) .
eraging method. Steady-state responses are shown for the various Te2= : , Te=| o (4)
cases of resonances. In Maccari's pap2f), the transient and Thcogwpt+ @p) 0
steady-state response of a general nonlinear oscillator to a finite 0 T

number of harmonic forcing terms was analyzed by the . o . .
asymptotic perturbation method. Three cases of the frequency \ﬂ@_ere wi(j=12, ... !“)_ are the excitation .fre_quenC|e§_,1j (]
lationship were considered. Most recently, chaotic phenomena 2 - :-/1) @ndT;(j=23,...n) the excitation amplitudes,
were demonstrated in the response of a two-frequency excitgg § =12 --- 1) and ¢;(j=23,...n) the initial phase
mechanical oscillator by Nichols et 421]. angles, respectivelyl; is the tensioner dry friction torque and is

In summary, the prior research on the rotational vibration &overned by the classical Coulomb law:

belt drive systems with dry friction tensioners only deals with Ti=—Tim if gt>o

single-frequency excitation using numerical solutions. To address .

the lack of research in this area, it is the objective of this paper to —Ttm=Ti=Ty, Iif 6,=0 (5)
study a belt drive system with a dry friction tensioner subjected to )

multifrequency excitations using an analytical approach. Based on Ti=T¢y if 6,<0

the analytical method presented by Den Haift2g], periodic so-

lutions are developed and derived for two kinds of Steady'St%ensioner arm is moving. It should be mentioned thatrthem-

responses, i.e., the nonstéponstick and one-stop(stick-slip  yonents inT,, are determined uniquely by the driving pulley mo-
motions, for the belt drive system. Attention is focused on stud{/?bn: el quely by g pulley

ing the effect of the tensioner dry friction and the multiple exci-

tation frequencies on dynamic behavior of the system. New and 0,=0 coq w t+¢q) (6)
interesting results are obtained from parametric studies in num
cal simulations.

in which T;,, is the magnitude of the friction torque when the

SUrere® is the amplitude an@; is the initial phase angle.

In this paper, two types of steady-state vibrations are studied:
nonstop motion and one-stop motion. In the nonstop motion, the
2 System Model tensioner arm never comes to a dead stop, while in the one-stop

Consider a belt drive system, which consists of a belt, a drivifgotion, the tensioner arm moves during<6<t, and is at a
pulley andn—1 (n=3) driven pulleys including a tensioner pul-Standstill duringto<t<T/2, whereT is the period of the motion.
ley supported by its tensioner arm, as shown schematically in FI§iS assumed that the periodic response is symmetric in such a
1. The assumptions made in the model are as follows: way that the following relationship is satisfied:

1. The belt does not slip on the pulleys. X(t)=—x(t+T/2) )
2. The belt stretches in a quasi-static manner, and the belt spafferex is a state vector defined as

are modeled as massless axial linear springs and viscous . .

dampers. x=[65,03, ....,00,60,65,63,....,0,,6,". (8)

3. Pulleys other than the tensioner have fixed axes. ; : : :
: L . It is noted that the physical meaning of E@) is that for each
4. The puII_ey rotatlon_al damp'“g IS assum_ed to k_)e linear, arﬁ%lf-cycle, the motio% gf the system gflollowgthe same law.
the tensioner arm is subjected 10 both linear viscous damp'Suppose that there exists a symmetric periodic solution to Eg.

ing and Coulomb dry friction at the pivot. : : o
5. The tensioner spring is linear. (CZILé,el\r/vtrllq(;ste circular frequency i®. From Egs.(1) and (7), it is

6. The motion of the driving pulley and any torque input from
the driven pulleys are prescribed. Tt+mlw)=—T(1). 9)
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Substituting Eq(4) into the above equation, it can be derived thatvhere
the following relationship between the excitation frequencies and

the frequency of the motion must be satisfied, so that{®cholds T11C0S¢1;/15 ~Tusiney/l,
true at any time. o T12C08¢p15/13 o= —TaaSingy,/ls
1™ : ’ 12~ : ’
©j=kthe (j=12,...nk=012...)  (10) L T1nCOS@1n /1y L —Tinsingg, /1y
Obviously, Eq.(10) is a necessary condition for the existence of _ _ .
symmetric periodic solutions. Tacosp, /1, —Tasing;,/l;
U31= 2 U3o= 0
217 . ’ 227 :
3 Nonstop Vibration (') (')
The equation of motioril) can be rewritten in the first order i ) (24)
form using the state vecto: 0 0
X:AX+b (11) T3COS(P3/|3 7T35|n(,03/|3
3= 0 3= 0 .
where : :
0 | L 0 ] 0
A= 12
-M7lkK -M~IC (12) I 0 1 0
in which | is the identity matrixb in Eq. (11) is defined as : :
* = 0 * = 0
0 in ’ qn2 . .
b= M-IT | (23) Thcosen/ly —Tasine, /1,
0 0
ple\)/)\(llgilg::]\llc;sljg_g,ejn:erletlzlt’y., é_szljfnvsﬁﬁhcisrgsgfﬁﬁgﬂc ﬁrr]n i It "should“B"e pointed out that throughou_t this_ paper, t_he symbols
early independen’t complex eigenvectﬁys i=1.2,...,2. The i” and , as in Eq. (20), denote the imaginary unit and the

complex conjugate, respectively.

general solution of the homogeneous form of Efjl) can be The particular solution to Eq11) is derived as

expressed in terms of the eigenvalues and eigenvectors:
x(t)=XeMc (14)

n

X ()=, (re“i+ e it — A~ b, (25)
where =1
X=[% % Ken (15) Where
eAt:diag{e}\ltleﬁzl,...'e)\Znt} (16) Kj:[iwjl_A]ilq]‘ (j=1,2;--,n). (26)
andc is the vector of complex integral constants defined as  1he sum of Eq(14) and Eq.(25) yields the general solution to the
. nonhomogeneous differential E4.1):
C:[CvaZ!'“vCZn] . (17) n
Since it is assumed that the system motion follows the same X(t)ZXeAthrE (Kjeiwjt+;je—iwjl)_A—1b0_ (27)
law for each half-cycle, only the motion in the first half-period, i=1

i.e., 0<t<w/w, will be considered from now on. To tackle the
discontinuity of the dry friction toque on the tensioner arm, we
make the initial phase anglg, of the driving pulley motion as an n

unknown while keeping the velocity of the tensioner arm fixed in x(0)=Xc+ E (K +Fj)7A’1b0 (28)
the following manner: =1

Applying Eq. (10), it follows from Eq. (27) that

6,=0, t=0 184 ! _
o (1%) x(a-r/w)zXeA"""c—z (K + 1) —A hg. (29)
0,<0, O<t<wlw (180) =1
Correspondingly, during the first half-period, the tensioner digeplacingt by 0 in Eq.(7) gives
friction torque keeps the same sign: x(l )= —x(0) (30)
Ti=Tim- 19) which, together with Eqs(28) and (29), determines the complex
Substituting Eqs(2) and (4) into Eq. (13) gives integral constants
n c=2[1+e 71X~ 1A " 1h,. (31)
— ioit | N a—lot
b_; (gje'“i"+q;e™"i") +bg (20) 50 far the solution(27) still contains implicitly an unknown,
namely, ¢, . By employing Eq.(18a), ¢, can be solved numeri-
where cally from the algebraic equation below:
bo=[0, -,0.T¢m /1] (21) U-x(0)=0 (32)
1 ) ) whereU is a 1X2n matrix
szz(Qj1*'Qj2)v j=12;-n (22)

U=[0;--,0,1]. (33)

Finally, the validity of the solution should be checked, since it
has been derived under the assumption, (E8b). Consequently,
the solution is valid only if the following inequality holds:

Ux(1)<0 (0<t<7/w). (34)

in which g;; andg;, can be transformed into the following sub-
matrix form:

0 0 .
Qj1= A Qj2= o)’ j=1.2;-,n (23)
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Table 1 System parameters

PULLEYS
Pulley Radius Moment of Inertia Damping Constant
No. j rj (m) I (kg-m?) Cjp (N-m-s/rad) Excitation
1 1.1 N/A N/A 0,= 0, cos@1t+q:1) 00 O0.1rad
2 1.0 5.0 0.0003
3 1.2 10.0 0.05 T3 cosst+¢3), T3 0.4N-m,
¢3=0.5rad
BELT
Belt Span Noj Damping ConstanCj, (N-s/m) Spring Stiffnes; (N/m)

4 One-Stop Vibration

1, between pulleys No. 1 and No. 2 0.10 0.4
2, between pulleys No. 2 and No. 3 0.12 0.5
3, between pulleys No. 3 and No. 1 0.20 0.4
cosa;=—0.89 cosw,=0.05
TENSIONER ARM
Moment of Inertia of Damping Constant Spring Stiffnéss
Lengthr, (m) Arm/Pulleyl, (kg-m?) C; (N-m-s/rad) (N-m/rad 6,0 (deg)
1.0 6.0 0.23 0.60 90
U=[02,03, 00,602,085, ,0,]". (41)

One-stop motion may take place under larger tensioner dry fr
tion torque and certain excitation frequencies. It is assumed t
the tensioner arm is in motion during the time intervak
<ty, and is at rest duringy<t<m/w. Consequently, the equa-

i?;'eparating the above vector from Eg8) results in the following
uation of motion:
U=Apu+AV+Dby,

to<t<mwlw (42)

tion of motion for the one-stop vibration remains the same as Eq
(11) while the assumption on the velocity of the tensioner arlWherev is the state vector for the tensioner arm during the interval

changes to to<t<mlw
6,=0, t=0 v=[06y(t),0]". (43)
0,<0, 0<t<t, (35) The general solution to E@42) can be obtained as
;9=O, to<t<mlw ~ = i ) . ~ L~
! 0 u(t)=Xe T+ D, (irelit+ e U —A A (44)
Clearly, the form of the general solution for the nonstop motion j=1

given in Eq.(27) still holds true for the one-stop motion during

the interval Gst<t,, althought, is a new unknown variable.
Introducing a new system state vector

y=[0,"",00 05,0 ,6,,6,]7=Sx (36)
where
I(nfl)x(nfl) O(nfl)xl 0(n71)><(n71) 0(n71)><l
0(n—l)><(n—l) O(n—ZL)><1 I(n—1)><(n—1) 0(n—1)><1
| Oixn-1) 1 O1x(n-1) 0 ’
O1x(n-1) 0 O1x(n-1) 1
(37)
the equation of motioril1) can be transformed to
y=Ay+b (38)
in which
7 eas i (Awan-2xn-2 (Ardan-2)x2 )
A21)2><(2n72) (A22)2><2
~ (b1)2n-2
b—Sb—[ (ba), (40)

During to<t</w, the displacement and velocity of the ten-
sioner arm are constant, and therefore it is convenient to define a

new vector describing the state of the pulleys only:
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where X is a (2n—2)Xx(2n—2) modal matrix whose columns

contain the complex eigenvectors Af,, ande®! and¢ are as
follows:

eKt:diag{eXIt’eXZt -,eXZn—zt} (45)

Con—2]" (46)

in whicNhXj andc; (j=1,2,...,2—2) are the complex eigenval-
ues ofA;; and complex integral constants, respectiv&]yin Eq.
(44) is defined as

E:[“éli“ézl...

& =[io]—Ayul"tgF  (j=12;-,n) (47)
where
af =RSq (j=1,2;--,n) (48)
in which
R=[l2n-2)x(2n-2) Or2n—2)x2]- (49)

Table 2 Natural frequencies

w1 =0.52200, wny=0.881wg, wnz=1.22%0;,

wo=K[0][0]/M[0][0]=0.424 rad/s
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Fig. 2 Amplitude responses with dry friction as parameter in nonstop vibration

The solutions for the one-stop vibration during the intervals 0 6,(0)=— 6,(ty) (50.4)
<t<ty, andty<t<m/w have been derived as in Eg7) and
(44), respectively, nevertheless, there are still uhknown quan-

tities, namelyg, ¢, ty, and ¢, to be determined. The following RSX(to) = u(tp) (50.5)
boundary conditions are used to solve theseuhknowns.
0,(0)=0 (50.1) RSX(0) = — u( 7/ ) (50.6)
0,(t5)=0 (50.2)

. Settingt=0 in Eq. (38), using the condition$50.1) and (50.3,
6,(0)=0 (50.3) and redividing the matrices lead to
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Fig. 2 (continued )

u(0)
0
0
(AT 2n-2)x(2n-20 (ATD@n-2)x1  (Ald2n-2)x1
=|  (AZDix(n-2) 2 23
(A3D)1x(2n—2) 32 33
w1 [bi(0)
x| 6¢(0) | +| b3 (0) (51)
0 b3(0)
from which 6,(0) is derived as
6,(0)=Wu(0)+d (52)
where
W=—A% A%, d=—A% 'b5(0) if AL#0 (53)
or
W=—A%L 1AL d=—A% b5(0) if A%L#0. (54)

Letting t=0 and substituting Eq28) into Eq. (36), we have

y(O)=Sx(O)=SXc+5LEnl (r+ 1) — A~ by (55)
which givesc as a function ofu(0) and the implicite,
u(0) n
c=X"1s7 Wu(0)+d|-x"1 21 (K,~+Fj)—A1bO}
’ | (56)

From Eq.(50.6, ¢ can also be expressed in termsugd) and ¢,

876 / Vol. 70, NOVEMBER 2003

0

Ez[iexﬂ'/w]l{ _ U(O)—Z\l_llz\lz WU(O)+ d}

n
+j§_‘,l(,<f+x;*)]. (57)
With ¢ andC solved as functions ofi(0) and ¢;, Egs.(50.2,
(50.4), and(50.5 can be turned into a set of nonlinear algebraic
equations iru(0), ¢,, andty. Since these equations are transcen-
dental and an explicit solution is impossible, a numerical proce-
dure such as quasi-Newton method is needed to solve(®y ¢4
andt,. Once they are obtained via a numerical meth@¢0), c
and¢ can be derived from Eg$52), (56), and(57), respectively.
Finally, the solutions for the one-stop motion during 6<t, and
to<t<m/w are determined using EqR7) and (44).

Remember that the above solution is derived under the assump-
tion, Eq. (35). Therefore, it is necessary to examine whether the
solution satisfies the assumption. Since a half-cycle in the one-
stop motion is made up of two distinct time intervals, a condition
to check the validity of the solution for each interval should be
provided. During the period 9t<t, when the motion of the
tensioner arm is continuous, the condition is

6,<0,

0<t<t,. (58)

During the periodty<t<m/w when the tensioner arm is at rest,
the condition is that the absolute value of all external torques
acting on the tensioner arm must be smaller than or equal to the
dry friction torque, i.e.,
|W1Z3+W,Z o+ K by(to) = Ty COS @1t + @10) [< T,
to<t<mwlw (59)

whereK,, is the rightmost element at the bottom rowkofin Eq.
(1) and
le[cnlxcnz,"'vcn(n—l)] (60)

Z,=10,,05,,0,]" (61)
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Fig. 3 Amplitude responses with excitation frequencies as parameter in nonstop vibration

WZZ[KnvinZI"'fKn(nfl)] (62) 5 NumerlCa| Example
In this section, an example belt drive system is introduced and
Z,=[6,,63,,6,]" (63) evaluated to illustrate the capability of the above solution method.

Consider a prototypical system consisting of a driving pulley, a

in which C,.; andK,, j=1,2 n—1 are elements of matricesdriven pulley and a dynamic tensioner, which is a special case
C andK inn]Eq (1)”“ B (n=3) of the general model shown in Fig. 1. The system is sub-
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Fig. 3 (continued )

jected to excitations from the driving pulley motion and the dy- 0=[0,,05,6,]" (65)
namic torque on the driven pulley. The equations of motion for the

system can be obtained as I, 0 O
M6+CO+KOo=T (64) M=[0 I3 0 (66)

where 0 0 I

|
r5(Cop+ Cap)+Cyp —Coplors ror(Cqp COSa; — Cyp COSy)
C= —Coplars r3(Cop+Cap) +Csp Copl 3l COSa, (67)
I (Cyp COSay — Copp, COS@y) Copf 3f; COSry r2(Cyp o€ a;+ Cyp, COF @) + Cy
ra(Ki+Ks) —Kyr,rs ror(Kq cosa;— K, cosas)

K= —Kof,fs ra(K,+Ks) K,r3r; COSay (68)

rori(Kycosa;—K,cosa,) Korary COSas rf(K1 cog a;+ K, cof a,)+ K+ Qp

T11c08 wit+ ¢19) 0 0 Ti3= 1118 cosa; VKi+ wiCsy (73)
T=| TipCcoqwit+ @) | +| Tgcogwst+¢3) [+ O . .

T,5C08 wyt+ ¢19) 0 T P11= p1+tan (Cypw1 /Ky) (74)

69 _
(69) ©1,= @1 +tan H(Cgpw; /K3) (75)

in Eq. (68) is defined as .
Qo a. (68) ¢13= @1 +tan H(Cipwy /Ky). (76)

Qo= Meft gLeft COSbro (70) The basic system parameters used are listed in Table 1, and the

in which mg represents the total mass of the tensioner pulle arqgtural frequencies of the system are given in Table 2.
eff '€D putiey The periodic response for both nonstop and one-stop vibrations

grrgiéﬁférreﬂqﬁfelg:ﬁqtgﬁ ddtlr?:aagrcneq bi?/tc\)/\t/een gtzeenr;‘;ssstﬁgr;;?{ia?f f?%omputed, with emphasis laid on studying the influence of the
pulley pivot, af tensioner dry friction and the excitation frequencies on the re-

inclination angle of the tensioner arm with respect to the directiogb . . .
. : - . onse. Two parameters are used in the computation: the ratio
of gravity. In Eq.(69), Ty is the same as defined in B@) and between the Coulomb friction torque and the amplitude of the

_ o external torque, i.eT¢,,/ T3, and the ratio between the excitation
Tu=rir0oVKi+ wiCy, (71) frequencies and the frequency of the motion, namelyfw, / )
and n; (w3/w). The following plots show the frequency re-
T1=11r300VK5+ 03C5, (72)  sponses of the amplitude ratio for both nonstop and one-stop vi-
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brations as well as the frequency responsetgf 2 (T denotes the  Figures 2a)—2(c) show the influence of the tensioner dry fric-
period for the one-stop vibration, under different values of thé&ion on the amplitude responses of the tensioner pulley, the driven
parameters. . o ulley and the tensioner arm, respectively, with the parameter
The plots for the nonstop motion are shown in Figs. 2 and 3, /T, ranging from 0.005 to 0.15. Apparently, resonance occurs
where the default parameter values are as follsirsce only one gt the first natural frequency of the system. In addition, it is ob-
parameter is changed at a time, the other parameter takes dBR/ed that there exists a frequency value at which the tensioner

default valug: dry friction exerts no influence on the vibration amplitude, for the
Tim/T5=0.01 tensioner pulley and the driven pulley, respectively. Furthermore,
m (77)  the amplitude decreases as the dry friction torque increases before
n;=1, ny=11. that critical frequency, while the effect of the dry friction torque is
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Fig. 4 Amplitude responses with dry friction as parameter in one-stop vibration
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Fig. 4 (continued )

just the opposite after that frequency. In comparison, for the teen;, where the excitation frequeney; is greater than or equal to

sioner arm, no such critical frequency exists and the vibratian;, while the other group corresponds to the opposite case, i.e.,

amplitude decreases along with the increase of the tensioner dgy<n,. Itis clearly seen that the vibration amplitudes for the case

friction for all frequency values. It is also found that occurrence aif n,=n3; are much larger than those for the caseng&ns.

such periodic motion is discontinuous in the frequency domaiklithin each group, however, the amplitude difference between

which implies the existence of other types of steady motions fdifferent cases ofi; andn; is very small in comparison with the

the system. group difference. Besides, it is displayed that the frequency range
In Figs. 3a)—3(c), the effect of different excitation frequencieswhere the periodic motion can happen for the groupgfn; is

on the amplitude response is demonstrated. The paranmgtarel noticeably wider than that for the other group.

n; vary from 1 to 7. From these figures, one can distinguish two Similar to the plots for the nonstop motion, Figs. 4—7 show the

types of behavior and thereby categorize the excitation frequemsponses for the one-stop motion, but with a different default

cies into two groups. One group corresponds to the case, of parameter value for the dry friction torque
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Fig. 5 t, responses with dry friction as parameter in one-stop vibration
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Ttm/T4=0.20. (78) amplitudes of the tensioner pulley and the driven pulley. For the
tensioner arm the dry friction torque reduces the response ampli-

as parameter, whose values fall into the scEn@0,0.4Q. It is tude, while for th(_e tensioner pulley z?md the driven pulley it in-
shown that the response pattern for the tensioner arm is qUfgases the amplitude. Compared with the nonstop case, the dry
different from those for the tensioner pulley and the driven pullej/ction effect is the same for the tensioner arm. For the tensioner
Obviously, the response amplitude of the tensioner arm is mukHlley and the driven pulley, however, it is opposite before the
smaller than those of the tensioner pulley and the driven pullegfitical frequency and the same after the critical frequency, respec-
More interestingly, the influence of the dry friction torque on th&vely. Another phenomenon worth mention is that the dots in
response amplitude of the tensioner arm is opposite to that on tfigs. 4a)—4(c) are sparsely distributed over the frequency do-

Figures 4a)—4(c) illustrate amplitude responses wiif,/T5
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Fig. 6 Amplitude responses with excitation frequencies as parameter in one-stop vibration
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Fig. 6 (continued )

main, which indicates the relatively low possibility of occurrence Finally, illustrated in Figs. 67 is the effect of different excita-
of such one-stop motion with respect to other possible types tdn frequencies on the response in the one-stop motion, nyith
motions for the system. andn; taking the same values as in Fig. 3. Similar to the analysis
Figure 5 shows & /T versusw/wy with the same parameter of Fig. 3, the excitation frequencies can be divided into the group
values as in Fig. 4. Physicallyt@/T means the percentage of theof n;=n3; and the group oh;<n;. The amplitude responses in
slip mode of the tensioner arm in the one-stop vibration. Clearljgs. §a)—6(c) take on trends agreeing with those in the nonstop
one can see that the larger the tension dry friction, the lowarotion. It is shown that the vibration amplitudes for the case of
percentage the slip mode of the tensioner arm. A change tendengy n; are much larger than those for the casepfn;. Within
of 2ty/T with frequency is also noticed—as the frequency getsach group, however, the amplitude difference is very small. Fig-

larger, 2, /T increases first and then decreases. ure 7 displays £/T as a function ofw/wg. It exhibits some
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Fig. 7 t, responses with excitation frequencies as parameter in one-stop
vibration
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Analytical results
ny=1, ng=11, T;,/T3=0.02, 0=0.50 x Numerical results
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Fig. 8 Time history of angular velocity of tensioner arm

unique characteristics: For the casengf n; the values of 2,/T  the analytical and numerical results for the time history of the

are close to 1, signifying that the tensioner arm is in the slip staa@gular velocity of the tensioner arm in the nonstop and one-stop

most of the period; for the case nf<ns, 2t,/T increases first motion, respectively.

and then decreases as the frequency increases. .
The above results are verified by comparing them with thogb Conclusions

obtained via directly integrating Eq64). Very good agreement A belt drive system with a Coulomb friction damped tensioner

has been reached. As an example, Figa) 8nd 8b) show both and subjected to multifrequency excitations is studied in this pa-
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per. Two kinds of steady-state vibrations of the system—nonstop
and one-stop motions are discussed. Applying an analytical
method, the periodic responses of the system for both the nonstop O =
and one-stop motions are derived. Furthermore, parametric studies (j=1,2, ...
are carried out to analyze the influence of the tensioner dry fri€;, (j=2,3,...n) =

L. = distance between pivot and mass center
of tensioner pulley/arm

installed position of tensioner arm

pulley radius

damping constant of driven pulley

tion and the excitation frequencies on the dynamic behavior of i, (j=1,2, ... n) = damping constant of belt span
system. The following conclusions can be drawn from the studyK; (j=1,2,...n) = elastic constant of belt span

1. The existence of both nonstop and one-stop motions is dis- Et _ ?ea:gipolrr:grcacl)rrr:?t:tri\ftfr?gstgn5|oner arm
continuous in frequency domain. rt = length of tensioner arm

2. The tensioner dry friction has a significant impact on the (j=1,2 n)‘ = natural frequency
amplitude response of the system. For the tensioner arm, the vi!! e 'wo = reference frequency

bration amplitude decreases as the Coulomb friction torque in-

creases in both nonstop and one-top motions. For the tensioR&ferences
pulley and the driven pulley in the nonstop motion, there exists g1) Hawker, L. E., 1991, “A Vibration Analysis of Automotive Serpentine Acces-

critical frequency before which the dry friction torque reduces the
vibration amplitude but after which it enlarges the amplitude. In
the one-stop motion, the dry friction torque increases the amplilz]

tude of the tensioner pulley and the driven pulley.

sory Drive System,” Ph.D. dissertation, University of Windsor, Ontario,
Canada.

Barker, C. R., Oliver, L. R., and Brieg, W. F., 1991, “Dynamic Analysis of
Belt Drive Tension Forces During Rapid Engine Acceleration,” SAE Paper
No. 910687.

3. In the one-stop motion, the larger the dry friction torque is, [3] Hwang, S.-J., Perkins, N. C., Ulsoy, A. G., and Meckstroth, R. J., 1994, “Ro-
the higher percentage of the period the tensioner arm stays in the tational Response and Slip Prediction of Serpentine Belt Drive Systems,”

stick mode.

4. For both nonstop and one-stop motions, if the excitation

ASME J. Vibr. Acoust., 116, pp. 71-78.
[4] Beikmann, R. S., Perkins, N. C., and Ulsoy, A. G., 1996, “Free Vibration of
Serpentine Belt Drive Systems,” ASME J. Vibr. Acoust18 pp. 406—-413.

frequency from the driving pulley is larger than or equal to that[5] Kraver, T. C., Fan, G. W, and Shah, J. J., 1996, “Complex Modal Analysis of

from the driven pulley, the system vibration amplitudes are much

larger than those under the opposite condition.

5. In the one-stop motion, the tensioner arm stays in the sli
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state for the most of the period when the excitation frequency(7] Shaw, S. W., 1986, “On the Dynamic Response of a System With Dry Fric-

from the driving pulley is larger than or equal to that from the

driven pulley.

Nomenclature

M = mass matrix §Xn)
C = damping matrix X n)
K = stiffness matrix fixn)
6 = rotational displacement vectén)
T = external excitation vectain)
X = state vector (8)
A = system matrix (BX2n)
b = transformed excitation vector (2
y = transformed state vector (2
u = state vector for driven pulleys (2-2)
I;(j=2,3,...n) = driven pulley’s moment of inertia about
pivot
I, = moment of inertia of tensioner pulley/
arm about pivot
0;(j=1,2,...n) = angular coordinate
6, = tensioner arm angle
w;(j=12,...n) = excitation frequency
¢j(j=1,2,...n) = initial phase angle
0, = excitation amplitude from driving pulley
Ti(j=23,...n) = amplitude of external torque
T; = tensioner dry friction torque
T¢m = magnitude of tensioner dry friction
torque
T = period of motion
o = circular frequency of motion
to = critical time in one-stop motion
nj(j=1,2,...n) = ratio between frequencies of excitation
and of motion
Meyr = total mass of tension pulley/arm
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Multiple-degree-of-freedom linear asymmetric nonviscously damped systems are consid-

N. Wagner ered. It is assumed that the nonviscous damping forces depend on the past history of
Institut A fiir Mechanik, velocities via convolution integrals over exponentially decaying kernel functions. An ex-
University of Stuttgart tended state-space approach involving a single asymmetric matrix is proposed. The nature

of the eigensolutions in the extended state space has been explored. Some useful results
relating the modal matrix in the extended state space and the modal matrix in the original
space has been derived. Numerical examples are provided to illustrate the results.
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1 Introduction A brief review of literature on dynamics of nonviscously
mped systems may be found in R&]. Muravyouv[5,6] and

. . . . dal
Viscous damping is the most common model for the modehr% ravyov and Huttor{7,8] have considered this kind of system

of vibration damping. This model assumes that the instantanequ

generalized velocities are the only relevant variables that det%’r?-se;emtgﬁifxgzzgm'slV%/Zg]neé:lg;‘cé'zg;}?&Sﬁglage&c‘;ggiégeaiﬂﬁ'
mine damping. Viscous damping models are used widely for thee'xact state-space method for the analysis of linear systems with

Z?n? lIi(i:tybaer;ivrig?tigegagi?édC?omtgzan\eo?\(\:/?scec\,lue: Bh;nligihn thniot(; Sponential damping. Their approach was based on representing
pIng P : ping .(2) in terms of twosymmetriamatrices in an augmented state

in which the dissipative forces depend on any quantity other th% ace. In this paper an alternative approach based on only one

the instantaneous generalized velocities will be called nonvisco . i ) )
damping models. ng many nonviscous damping models, the cg symmetric matrix is suggested and the relationships between the

volution integral model([1-3]) is possibly the most general e|gaecr;v?];t\?ésblgetrr:ed(satr?\;tgdspace and the eigenvectors in the original
model within the scope of linear analysis. In this paper we cof? '

: 1o . , .
sider that the damping model consists of viscous and nonviscoyg! IS assumed thal = exists, that is, systems with a singular
damping. The equations of motion offadegree-of-freedom lin- Mass matrix is not considered in the present work. For the sake of

ear system with such damping can be expressed by generality the usual symmetry and non-negative definiteness prop-
erties of the system matrices are not assumed. Further, it is also

t considered that in general the system is neither symmetrizable
MU (t) + DU(t)+f G(t—nu(r)dr+Ku(t)=1(t), (1) (10,11]), nor simultaneously diagonalizable by any linear trans-

0 formations([12]). In Sec. 2, the eigenvalue problem associated
N . . with Eq. (1) is briefly reviewed. The state-space approach based
WheJSNU_(t) eR" is the vector c’)\‘fXNge_neraIlze_d coordinatéd, o internal variables is formulated in Sec. 3. The eigenvalue prob-
sR NS the mass matrixK e 7" is the St'ﬁ“ﬁs_s matrixD  |em in the state space and some properties of the eigensolutions
e RN*" is the viscous damping matrix, arfi¢t)  R" is the forc-  are discussed in Sec. 4. In Sec. 5, the proposed results are illus-
ing vector. The matrix of the damping function§(t—7), can trated by a numerical example.
have various mathematical forms. For example, wigkh— 7)
=D4(t—7), where §(t) is the Dirac delta function, the kernel
function reduces to the case of viscous damping. Among many )
other mathematically possible damping functions, the exponentl Background: The Eigenvalue Problem

damping model is physically most meaningfii]). For this Free vibration characteristics of the system is governed by the
damping model the kernel function matrix has the special formeigenvalue problem associated with the equations of mdfian
n Assuming the initial conditions
g(tfr)=k21 e #IC, ) u(t=0)=upe RN and a(t=0)=uge RN ©)

] and taking the Laplace transform of Ed) one obtains
where u,eR* are known as the relaxation paramete,

e RN*N are the damping coefficient matrices, amdlenotes the s*MU(s) — SMug— Mg+ s[D+G(s)Ju(s)
number relaxation parameters used to describe the damping be- _
havior. —[D+G(s)Jup+Ku(s)=f(s) 4
— 2 — — _
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n P have been considered in details. A third possible case, when only
G(S)ZE K Cy. (7) someCy matrices are rank deficient, can be easily derived from
k=1 St i the two preceding cases.

In the context of structural dynamics, the Laplace paramgter 31 Case A: All G, Matrices are of Full Rank.  Here it is
=iw, wherei=—1 andwe R" denotes the frequency. Consid-assumed that
ering the free vibration from Ed5) the right-eigenvalue problem

can be represented by rank (C)=N, Vk=1,...n. (13)
n u We introduce a set of internal variableg(t) e RN, Vk
APM+\ D+ N\ K _CotK|u=0. gy =1...nby
! : &N : ®) t
Similarly the left-eigenvalue problem can be expressed as Yi(t)= foﬂke_”"(t_f)u(ﬂd“ (14
n
N Mk T Applying Leibniz’s rule for differentiation of an integral to Eq.
vi| NMANDEN 2, N+ C+K|=0" ©)  (14) one obtains
t
Here\ e C is thejth eigenvalue and; e CN is thejth eigenvec- SRS I SRyt :
J . | N = K + X

tor. Suppose the number of eigenvaluesrisThe methods for Yid(®) Hic® Umdr () (15)

solving this kind of problem follow mainly two routesa) the o . .
extended state-space methd®—-16,7,6,9 and (b) the methods Multiplying Eq. (14) by the relaxation parametgs, , then adding
in the configuration space oiN” space([2,3)). In the next section it t0 Eq. (15) results in
an extended state-space method based on a set of internal vari- Vi) + () = m(t). (16)
ables is proposed. ) )
pear in complex conjugate pairs and the rest are purely real | rewritten as
negative([3,17]). We emphasize that these results are simply ob- n ¢
servations and a detailed mathematical proof of the conditiong t)+pu(t)+ >, C, jﬂkewk(t—r)u(T)dT +Ku(t) =f(t).
under which such results are valid are not yet available. A physical k=1 0
explanation, however, can be given. Tiepairs of complex con- 17)
jugate eigenvalues can be related to Mécomplex modes of . .
Jst?ucturalg vibration. These modes are thereFf)ore cakdaktic Substituting Eq(14) into Eq. (17) leads to
modes([3]). The other (n—2N) purely dissipative modes appear n
due to nonviscous nature of the damping model and therefore MU(t)+DU(t)+2 CyYi(t) +Ku(t)=1(t). (18)
called nonviscous mode§3]). Nonviscous modes, or similar to k=1
these, are known by different names in the literature of differeqsing additional state variables
subjects, for example, “wet modes” in the context of ship dynam-
ics ([18]) and “damping modes” in the context of viscoelastic v(t)=u(t) (19)
structures([15]). For convenience we construct and partition thﬁnd assuming tha#l ~* exists, Eq.(17) can be rewritten as
following matrices: T

n

A=diagx1,)\2, Ca ,)\m]E(:mxm:diane,A;Anv], (10) \'/(t)_i_M*lDu(t)_i_z Milckyk(t)‘i‘MilKU(t):Milf(t).
k=1
U=[Ug,Uy, ... Un] e C™M=[Uq,U% Uy, ], (11 (20)
and V=[vq,05, ... 0] e C™™=[V,,V: ,V,,]. (12) Rearranging Eqg16), (19), and(20) one obtains

Here ()* denotes complex conjugation, the subscrijt €orre- u(t)=v(t), (21)
sponqs to elastic modes, and the subscript,(corresponds to n
honviscous modes. V() =—M~IDv(t) — > M~ICyi(t)— M ~Ku(t)+M (1),

3 State-Space Formulation - 22)

For viscously damped systems, the state-space method based on . _ _ _
one asymmetric system matrix has been used extensively in litera- V()= pidv () — ply (1), Vk=1,....n (23)
ture (see Newland19,2Q). Here this approach will be extendedor in the matrix form
to system(1) by using a set of internal variables. In what follows

next, two physically realistic cases, namelg, when allC, ma- ) =Az(t)+r(1), (24)
trices are of full rank andb) all C, matrices are rank deficient, where
|
e [ 0 o) o ]
-M K -MID -Mlc, -Mc, -+ —-MIc,
(0] mql — puql (0] (0]
A= ! ! e RXm, (25)
O }Lzl O - ,lL2| e O
. O ol (0] (@) (@) — gl
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O e RN*(N"10 are the eigenvectors @, andC;, corresponding to
M~ (1) the other N—r,) numbers of zero eigenvalues. Now defining the

0 rectangular transformation matrices
r(t)= o eR™, (26)
'O szalkERerk (34)
\%3 and L=V, e RV (35)
ya(t)
and z(t)= yo(t) eR™. (27) itis easy to show that
Ya(® LECkRy=dk. (36)

In the above equatior(t) is the extended state vectdy,is the
system matrix in the extended state spag¢e), is the force vector
in the extended state spad®,c RN*N is a null matrix, andl
e RN*N is an identity matrix. It is clear that the order of the
systemm is

Thus the matrice®, andL, in Egs.(34) and(35) transform the

orlglnally rank deficient matrixC, to a full-rank matrix with rank
Now we define a set of internal variables of reduced dimension

m=2N-+nN. (28) Yk(t) e R« using the rectangular transformation matRx as

In the viscous damping limitall the internal variables can be

disregarded, that is, afixX N equations after the first\2 rows in Vi) =R (1). (37)
Eq. (24) can be deleted from the formulation. Under these condi-

tions it is easy to see that the equations of motia#) reduce to

the standard fornf[19,20) for viscously damped systems with From this equation it inmediately follows that

(0] | (o)
A:[—MlK _m-p) D= M*lf(t)}’ Y1) = Riefi(1), (38)
and . ) . . . .
wherey,(t) is defined in Eq(14). Using these relationships, Egs.
u(t) (22) and(23) can be expressed as
2=y (29)

This shows that the representation of the equations of motion by
Eq. (24) is a natural generalization of the standard state-spaeé)= —M’lDV(t)—E M IC,RF(t)— M~ 1Ku(t)+M (1)
formulation for viscously damped systems. k=1 (39)

3.2 Case B: All G, Matrices are Rank Deficient. In alarge
engineering structure it is possible to have different damping in
different parts of a structure. For example, different members of a and R Yy (t) = mv(t) — w RV (1) (40)
space frame may have different damping properties, each associ-
ated with its relaxation parametgs, . In this case the associated
coefficient matrixC, will be rank deficient because it will have Because Eq(40) still represents a set & equations, we premul-
nonzero blocks corresponding to the associated elements onlytiply this by Lj to obtain a reduced set of equations:
this section we assume that in general

re=rank (C)<N, Vk=1,...n. (30) [LgRiI9k(t) = syl pv(t) — i L iR ITi(1). (41)

This implies that the number of nonzero eigenvalue€pfs ry .
Therefore there exist two matricdd, e RN*N and V, e RN*N

Taking the inverse of L{R,], the preceding equation may be
such that

rewritten as

dy Olk} (31)

\~/TCU=[ }
IR o] O

Yi() = TV (1) — il ¢ Ji(1), (42)
In the above equatiod, € R"<*"« is a diagonal matrix consisting

of only the nonzero eigenvalues @, O, and O,, are null where T.=TLTR,1" WL Te R7<N vk=1 n 43
matrices of orders, X (N—r) and (N—r,)X(N-r,), respec- «=LLRd Le ’ e (43)
tively. For convenience partitiob, andV, as

- - Now Egs.(21), (39), and(42) can be combined into the first-order
U=[UyUz] (32) form as

and V.=V ;| V] (33)

The columns of matriced); e RN« and Ve RN« are the AH=AZ)+T(), (44)

eigenvectors o€, andCI corresponding to the nonzero blodk
and the columns of matricesU, e RNVN"W and V,, where
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e) In Onyr, Ony, On,r, ]
-M" K -MD -MC;R;, -MC,R, -+ —MTIC,R,
(0] — pql (0] (0]
5 11N T Malry 11,05 ri cRmEm 45)
Orz,N moTo Orz,r1 _M2|r2 Orz,rn
C)rn'N /"LnTn Orn’rl Orn’rZ _Mnlrn
I
On 4.1.1 The Structure of the Modal MatriceskErom the defini-
M~ (1) tion of z(t) in Eq. (27), the right eigenvectors in the extended state
0 space can be related to the right eigenvectors in the original space
r
2
: yj
0, Aju;
" Yij
L= s 55
u(t) P=1 y, (55)
v(t) :
Va(t Ynj
and Z(t)= Z“& cRM (47) " o
y2.( wherey,; .Y, . . . Yaj are components of thigh eigenvector cor-
: responding to the internal variablgs(t),y»(t), ... ya(t). The
Yn(t) vectorsy,;e CN, Vk=1,2,... n can be related ta; using Eg.
In the above equations (16). Taking the Laplace transform of E€L6) results in
n — J— —
Sy, + =SuU, 56
m:2N+E . (48) Yk MYk = Stk (56)
k=1 wherey, is the Laplace transform gf(t). For thejth eigenvalue

is the order of the systen®;; areix j null matrices|; arejxj ©On€ obtains

identity matrices, an@; are vectors of zeros. The terms:} are v o L o
corresponding to term@) defined in Eq.(24). When allC, ma- N§Yi T i = Ry OF (N pid¥ig =Ny - (57)
trices are of full rank, that is, when,=N,Vk, then one can Provided)\j#—,uk, from the preceding equation,

choose allR, and L, matrices as the identity matrices and Eg.

(44) reduces to Eq(24). Nk 3 o
ykj—muj, Yk=1,2,...n; VJ—l,Z,...(Z-i—n)N.
(58)
4 The Eigenvalue Problem Using Eqgs.(55) and(58) the right eigenvectors in the state space

¢; can be related to the right eigenvectors in the original space
u;. It is useful to represent this relationship in a matrix form.
Define a matrix

4.1 Case A: All G, Matrices are of Full Rank. The right
and the left eigenvalue problems associated with (24). can be
expressed as

_ NX (24N
Adi=\, (49) Yie= [t Y - - - Vi ppd €€ 2N, (59)

and l/l,-TA:)\jlﬂjT i=1.2,...(2+n)N, (50) Forj=1.2,...,(2tn)N, Eq. (57) can be written in a matrix
form as
where ):\f eC is the jth eigenvalue, ¢ e CZ*™N and
e ("N are respectively thgth right and left eigenvectors. Be- YiA+ wVie= mA. (60)
causeA is a real matrix the eigenvalues can only be real or, E)i
complex, then must appear in complex conjugate pairs. Construc

the “modal matrices:” Y= UALA/ i+ o] (61)

yiding this equation byu, one obtains

D=1, ¢z, - . . ,Ppsnyn] € CETMNEEIN (51)  Using this expression the matrix of right eigenvectors in the state
and W=[4 iy, . .. osmp] e CEINXHIN, (52 space, given by Eq51), can be expressed as

It can be easily shown that the right eigenvectors and the left U
eigenvectors satisfy a biorthogonality relationship, ilﬁ[A¢j UA .
=0, Vk#j. We also normalize the eigenvectors such that UA[A/ 1+ 24 nyn]

o= “1 (62)
UA[A/ o+ 1
WT(D:'(ZM)N (53) [Al s, : <2+n)N]
and WTA®=A. (54) UATA oy + 1 2imyn] ™1
However, it should be noted that the above normalization is nit view of the partitions shown in Eq$10) and(11), the preced-
sufficient to defineP and W uniquely. ing equation can be conveniently partitioned as
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Ue Uz Uny
UeAe U; Aé UnpAny
UeAe[Ae/M1+IN]71 U:A:[A:/M1+IN]71 UnpAny[Any /M1+|nN]7l

= _ _ - (63)
UeAe[ Ae/potIn] ™t USAS[AS o+ 1T UnyAn [ Ay T+ 1on] 7t

_UeAe[Ae/:Uvn'i'|N:|_l U:A:[Azlﬂn+lN]_l UnvAnv[Anv/:Uvn'i'lnN]_l_

This equation completely defines the structure of the right-modal n “
matrix in the state space. Note that the right-modal matrix of g] M ~K +\;py,M D+ )\jE —kp;jM‘1Ck+ \py;=0"
viscously damped system consists of onlyNv22N block in the k=1 Mt A

top left corner of this expression. (70)
Now consider the left eigenvectors. Suppose n
Tag-1] 32 , _ Mk _aT
E” or pyM )\J-M+)\,D+)\,k21 )\j+Mka+K o', (71)
xij Comparing Eq(71) with Eq. (9) immediately results in
]
= . 64 -
V=4 % (64) pLM t=o] (72)
Xf or py= =MTy;. (73)
) " . . Using Eqgs.(72) and(65) one obtains
Expanding Eq(50) we get the following equations:
prj=—KToj/\;. (74)
—pI MK =a il (65) J el
) 1M Similarly, using Eqs(72) and (69) results in
n
T pIM1 T —\.pl. _ 1 T
P1j psz D+k§::l X )\JpZJ ) (66) Xyj=— mckvj . (75)

and — pL-M flck_lukxlj:)\jxlj , Vk=1,...n. (67) FromEgs(73—(75), the left eigenvectors in the state space given

o ) ) by Eq.(64) can be expressed as
Multiplying Eq. (66) by \; and using Eq(65) results in

- KTUJ' /)\]
n T
_ _ M'v;
—p;M K=\ jpy;M 1D‘H\12 mX=Npg; . (68) AT J
= Civj/(math)
: . U= —Clo [t ) (76)
Provided\;# — wy, from Eq.(67) we further obtain 2Uj 12T A
Xty=— ——PLMIC,. (69) —Chovj /(pat\))
FT R Recalling the partitions in Eq$10) and (12), for j=1,2,...,(2
Substitutingxlj from Eq.(69), Eq. (68) results in +n)N, the matrix of left eigenvectors can be expressed as
|
—KTV AL —KTVEA: KTV ARt
MTV, MTVE MV,
W —CiVe[Aet pln]™t —CIVE[AL +ualn]™t = CiVi[An,+ palan] ! a7
—CVelAetpaln] ™t —CVE[AZ+ualn] ™ —CoVi[An,+palon] ™
L 7C-rll—ve[Ae+:U“n|N]7l 7CIV§[A2 JF,U«nIN]71 7C-r|1—vnv[Anv+:U«n|nN]71_
I
This equation completely defines the structure of the left-modal and @}I’Z:)\jw}l’ i=1,2,...m, (79)

matrix in the extended state space. For viscously damped systems,
the left-modal matrix consists of onlyNex 2N block in the top

left corner of this expression where ¢, € C™ and 3  C™ are respectively théth right and left

eigenvectors and the order of the systerns defined in Eq(48).
4.2 Case B: All G, Matrices are Rank Deficient. The right Again we construct the modal matrices
and the left eigenvalue problems associated with (B4). can be

expressed as &,:[(7)1,552, o ,<~l>m] e (mxm (80)
Adi=\;P; (78) and W=[@y, Py, ... Yyl ™M (81)
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These modal matrices also satisfy the biorthogonality propel\t\mere?ljecrl, VZJECFZ, . S/nJeC’n are components of thgh
defined in Eqs(53) and (54). eigenvector  corresponding’ to the internal variables

4.2.1 The Structure of the Modal MatricesErom the defini-  Y1(1).¥2(t), . . . ¥n(t). From Eq.(37) we may obtain
tion of z(t) in Eq. (47), the right eigenvectors in the extended state

space can be related to the right eigenvectors in the original space Yig= Rk?kj- (83)
(9) by
u Premultiplying byL | yields
iy Y= T (84)
b=l (82) oo
) Yo, [

where Ty is defined in Eq.43) and Yig is defined in Eq.(58).
Substituting?kj in Eq. (82 for j=1,2, ... m, the matrix of right

Y’nj eigenvectors in the extended state space can be obtained as
|
[ Ue Uz Uny ]
UeAe U: A: UnuAnu
B TiUAL A/ g+ 1007 TLUEAS[AS g+ N7 TaUn An[ Ay /g +1on] 7 (85)
T2UeAe[Ae/M2+|N]7l TZUzA:[Aé/M2+|N]71 ToUny Ans[ Ay /:"LZ+InN]71 .
L TaUeA[Ag/ pn+1 N]_l TnU; A: [A: a1 N]_:L ToUnpAny[Any [ g0+ InN]_l_
Now consider the left eigenvectors. Suppose
( plj\
P2,
7(1],
W= % [ (86)
Sy

Following the procedure outlined in the previous section, it can be showrpztjhand py, are again given by Eq$73) and(74) while
7<kj is given by

X =— ReCLY; . (87)

] ,LLk+ )\J
SubstitutingT(kj in Eq. (86) for j=1,2, ... m, the matrix of left eigenvectors in the extended state space can be expressed as

—KTVA,L —KTVEAE KV ARt
MTV, MTV* MV,
—RICIVd Aet ualn] ™" —RICIVE[AF +ualn] ™" —RICIVy,[An,+ palon]
—RICIV Aet paly] ™t —RICIVE[AL +paln]™t —RICIVi,[An,+ ol o] 1|

2
I

(88)

| ~RaCaVel Aet inln] ™t —RICIVELAL +aln] ™t —RICIVi,[Any+ ol o] ]

The analysis presented here clarifies the structure of the modamping of the system is expressed as a sum of two exponential
matrices in the extended state space. The response to the systemels. For this special case the equations of matlpmeads
subjected to dynamic forces and initial conditions can be easily

obtained by utilizing the biorthogonality of the left and the right

eigenvectorgsee the Appendijx In the next section the results

. . . t
derived here are illustrated by a numerical example. Mu(t)Jrf [uie M= IC + e~ k2t~ DC,Ju(7)dr+ Ku(t)
0

5 Numerical Example =f(t). (89)

We consider a three-degree-of-freedom system with asymmet-
ric coefficient matrices. The purpose of this example is to verify
some of the mathematical expressions derived in this paper. THege mass and the stiffness matrices of the system are defined by
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0.5740 1.3858
M=| 0.7070  0.7070
0.4620 —0.1914
and
1.3748 10.9440
K=| 1.2625 2.8770
0.7455 —4.1244

1.3858 =15 and u,=0.1. (94)
—0.7070 (90)  Both of the damping coefficient matrices have rank deficiencies
—0.1914 because one can easily verify that

T1=rank C,)=2<3 (95)
25.297§
—17.4195 . (91) and m,=rank C,)=1<3. (96)
0.8625 | The order of the system matrix in the extended state space can be

Numerical values for the entries ® andK matrices are taken Obtained from Eq(48) asm=2X3+(2+1)=9 and the matrix
from Adhikari [21]. Note that these matrices are asymmetric arigf€!f can be obtained using the procedure described in Sec. 3.2.
not positive definite. The damping coefficient matrices are givel{1€ transformation matrice, andL for k=1,2 given by Egs.

by
0.3588 —1.3747
Cc,=| —0.3574 2.6618
0.0210 —1.4199
and
1.1198 1.1915
C,=| 1.7641 1.8770

0.6881 0.7321

(34) and(35) are obtained as

L 0.0397 —0.8274 0.0497 —0.1887
1707 o2 Ri=| T07128 043%|, L,=| -05719 06828
0.7002  0.3545 0.8188  0.7058
3.3674 @)
0.5091 0.5603
1.149 and R,=|0.8019, L,=|0.5961, (98)
1.81 (93) 0.3128 0.5751
0.706

Using these, the system matrix in the extended state space in Eq.

Numerical values for the relaxation parameters are assumed to(#8) is given by

0 0

0 0

0 0
~1.7281  4.8272
A=| —0.1670 —9.3966
-0.1093 —0.5001

0 0

0 0

L 0 0

0 1.0000 0 0 0 0 0 T
0 0 1.0000 0 0 0 0
0 0 0 1.0000 0 0 0
—8.0485 0 0 0 —6.2763 —0.6986 —2.6209
8.8830 0 0 0 6.7959 0.4790 —0.9270 (99)
—23.8041 0 0 0 —4.3340 0.7501 0.6523
0 0.0759 —0.8728 1.2494 —1.5000 0 0
0 —0.4021 1.4554 1.5044 0 —1.5000 0
0 0.0594 0.0632 0.0610 0 0 —0.1000]

The nine eigenvalues of the system are arranged according td@qThe diagonal matrices containing the eigenvalues are given by

Note that the eigenvalues corresponding to the nonviscous modes are purely real and negative. The right and the left eigenvector

A=diag 0.0217 1.4060, 0.0371 3.1929,

—0.2359+5.6940] (100)

and A,,=diag —0.0905, —0.8755, —1.7799. (101)

matrices corresponding to these eigenvalues are obtained as

[ 0.0088-0.5690
—0.0029+0.0147
—0.0082+0.0102
0.8002+0.0000
—0.0207-0.0037
—0.0146-0.0114

(=X
Il

and

0.0070+0.1364
0.0026-0.2245
0.0209-0.0531
—0.4353+0.0275
0.7169+0.0000
0.1702+0.0646

0.0179-0.0238 —0.0335+0.1236
—0.1399+0.1145 0.2024-0.3644
L 0.00210.0321 0.0021-0.0093

Journal of Applied Mechanics

0.0020-0.0866 0.0088+0.5690 0.0070-0.1364 0.0020+0.0866 0.8662 0.3905 —0.1046]
—0.001#0.1015  —0.0029-0.0147 0.0026+0.2245 —0.00170.1015 0.0171 —0.2630 0.0428
—0.0043-0.1030  —0.0082-0.0102 0.0209+0.0531 —0.0043+0.1030  —0.0168 0.1207 0.0320|
0.4925+0.0317 0.8002-0.0000 —0.4353-0.0275 0.4925-0.0317 —0.0784 —0.3419 0.1861
—0.5774-0.0338  —0.0207+0.0037 0.7169-0.0000 —0.5774+0.0338  —0.0015 0.2302 —0.0762
0.5872+0.0000 —0.0146+0.0114 0.1702-0.0646 0.5872-0.0000 0.0015 —0.1057 —0.0570
0.0527-0.2122 0.0179+0.0238 —0.0335-0.1236 0.05270.2122 —0.0019 —-0.5748 —0.0338
—0.0161+0.0236  —0.1399-0.1145 0.2024+ 0.3644 —0.0161-0.0236 0.0224 0.5021 0.9702
—0.0002-0.0050 0.0021+0.0321 0.0021+0.0093 —0.0002+0.0050  —0.4923 0.0157  —0.0016

(102)
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[ 0.0001+0.8070 —0.0033+0.0672 0.0020+0.0129 0.0001-0.8070 —0.0033-0.0672 0.0020-0.0129 0.1088 0.0407 0.1185
0.0193+0.5788 0.1252+1.7383 0.0302-0.2378 0.0193-0.5788 0.1252-1.7383 0.0302+0.2378 0.1130 —0.8364 —0.7962
0.4716-0.7060 —0.1955+2.4606 0.3681+3.1361 0.4716+0.7060 —0.1955-2.4606 0.3681-3.1361 0.1211 1.4596 —2.3903
0.6231-0.0078 0.0344+0.0088 0.0159+0.0013 0.6231-0.0078 0.0344-0.0088 0.0159-0.0013 0.0053 0.0257 0.1441

W=| 0.4119-0.0068 0.5793-0.0450 —0.1716-0.0202 0.4119+0.0068 0.5793+0.0450 —0.1716+0.0202 0.0038 —0.0658 —0.0634|.
—0.0991-0.0271 0.5349+0.0026 0.6844-0.0649 —0.09910.0271 0.5349-0.0026 0.6844+0.0649 0.0001 0.0204 —-0.2511
—0.2023+0.2660 0.0770-0.4024 —0.1344+0.7134 —0.2023- 02660 0.0770+0.4024 —0.1344-0.7134 —0.0056 —1.1162 0.8826
—0.1167 0.0959 0.0736-0.1696 0.0057-0.0725 —0.1167-0.0959 0.0736+0.1696 0.005#0.0725 —0.0013 —0.0547 1.1414

L —0.1207 1.4685 0.0026+0.0872 —0.0071-0.0988 —0.1207-1.4685 0.0026-0.0872 —0.0071+0.0988 —1.8409 —0.0090 0.2873

(103)

The eigenvectors are normalized so tighd is an identity matrix. However, it should be noted that this normalization does not make
the eigenvectors unique.

In view of Eq. (85), the right-eigenvector matrix corresponding to the elastic modes in the space of the original vadablesn
be obtained directly by taking a>X83 block in the top left corner of Eq102):

0.0088-0.5690  0.0070+0.1364  0.0020-0.0866
U.=| —0.0029+0.0147 0.0026-0.2245 —0.001A0.1015 |, (104)
—0.0082+0.0102 0.0209-0.0531 —0.0043-0.1030
Similarly U,,, can be obtained by taking first three rows and last three columns dfLBg:
0.8662 0.3905 —0.1046]
U,=| 0.0171 —0.2630 0.0428|, (105)
—0.0168 0.1207 0.032

Now consider the left eigenvectors. Because it is assumedithatexists, from the blocké2,1) and(2,3) of Eq. (88), V andV,, can
be obtained. So, from the corresponding blocks in @§3) we obtain

0.1901-0.0150  0.3462-0.0047  0.2712-0.0316
V.=| 0.3614+0.0144  0.0314-0.0337  —0.6054+0.0317 (106)
0.5594-0.0202 —0.4039+0.0765  0.6239-0.0065

0.0021 0.0036 —0.0840
and V,,,=| 0.0026 —0.0610 0.1327|. (107)
00049 01445 0.213

As mentioned beforel),,, andV,,, turned out to be real matrices. This is expected because the eigenvalues corresponding to these
modes(the nonviscous modgsare purely real.

Using these numerical values one can easily verify E8f$.and(88). A typical case for block3,2) in Eg. (88) is considered here.
Using the numerical values given by E¢92), (94), (97), (100), and(106) one obtains

—0.2023-0.2660 0.0770+0.4024 —0.1344-0.7134

—0.1167-0.0959 0.0736+-0.1696  0.0057-0.0725 | (108)

—RICIVE[AS +uil3] 1=

These values can be exactly identifiedy given by Eq.(103 ~ matrices. The eigenvalues and the corresponding eigenvectors of

for i=7,8 andj=4,5,6, which corresponds to blo¢R,2) in Eq. the system were obtained by solving the standard eigenvalue

(88). This illustrates the relationship between the modal matricgsoblem in the state space.

in the extended state space and the modal matrices in the originaClosed-form exact relationships relating the modal matrices in

N space. the extended state space and the modal matrices in the original

space have been derived. All the entries of the modal matrices in

6 Conclusions the extended state space can be represented in terms of the eigen-
. N ) values, the systems matrices, and the modal matrices in the origi-

Linear vibration of multiple-degree-of-freedom damped sys;a) space. It is expected that these results will be useful to under-

tems with combined viscous damping and exponentially fadingang the nature of the eigensolutions of nonviscously damped
damping memory kernels has been considered. It has been Qssiems.

sumed that in general, the mass, the stiffness and the damping

coefficient matrices are neither symmetric nor positive definite.

An extended state-space method ba§ed on a set of internal v}@\rlg- endix A: Dynamic Response of Asymmetric Nonvis-
ables has been proposed. Two physically realistic cases, nameoyp

(a) when all the damping coefficient matrices are of full rank, anfl usly Damped Systems

(b) when the damping coefficient matrices are rank deficient, haveln this section the dynamic response of the system will be ob-
been presented. It was shown that for both the cases the equataned by using the mode superposition method, commonly em-
of motion in the extended state space can be represented in tepteyed for undamped or proportionally damped systems. We be-
of a single asymmetric matrix of higher dimension. The dimergin by assuming that all the initial conditions are zero. Taking the
sion of this matrix depends on the rank of the damping coefficiehaplace transform of Eqg24) or (44) one obtains
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sz(s)=Az(s)+r1(s), (109) m t T
where the system matrbd is given by Eqs(25) or (45), depend- - 121 Joe : vyf(ndr
ing on the ranks of th&€, matrices. Similarlyz(s) andr(s) are
the Laplace transforms aft) andr(t) orZ(t) andT(t), respec- n t
tively. Using the modal transformation +kzl f €M MY I Ugd T | U+ e (v MU
=1 Jo
o t0) +v] DUg)u;+{\ M+ 8(t) (v M 118
A . - ; L,
and the orthogonality relationshigs3) and (54), we obtain vjDuo)u; +{Ae (O} ejMuo)y, (118)
(sl—A)g(s)=Tr(s) or q(s)=(sl—A) " WTT(s). Fort>0 the preceding equation may be rewritten as
(111) m .
Substitution ofq(s) from the preceding equation in E¢110 u(t)ZE femtff)vaf(T)dTJraj(t) uj, (119)
results in i=1(Jo
m T . . .
ZS):®(S|*A)71‘PTHS)=E d)j ij(S). (112) where aj(t)=e"Jt(vaMqurvaDuO)+)\je)‘1‘(vaMu0)
FisTN n (eMt—e )
Using the expression af; in Eq. (64) and recalling that onlyN +2 Mk?vfckuo. (120)
+1 to 2N rows ofr(s) is nonzero, one has k=1 i K
zpjTWs):png’lf_(s). (113) It is interesting to note that the expressionagft) is indepen-

o ) dent of the ranks of th€, matrices. The ranks of th@, matrices
Substitutingp,; from Eq. (73), Eq. (112 can be rewritten as  only effect the number of term@n) to be added in Eq(119) to

obtainu(t).
m v]j‘f_(s) (t)
A= ~—— . (114)
Taking only the firstN rows of Eq.(114) and using Eq(55) one References
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Transient Growth Before
Coupled-Mode Flutter

Transient growth of energy is known to occur even in stable dynamical systems due to the

non-normality of the underlying linear operator. This has been the object of growing
P.J Schmid1 attention in the field of hydrodynamic stability, where linearly stable flows may be found

e to be strongly nonlinearly unstable as a consequence of transient growth. We apply these

concepts to the generic case of coupled-mode flutter, which is a mechanism with important
applications in the field of fluid-structure interactions. Using numerical and analytical
approaches on a simple system with two degrees-of-freedom and antisymmetric coupling
we show that the energy of such a system may grow by a factor of more than 10, before
the threshold of coupled-mode flutter is crossed. This growth is a simple consequence of
the nonorthogonality of modes arising from the nonconservative forces. These general
results are then applied to three cases in the field of flow-induced vibrations: (a) panel
flutter (two-degrees-of-freedom model, as used by Dowell) (b) follower force (two-
degrees-of-freedom model, as used by Bamberger) and (c) fluid-conveying pipes (two-
degree-of-freedom model, as used by Benjamin andd®asis) for different mass ratios.
For these three cases we show that the magnitude of transient growth of mechanical
energy before the onset of coupled-mode flutter is substantial enough to cause a signifi-
cant discrepancy between the apparent threshold of instability and the one predicted by

E. de Langre

Laboratoire d'Hydrodynamique (LadHyX),
Ecole Polytechnique,
F-91128 Palaiseau, France

linear stability theory.[DOI: 10.1115/1.1631591

1 Introduction mode flutter. If this transient growth is sufficiently large, finite-

. I - amplitude effects can be triggered even though infinitesimal
Flow-induced vibration phenomena are a ubiquitous feature otion is asymptotically stable.

numerous engineering applications ranging from buffeting of air- | i the goal of this study to explore the potential of short-term
foils to deformation of building s_truct'ures and brldge_'s under W'”Qnergy growth at subcritical conditions for simple two-degrees-of-
loads. In most cases, these vibrations are undesirable, caugi@@dom approximations to technologically relevant configura-
material fatigue at best and catastrophic failure at worst. It is thygns.
not surprising that a substantial body of literature is devoted to theThe organization of the paper is as follows. We will first con-
analysis and control of flow-induced instabilities. Low-ider a simple undamped two-degrees-of-freedom model of
dimensional models are often used to approximate prohibitivetpupled-mode flutter and establish the mathematical framework
complex systems, and the critical parameters for the onset of flér stability calculations. Modal and nonmodal stability will be
ter are computed for a moderate number of degrees-of-freedatansidered, and asymptotic scalings as well as upper bounds on
The analysis follows a typical modal approach where the tempogisturbance growth will be presented. Effects of damping on the
motion of the structure is assumed to behave exponentially $tbility characteristics will be treated as well. Three classical ap-
time. In the very common mechanism of coupled-mode flutter twRjications then follow, namely, panel flutt¢®], follower-force,
(or more purely oscillatory states merge and produce exponekf): and fluid-conveying pipe.7], which will further exemplify
tially growing (and decayingmotion. For parameter values belowthe technques of the previous sections. Summarizing comments
this critical one, it is believed that stable motion prevails. conclude this paper.
A similar argument has been used for the onset of transition to
turbulence: As exponentially growing solutions of the linearized
fluids equations are encountered, the transition to turbulent fllidd Theoretical Framework
motion is expected. In recent years, however, it has been discov-
ered that short-term instabilities are present even at subcritica-1 General Undamped Two-Degrees-of-Freedom System
parameter values, and that these type of instabilities are a con@ Ny problems involving fde-str_ucture interactions can be mod-
quence of the nature of the underlying stability equatitsee, eled by a coupled system of oscillators of the form
e.g.,[1-4). X+x=ay (1)
The equations governing many cases of fluid-structure interac- . 2
tions are also of this type, and it therefore appears likely that the y+Q%=—ax (1b)
governing equations support transiently growing solutions for pdescribing the temporal evolution of the two degrees-of-freedom
rameter values below the critical one for the onset of coupledndy. The left-hand side describes harmonic oscillators of fre-
quencies 1 andl), while the right-hand side accounts for the cou-
*Permanent address: Department of Applied Mathematics, University of Washirghing of the two oscillators witha as the coupling coefficient.
ton, Box 352420, Seattle, WA 98195-2420. Systems of this form often arise when equations governing the
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0%2-1 stands for the condition number & and A is a diagonal & 4
(2) matrix containing the eigenvalues Af

We notice the following relation. For systems witliS) =1 the
For two oscillators with a supercritical coupling coefficient expodpper and lower bound coincide, and the temporal evolutio@ of
nentially growing solutions are encountered. For coupling coefil entirely governed by the real part of the least stable eigenvalue.
cients below the critical one, we observe purely oscillatory beha@ystems with«(S)=1 are known ashormal systems. On the
ior. The above critical coupling coefficient is a widely used angther hand, if«(S) is larger than 1, the discrepancy between lower
accepted tool for determining the onset of unstable motion. It &d upper bound allows for short-term effects before the exponen-
commonly believed that for coupling coefficients below the crititial behavior governed by prevails ast—o. Systems with

cal one no amplification of infinitesimal disturbances is possibles(S)>1 are categorized ason-normalsystems. Non-normal sys-
tems have a set of nonorthogonal eigenvectors and the source of

2.2 Transient Amplification of Disturbance Energy. The  gnhort-term energy growth lies in this nonorthogonality of the sys-
goal of this manuscript is to explore the potential for short-terigmy's eigenvectors. Even under subcritical conditions, i.e., for
linear instabilities in the absence of exponentially growing solyspypling coefficients below the critical one, a nonorthogonal su-
tions. To this end we treat the above system of equations apgposition of exponentially decaying eigensolutions can lead to

general initial value problem of the form substantial disturbance growth.
X 0 1 0 0, 2.3 Asymptotic Scalings. To further probe the solution be-
d | % -1 0 a 0 & d havior as we approach the pritical cqupling coefficiethe
_ = or —q=Aq. Laplace transform the governing equations to obtain
dt| y 0 O 0 11\ Yy dt ) _
y a0 —0? o \V (pe+1)X—aY=pxy+Xq (11a)
®3) (p?+Q%)Y—aX=py,+yo (11b)
The formal solution of this initial value problem can be writterwith X(p) and Y(p) as the Laplace transform of the dependent
in terms of the matrix exponential &. We obtain variablesx(t) andy(t), respectively. Solving foX(p) we obtain
the expression
q(t) =exp(tA)do 4 L
ith th tor of initial diti > dyg. = 2 3
with gy as the vector of initial conditiong,, Xg, Yo, andyg X(p) (p2+1)(p2+02)+a2[A+pB+p C+p°D] (12)

Using this formulation, we wish to compute the amplification of
disturbances by determining the ratio of the disturbance energygth A, B, C, and D determined from the initial conditions. An

a given timet to the initial energy of a general perturbation. Maxi-analogous expression can be derived¥ép). After inversion of
mizing this ratio over all possible initial conditions results in thehe Laplace transform we get the following expression for the
largest possible amplification of initial perturbations over a timgariablex(t):

span[0 t]. Mathematically, we define the largest possible energy

amplificationG(t) as ® 1 (A {+B' sinat+C’ cosBt
X(t) = ——— cosa sina cos
E® _ Jal?  JlexptA)q? 2a,V1-(afa)”
G(t)=ma,iE =max > =max > L
o EO) o laol® g ol +D’ sinpt] (13)
=|lexp(tA)? (5) Where

where we have assumed that taking the norm of the state wgctor 2 221 2 \/ﬁ
is equivalent to computing the energy of the state vector. We ap 2(1+Q N 1) -4a0 (14)

therefore define I . .
andA’, B’, C’, andD’ depend on initial conditions. This last

lall2=x2+ %2+ Q2y?+y? (6) expression yields the behavior aft) as the critical coupling
o ) ) coefficient is approached. We obtain
which is easily related to the standdrg-norm||-||, by introduc-

ing weight matrice$= according to

1
X(t) ~ —=. (15)
10 0 O J1-(alay)?
5 1 0 O The same holds true for(t), y(t), andy(t). Consequently, the
ldl>=[IFql3 F= 00 0 0 (7)  energyE of the coupled oscillators is expected to behave as
1
0 0 0 1 E~ TEPTENE (16)
Reformulating the energy amplificatio®(t) in terms of the - _ ¢ o
L,-norm results in as the stability boundary is approached, when time is fixed.
G(t):||Fexp(tA)F’1H§. @8) 2.4 Numerical Results. The quantityG(t), computed from

Eq. (8), represents the maximum possible energy amplification,
It is often desirable to bound the maximum amplification ofvhich for each instant in time is optimized over all possible initial
energy. Using the definition of the energy amplification it i€onditions of unit energy, as is apparent from E5). The specific
straightforward to derive lower and upper bounds as follows: initial condition that achieves an amplification &f(t) may be
B TP different for different times, an@&(t) should be thought of as the
exp2M) <G(1) =[SexpA)S H*<«*(S)exp2At)  (9)  envelope of the energy evolution of individual initial conditions of
unit energy. The energy amplificati@\(t) for the undamped gen-
eral system withQ?=1.1 anda/a,=0.9 is shown in Fig. (a)
together with the energy evolution of four randomly chosen initial
conditions of unit energy. We notice an amplification of energy of
«(S)=|l9Is Y (10) nearly twenty times the initial energy after approximately 150

whereN\ is the real part of the least stable eigenvaluépfndS
denotes the %4 matrix of normalized eigenvectors &f. The
symbol
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Fig. 1 General undamped system with Q2=1.1 and a/a,

=0.9. Optimal energy amplification versus time (top, solid line )

and energy amplification for four random initial conditions of

unit energy (top, dashed lines ). Maximum energy amplification

versus the coupling coefficient (bottom ). The dashed curve

(bottom ) represents the function 1 /(1—(al/a,)?). The continu-

ous curve (bottom ) represents both the maximum of  G(t) over

time and the upper bound given in Eq.  (9).

Fig. 2 General undamped system with  Q2=10 and a/a,=0.9.
Energy amplification versus time  (top) and maximum energy

amplification versus the coupling coefficient (bottom ). The
dashed curve represents the function 1 /(1—(a/a.)?). The con-
tinuous curve represents both the maximum of G(t) over time
and the upper bound given in Eq.  (9).

we observe a short-term amplification of initial energy of up to

time units. We like to emphasize that this amplification occurs atfiity times. The behavior 0, as the critical coupling coeffi-
value of the coupling coefficient that is below the critical one fogient is approached is displayed in Figbp together with the
the onset of couple-mode flutter. As the critical coupling coeffasymptotic behaviof16).
cient for this particular frequency ratid is approached we obtain 25 Effects of Damping. Damping is a naturally occuring
an even Largehr transient a_mglifri]cat_ion of initial er!er_gy,l as %epid%‘?fe'ct in many quid-structuré systems that has to be accounted for
ItrIleFlgc]i.ai(h()e. chir?/SeymAgO?hce ?:riét‘i\élglr gg’f&iﬁg@cgé%cduen? i:sa or modeled when ana_llyzi_ng the onset of coqpled-mode _flutter. In
proached, the maximum transient amplification of ene@jy Rhis paper, we are mainly interested how additional damping terms

| 2 modify the observations we made in the previous section. We

=max G(t) follows the correct asymptotic behavior. ain start by analyzing a simple two-degrees-of-freedom model,

The transient amplification of disturbance energy prevails al ) ) .
for a significantly larger frequency ratio. Figuréa® shows the %‘%t add a damping term proportional to the velocity. We get

temporal evolution ofG for a frequency ratio of)?=10. Again, X+bX+x=ay (17a)
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Fig. 3 General damped system with Q?=10and a/a,=0.9. For  Fig. 4 General damped system with Q2?=10 at criticality. En-

damping a coefficient of b=0.1, (top) and a damping coefficient ergy amplification versus time for ~ b=1 (top), and maximum
of b=1 (bottom ). energy amplification versus damping coefficient (bottom ). The
dashed curve represents the asymptotic behavior ~1/b2.
y+by+Q%y=—ax (17b) The above formula describes the modification of the critical cou-

pling coefficient when a velocity-dependent damping term is in-
with b as the damping coefficient. Traditional stability analysis dffoduced into the governing equations.
this problem follows along the same lines as for the undampedWwe are of course also interested in the effects of damping on the
case. Applying a Laplace transform to the initial value problemotential for transient amplification at subcritical values of the
results in the relation coupling constant. Modifying the system matéxto account for
the additional damping terms, we compute the amplification of
disturbance energé(t) as in the previous section.
=0 (18) The results in Fig. 3 demonstrate that the additional damping
terms exert a rather substantial—but not surprising—influence on

: : , —_ . the long-term behavior. The short-term amplification of energy, on
frc_)r_n Wh'Ch_.V'a Rou_ths criterion—we obtain a valge for thethe other hand, is only mildly influenced by damping. We still
critical coupling coefficient for the onset of flutter motion:

observe an energy amplification of approximately forty times the
initial energy for a damping coefficient df=0.1, and even for an

a.=a /172b2 0%+1 (19) excessively large damping @&f=1 we obtain an increase in en-
c e (Q%-1)% ergy of nearly one order of magnitude before strong decay sets in
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Fig. 5 Maximum energy amplification as a function of coupling and damping
coefficient for the general damped system at 02=10

(see Fig. 3 As the critical coupling parametét9) is approached, tem provides the mathematical tools as well as the motivation to
an oscillatory state is reached f@i(t) with a maximum amplifi- investigate more realistic models of fluid-structure interactions for
cation of more than forty times the initial energgee Fig. 4a)).  their potential to amplify energy in the subcritical parameter re-
A simple analysis shows that at the onset of instability, i.e., f@ime. To this end, we concentrate on three classical and well-
a=a., the solution to the damped system behaves like studied examples of two-degrees-of-freedom systdi@spanel
flutter, (b) follower-force, and(c) fluid-conveying pipegsee Fig.
6 for a sketch of the geometryFor each system we will compute
and similarly for they-component. For this solution behavior, theand present the amplification of energyt) over a range of gov-
maximum of the energy amplification is found to occurtat erning parameters.
~1/b and the maximum transient growth scales K&,y
~1/b?. This scaling is verified by numerical computations With
the results shown in Fig.(8). The asymptotic scaling is dISpI"’Iyeolnormal to the flow can lead to vibrational instabilities. This type

as the dashed curve. X T ; .
A two-dimensional parameter study of the maximum amplificaqf instabilities is prototypical and very important for many con

tion of initial disturbance energy is depicted in Fig. 5. We observe
a substantial amount of maximum transient growth as the stability U
boundary is approached.

The above analysis describes external damping that acts with I ——
equal magnitude on the two degrees-of-freedom. It is a well-
known fact(see[10,11) that a discrepancy between the damping
in the equations fox andy can have a stabilizing or destabilizing
effect and thus change the critical coupling constant. Following R} 9
Bolotin [10] and introducing a damping coefficient bfand zb
into thex andy-equation, respectively, the critical coupling coef-
ficient can be derived as

2\ \/ , (L Q%+t 7
1+9 (Q%-1)2

which represents the generalization of Etp) which is recovered

for »=1. Numerical experiments have revealed that the transient
effects observed for,=1 prevail qualitatively for the more gen-
eral case once the critical coupling coefficient has been redefined
according to Eq(21).

x~e P{(cosat+t cosat+:--) (20)

3.1 Panel Flutter. As high-speed flow passes a flat plate
ith clamped edges, the induced elastic bending in the direction

_ 50
¢ %

(1)

3 Applications

The strong short-term amplification of initial energy for param-
eters below the critical ones for the onset of coupled-mode flutter
can have significant consequences for the design of systems that
exhibit aeroelastic deformations or other fluid-structure phenorpig. 6 Geometry sketch for panel flutter  (top), follower force
ena. The above analysis of a simple two-degrees-of-freedom s§issttom left ), and fluid-conveying pipe  (bottom right )
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figurations in aerospace applicatiofssipersonic flow past an air- T T T T T T T "
foil) and has thus been studied extensively. In this paper we w : b ' 2 : : ‘ :
focus on a highly simplified, yet physically relevant, model whicl

will capture some of the main features of panel flutter instabililie:

The model under investigation is taken from Dowd]. Three

plates of length and massn are linked together and supported a ¢
each endsee Fig. 6a)) introducing two degrees-of-freedom for

the motion of the system. With, andq, as the vertical displace-

ment of the interior nodes, Dowdb] derives the following set of
equations

2 ml pU2 ©
§m|Q1+FQ2+kQ1+Z_QZ:0 (229)
m 2 p.UZ
FQ1+§m|Q2+kQ2—WQ1=O (22)

wherek denotes the spring constant, gnd, U.., andM., stand
for the freestream density, velocity, and Mach number, respe
tively. Nondimensionalizing the above equations using
=p,U2/2M_k and JmI/K as a characteristic time scale, we ob
tain

2 1
§Q1+ 6Q2+Q1:_7\QZ: (239)
12

g%* §Q2+Q2:>\Q1- (230)

We can further simplify the system by introducing new depende
variables defined ax=.5/3(q;+q,) and y=q;—q, which
yields *

X+x=ay (24a) ©
y+ Q2% =—ax (24b)

with Q?=5/3 anda= \/5/3\.

In this form, the reduced system resembles the undamped tv
degrees-of-freedom system of the previous section, and we sha
expect the existence of transient amplification of energy for su
critical coupling coefficienta.. The critical coupling coefficient is
a.=1/3, equivalent tox,=1/y/15 in [5]. Figure 1a) shows the 10°
maximum energy amplificatiois(t) as a function of time for 107
ala,=0.9 or, equivalently, J.,/U.)?>=0.9 whereU,, is the criti-
cal flow velocity. For this choice of parameter we observe aﬂg. 7 Energy amplification for undamped panel flutter with

amplification of 20 times the initial energy. As the critical COUZ/2.=0.9 versus time (top ), maximum energy amplification ver-

pling coefficient is approached, we again recover the propgis coupling coefficient  (bottom ). The dashed curve repre-

asymptotic scaling(dashed curvedas di5p|ay?d in Fig. (D). sents the asymptotic behavior 1 /(1—(a/a.)?). The continuous
These results clearly demonstrate that large disturbance growtlisse represents both the maximum of  G(t) over time and the

possible even before the coalescence of natural frequencies amger bound given in Eq.  (9).
thus, the onset of panel flutter.

-1

1
1-(a)

3.2 Follower Force. A slightly more complex two-degrees-
of-freedom model is sketched in Fig(b$ where two hinged rods

of lengthl are subject to a forcE acting on the bottom and in the { 4 3/2} _a

0 2 —1|[¢ 1 —-1[g

direction of the lower rod. The motion of the two rods is affected 32 1| ¢ + -1 1 H¢ 0 0 HA (25)
by a torsional spring acting at the hinge. The configuration of the
rods is described by the anglésaind ¢ measured with respect to with a=F/kl as the coupling coefficient.
the vertical axis. We will follow Bambergd6] in deriving the At a value ofa=0.1, we determine the two natural frequencies
system of equations governing the above configuration. Benjantihthe system as»;=0.337 andw,=2.243 which results in the
[7] has studied models of this type and the specific case illustrategliare of the frequency ratid?=44.4. Increasing the parameter
in Fig. 6(b) emerges as a particular case of a fluid-conveying pigebeyond this critical point, which Bamberggs] determined as
for zero mass ratig and infinite fluid velocityU, but constant a.=2.54, exponentially growing solutions are encountered.
JBU (see Paloussig12]). Again, we wish to probe the possibility and amount of short-term

According to Bambergel6], but using the dimensionless pa-energy growth for parameter valuaselow the critical one.
rameters of Benjamini7] for the sake of clarity, the governing In order to use the formalism introduced in this paper, we define
equations are given as the system matriA in (3) as
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Fig. 8 Energy amplification for undamped follower force prob-

lem with a/a,=0.9 versus time (top), maximum energy amplifi-
cation versus coupling coefficient (bottom ). The dashed curve
represents the asymptotic behavior 1 /(1—(al/a.)?). The con-
tinuous curve represents both the maximum of G(t) over time
and the upper bound given in Eq.  (9).

1 0 0 O, 0 1 o0 o0
0 0 32 [(@-2 0 (1-a o0
A%lo 0 1 o o o0 o0 1
0 32 0 1 1 0 -1 o0

(26)

Alternatively, using different dependent variables the governi

equations can be rewritten in the form
X+X=a(y—&X) (273)

y+Q%y=—a(x+Ly) (27)
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Fig. 9 Energy amplification for the fluid-conveying pipe prob-

lem with a/a,=0.999 versus time (top), maximum energy am-
plification versus coupling coefficient (bottom ). The dashed
curve represents the asymptotic behavior 1 /(1—(al/a.)?). The
top curve represents the square of the condition number of the
eigenvector matrix and acts as an upper bound on the maxi-
mum energy amplification.

with Q?=44.4 anda proportional toa. Strictly speaking, due to
the different coupling term, the above system does not resemble
the general undamped system introduced previously. Neverthe-
less, the results of our analysis are similar to the ones found for
Eq. (3).

Indeed, computing the maximum energy amplification reveals
transient growth of more than one order of magnitude even though

Me coupling coefficient is only 90 percent of the critical dsee

Fig. 8@)). The asymptotic scaling as criticality is approached is
once again confirmed numericallifig. 8(b)).

3.3 Fluid-Conveying Pipe. As our last example we con-
sider the instability of an articulated fluid-conveying pigee Fig.

Transactions of the ASME



6(c)). Benjamin[7] and Padoussig 12] have studied the stability may give rise to an increase in transient energy growth. Neverthe-
and dynamics of this configuration in great depth. We will closelless, we believe that the simple two-degrees-of-freedom models
follow their derivation, nondimensionalization and choice of govpresented in this article capture the essential characteristics of this
erning parameters resulting in the following set of governinghenomenon.

equations: Three classical applications have been considered, and it has
. been demonstrated that significant amplification of energy before

4 3129 4 2t [ 9} the onset of coupled-mode flutter can occur. Whereas panel-flutter

32 1||¢] |-1 1]l¢ and follower-force computations showed substantial short-term

energy growth, the transient amplification of initial perturbation
- 0 was less marked in the case of a fluid-conveying pipe which can
= —3@0{ b 0 O} A (28)  pe attributed to the flow-induced damping present in the dynamics
of the pipe.
with B=myig /(Mpipet Miuia) as the mass ratio and as the  As initial perturbations are amplified, nonlinear effects will
nondimensional fluid velocity. We recover the follower-forceome into play, and a marked deviation from linear behavior

1 2||¢

_32
0 1 v

problem discussed in the previous section for the gas®. should be expected. Despite this effect, the underlying linear am-
We again define the system mat#xin (3) as plification process constitutes an important component in describ-
1 0 0 O\t 0 1 0 0 ing the onset of fIL_Jtter ingtabilities. For extensions of dyn_amical
systems that exhibit transient growth into the nonlinear regime the
0 0 3/2 (a—2) —b (1-a) -—-2b interested reader is referred [tb3] and references therein.
A= 0 0 1 0 0 0 0 1 The transient amplification of initial energy cannot be captured
by analyzing the eigenvalues of the system matrix. Instead, both
0 32 0 1 1 0 -1 -b eigenvalues and eigenvectors are needed to account for short-term
(29) instabilities. Since these type of instabilities are present before the
wherea=3v2 andb=3Bv. onset of flutter and show amplification rates of one to two orders

Evaluating the maximum energy growth versus time we noti magnitude, nonlinear flnllte.-amlplltUQe effects may be triggered
that the amplification is somewhat smaller than in the previot@"9 before the system exhibits vibrational instabilities. When de-
cases with energy growth of only about eight times the initigi9ning fde-s_tructure systems, an analysis of the type introduced
energy(Fig. %a)) for a coupling coefficiena=0.99%, . In addi- " this paper is recommended.
tion, flow-induced damping effects are clearly present acting
main!y_ on_the sepp_nd mode. Owing to this damping the ma_)(imu,mcknowledgments
amplification of initial energy does not follow the asymptotic be- ) .
havior (16) as the critical coupling coefficient is approaciege ~ PS Wishes to thank Patrick Huerre and the gentle people at
Fig. 9(b)). However, in the limit of3—0 we recover the correct LadHyX for making his sabbatical visit so enjoyable.
asymptotic behavior 06, asa—a..
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Modeling Air Entrainment and
Temperature Effects in Winding

Rolls of films and paper are routinely stored under varying conditions before being un-
wound into downstream operations. During storage, interlayer pressures can change

H. Lei

e-mail: herong.lei@Kodak.com

K. A. Cole relative to the pressures generated during winding. These changes can lead to problems
o such as film/paper blocking (increased interlayer pressure) and roll shifting/cinching
S. J. Weinstein (decreased interlayer pressure). To study the storage effect, a nonlinear wound roll stress

model including air entrainment is first developed and applied to predict the in-roll
stresses during film/paper winding. Thereafter, a thermal stress model is used to study the
temperature effect on wound roll stresses. Key inputs to the models are the stack modulus,
contact clearance, and air film reference clearance. A method is developed to measure
these key model inputs. Results of a parametric study show that among the processing
conditions, storage temperature and thermal expansion coefficients of the core and the
film/paper are key factors that affect in-roll stresses during storage. Limitations of the
models will also be discussed along with recommendations for future modeling
development[DOI: 10.1115/1.1629758

Eastman Kodak Company,
Rochester, NY 14652

1 Introduction Good et al[5] further extended Hakiel's formulation to include
the effect of an idling pressure rolFig. 1). Pressure rolling is

o e v vt a4 to mniize i entaiment and Good shwed . o ow
P 9 inding speeds, a simple modification to the outer lap pressure

‘lljvr']réde'rnsggén%?ﬁaugf VS;J::&S rr;:agtc:gzgéps‘ ﬁgge:ﬁstlgﬁcgﬁl 'rggézvt oundary condition is required to model the effect. Good and
main driver ir? the development of wound roll models yIt is wel Imberg[6] were the first to add air entrainment o the center-
P ’ inding model. Foil bearing theory was used to estimate the

known that wound roll stresses are influenced by many faCt.c’é?nount of entrained air while the in-roll problem was treated by
including process parameters, product parameters, and envirgps

al dit owing to the | ing desire 1o st i difying the Hakiel formulation to include an additional com-
mental condiions. Ywing 1o the increasing desire 1o streamiihe o ne of ragial compressive modulus because of isothermal com-
process and product design, the complexity of wound roll mod

- . ession of air. Side leakage was not considered in their formula-
has increased over the last few years. In particular, researc

h ht to includ f the factors infl . q . Good and Covell[7] examined air entrainment in the
ave sougnht to inciude more ot the factors Infiueéncing wound rayesence of an idling pressure roll. A simple hydrodynamic model

stresses into the moc_iels. The_ wound roll model presented in_ Whout compressibility was used to estimate the magnitude of
paper seeks to combine physical effects that have been studied di5ineq ajr. The in-roll problem was treated as in Good and
the past. In addition, a discussion is presented noting the limitgz) hergi6]. A more detailed theoretical study of air entrainment
tions of the model along with recommendations for future modq- the presence of a nip roller was performed by Chang €&l
'ngl;h . ich hist f literature devoted to th d his work showed that air compressibility has a significant impact
ere 1s a rich history of litérature devoted 10 thé wound ro, the amount of air that passes through the nip. An experimental

problem. We will cite only a few selected papers here. One of tré?udy was performed by Taylor and Gof@] which showed that

earliest works was f[hat of Altmar{i] who idealized the Winding Cpang’s work accurately predicts the magnitude of entrained air.
process as the addition of a sequence of stretched hoops shrink &orrest[lo,lﬂ formulated a more complete air entrainment

onto the roll. This idealization has been employed ever since. He P o :

. nterwinding model by considering roughness and air pressure
further assumed that the roll could be modeled as a linear orthas jing under the idling pressure roll. The in-roll problem was
tropic material enabling an analytic solution to the winding probs yyeq ysing a plane-strain formulation. A buckling analysis was
lem. Connolly and WinarsKiz] built on Altmann’s work by add- also presented enabling prediction of machine and cross direction

ing temperature and humidity effects. They formulated thg,jes Bouquerel and Bourg[i2] presented a similar model,
problem in terms of radial displacements and obtained solutloBat like Good and Covel[7], they used an air entrainment nip

procedure. Quall§4] extended the work of HakigB] by includ-
ing the thermoelastic effect into the winding model. The proble
was formulated in terms of radial stress and verification expelt
ments were presented. Results indicated that the thermoelastic
havior could have a significant impact on wound roll stress lev

state of art in winding models and included in their discussions air
ntrainment, side leakage, and wound roll defect prediction. It was
oted that the time scale of side leakage was highly dependent on
Efors such as initial lap-to-lap clearance and web width. Finally,
everal papers, Pfeiff¢i5,16 and Forresf17], provided discus-
Comributed by the Abpiied Mechanics Division ofiE A . sions and work directed toward the measurement of the radial
ontripute: Yy the Applie echanics Division O MERICAN CIETY OF H H
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- compressive mOdu“'.ls' It is clear from these rEferen(.:es that the
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octobefn€asuUrement Of. this property requires care. Details such as
15, 2002; final revision, June 4, 2003. Associate Editor: R. C. Benson. Discussion®@mple preparation, test equipment, test procedures, and data
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Dep%ha|ysis can all have a major impact on experimenta| results.
ment of Mechanical and Environmental Engineering University of California—Santa ; ; ; :
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four monthsThe mal.n ObJeCtlve of the pr_esent S.tUdy IS to _present a model
after final publication of the paper itself in the ASMBURNAL OF AppLiEp  that combines the effects of air entrainment during pressure roll
MECHANICS. centerwinding with the thermoelastic effect after winding. Meth-
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Pressure Roll Force

ca,
a A
Tension @ —

Fig. 1 Center winding with an idling pressure roll. Center of
the winding roll is driven by a motor. (c) Web roughness at air film support.

Fig. 2 Web roughness model

ods to measure the inputs to the model are discussed. Experimen-

tal results validating the winding model are also presented. Apart(b) and(c) in Fig. 2 show the geometry for two cases that
parametric study is presented that indicates the mitigating effectg@f possible once air entrainment occurs. Farshows the cor-

air entrainment on the impact of thermoelastic expansion @Bsponding contact clearanceg,(i), and air film clearance,
wound roll stresses. It is finally noted that side leakage is ngh (i), under the outer lap away from the web/pressure roller nip
considered in the model. A detailed analysis is presented justifyifg winding conditions where roughness contact occurs. The vari-
this approach. This analysis provides quantitative guidance asgi§le | indicates the lap number. Note that the clearacegi),
when side leakage must be considered and further provides insigifween two webs is reduced relative to the contact reference

into future model extensions. clearancecc, . This will occur under low speed winding where
. . - the air entrainment effect is minimal. On the other hand, for high-
2 Air Entrainment Winding Model speed winding when the pressure roller load is not sufficiently

In this section, the air entrainment winding model is developetirge, the air film clearance will be increased from the reference
First, a model for web roughness is presented. This model, alocigarance as the outer lap winds onto the roll because of air en-
with the theoretical results from Chang et (8] is then used to trainment(Part(c)). In this case all the belt wrap loading will be
analyze the amount of air entrained into the wound roll as the wely supported.
passes between the pressure roll and the winding roll. Finally, theln addition to the clearance definitions under the outer lap, the
in-roll model is derived and includes the combined effects afontact clearancec(i), and the air film clearancea(i), within
roughness contact and air pressure. the wound roll are also defined. These additional variables are

. needed to enable the model to track clearance and interlayer pres-
2.1 Web Roughness Model. In order to determine the g .o as the roll winds.

amount of air entrainment during winding, a simple model for

web roughness is first presented. The roughness parameters us@®2 Pressure Roller Nip Analysis. From the above discus-

in the air entrainment model are defined in Fig. 2. Rartof the sion, it is clear that for a nonzero winding speed under nonvacuum
figure shows a cross section of two webs at incipient contact @onditions, air will always contribute to the interlayer pressure. In
vacuum conditions. As compressive loading is applied to thwder to determine the magnitude of this contribution during pres-
webs, displacements will occur in the roughness interface aadre roller winding, the air entrained in the outer lap must first be
within the support. The contact reference clearamag, is de- determined.

fined as the combined height of the roughness over which inter-Consider a winding roll with widthwise invariant web and core
facial displacements occur. The air film reference cleararag, properties. Under the pressure roller, the nip force per web width,
is the average of void spa¢gap between two webs at the incipi- f(i), is comprised of an air forcd,(i), and/or a contact force,
ent contact condition. Contact and air film reference clearancggi):

are determined from Wyko® surface roughness measurements of

both the front and backside of the web. Two of the key parameters foi)="fa(i)+fe(i). Q)

from the Wyko® measurements are the peak-to-valley surface

roughnes®R, and mean-peak-roughness,,,. In the model, the The air force arises because of entraining of air and the contact
root-mean-square of the front and backsRlgare used as the force arises if the web wrapping the pressure roller is in physical
contact reference clearanceg,. The root-mean-square of thecontact to the roll through its rough surface. From Chang et al.
engagement heights of the front and back surfddé, is used as [8], the air film clearance beneath the pressure roller ceg(i),

an approximation to the air film reference cleararcs, . can be expressed as a function of the developed air fiy@g:

0.65/ ; -0.28 SN\ —0.44
6'5< “Vi)) ( fa(l))) (E(I)) for 0.69<E<4.84 MPa

can(i) PaR( PaR( Pa 5
R(I) - 7( wV )0.72( fa(l) )70.49( E(i))0'48 ( )
8. - - — for 4.84<E<34.5 MPa
PaR(i) PaR(i) . Pa
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whereV is the winding speedp, is atmospheric pressure, and E E. *

R(i) andE(i) are the equivalent radius and equivalent modulus of P+dP’ y“l *

the pressure roller/winding roll. \ h
The air film clearance is related to the contact clearance if it is

assumed that under loading, the reduction in contact clearance i

equivalent to the reduction in air clearance:

ccy(i)—ccy,=cay(i)—ca,. 3)

This assumption is not rigorously justified; however for typical
loads and for webs dominated by very fine roughness with a ran-
dom distribution of sparse high roughness, this would seem to be
a reasonable assumption since the interfacial displacements woul
occur mainly in these high roughness areas.

From the Hertzian contact theofy,9], the contact forcef (i),
in terms of the contact clearanags,(i), is found to be

7R(i dae '

ol = T Py i), ) \KW E,
E(i) o/

whereP,(cc,) is the contact pressure under the nip and is related .

to the contact clearance via a look up table generated from the

stack modulus measurement:

. . Fig. 3 Continuum differential force element in the wound roll
f*(ccy(i)) for cc,=<cc,

Pn(cen(i))=f(cen(i))=

0 for cc,>cc,’
®)
The above equations are well posed to solve for the unknowns (i)
under the nipec, (i), ca,(i), f.(i), andf(i). oo)=n @

2.3 Internal Outer Lap Analysis. The analysis of this sec-

tion uses the results of the pressure roller nip analysis to detghereh, is the load sharing web thickne&Sig. 3). The belt wrap

under the outer lap away from the nip. _ _ pressure and possibly contact pressure:
Empirical studies[7], have shown that the effective winding

tension(wound-in-tensiop in pressure roller windingt,(i), can
be expressed as L hjoy(i) B ta(i)

ta(i)=t(i)+ muwic(i), (6) VT i)

whereu,, is the front-to-back friction coefficient of the wel,is _ _
the width of the web and(i) is the upstream winding tension. The contact pressure is related to the contact clearance in the same

This expression indicates that an additional component, knownfashion as Eq(5). The air pressure under the outer lap away from
the nip-induced tension, arises during winding when a pressute nip,P(i), is related to the air film clearance by a sequence of

=Pg()+P(D). (8)

roller is added. two equations. The first, according to Chang ef &), relates the
The winding tension stress under the outer lap away from tloéearance adjusted to atmospheric pressure to the pressure roller
nip is related to the effective winding tension by air load, f4(i),

0.66 1)\ —0.21/ £ oiy\ —0.33
7.4( nY% ) ( fa(')) (E(')) for 0.69<E<4.84 MPa

ca(i) PR/ PR/ [ pa @)
Y 0.71 H —0.20/ H —-0.23 !
R 2_5( rV ) ( fall) ) (@) for 4.84<E<34.5 MPa
PaR(i)/ | paR(i) Pa

whereca,(i) is the air film clearance under the outer lap away 2.4 In-Roll Analysis. Prior to the addition of the next lap,
from the nip adjusted to atmospheric pressure. The second relatag theith, the roll will have a radius;4(i). Assume that the next
the air pressure to the air film clearance using the perfect gas ldap under wound-in-tensiorig(i), is added to the roll. The roll
profile after the addition of théh lap,ry4(i+1) is

PaCaa(i)=(patPg(i))cay(i). (10)
By using the relation betweers,, (i) andcc,(i) (the same fash- rq(i+1)=rq(i)+U’'(i)+hym(i), 12)
ion as in Eq.(3)), the above becomes
p.cay(i) whereU’ (i) is the radial displacement of the roll due to the force
Pé(i): Tara Pa.- (11) exerted by thdth lap andh,(i) is the reference web thickness
cCy(i)—ccotcay added to the roll profile accounting for air entrainment and contact

Once the pressure roller air load is determined, the above eqifseresent
tions can be solved for contact clearance and air pressure under
the outer lap away from the nip. ham(i)=ha+cc,(i)—cc,. (13)
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The derivation of in-roll analysis begins by considering th&his is a second-order ordinary differential equation and its solu-
forces that act on a differential element located in the wound rdibn requires that two boundary conditions be specified. At the
at a nominal wound roll radius. Figure 3 shows such an elemegperiphery of the winding roll, a single winding lap exerts a pres-
that can be thought of as a continuum equivalent of the actualre on the roll that is given by the wound in tension as
situation where the load sharing web thickndss, will be less 0
than the reference web thicknesg(i). . ta(l .

To accommodate this difference, two in-roll tension stress pa- P'(i)= wriy & the periphery. (21)
rameters are defined. The firgt,*, is the continuum approxima-
tion to the actual incremental in-roll stresg,, which is distrib- At the periphery of the core, since the radial displacement of the
uted over the load sharing thickness. The apostrophe is added¢@e must equal that of the roll, a boundary condition can be
denote that the stresses are incremental due to the addition ofrgten
single lap. In addition, anisotropic constitutive properties are de-
fined for the continuum approximatioef , v7y, andvg). d_P:E Edv lv P’ at the core/roll interface.

To simplify the development of the remaining equations in this dr ¢ | Echay Nam
section, explicit reference to lap number will be excluded from the (22)
model variables. It is understood that the stresses are evaluated
each lap.

Consider first the continuum approximation. A fundamental r
lationship between the continuum in-roll tension stréss,, and P=P.+P (23)
the interlayer pressure stre$®,, can be obtained by force equi- ¢ 9
librium: As the total pressure increases, when more laps are wound, the air

dp’ pressure, contact pressure, and thus the contact clearance will
P'+T'*4+r—=0. (14) change as well. Within the roll, the contact pressure and contact
dr clearancecc are related by Eq(5). On the other hand, the air

The continuum in-roll tension stress is related to the actual in-rdlf€Ssure in roll is related, by the ideal gas law, to the amount of air
tension stress by considering a balance of total tension within tRBtrained while the local lap was being wound:
circumferential load carrying thickness and total web thickness:

T*ham=hT", (15) o :
When winding more laps, the contact clearance between laps in

which reflects the fact that the actual in-roll tension stress agige existing roll can then be updated according to E38) and
over a proportionally smaller radial differential than the congpg),

tinuum in-roll tension stress.
The strain-displacement and constitutive relationships for the
continuum approximation are given by

&Fhe total pressure in-roll is the sum of total air pressure and
égtal contact pressure if the neighboring layers are in contact:

(Pg+pa)(cc—ccotcag) =(Py+pa)cay . (24)

3 Thermal Stress After Winding

_Ur T/*+V§rp/

el=— = LA N Roll winding usually takes place in a temperature-controlled
0y E* E 00 or . L . .

X ya environment where the temperature variation is minimal. After

being wound, the rolls are often stored in facilities where the

, du’ P vf T temperature can be significantly different from the winding tem-

!

" dr  E,. E* =entery, (16) perature. In the following we model the effect of temperature
e x changes after winding to in-roll stresses.

where v}, and v}, are the two components of Poisson’s ratio After winding, the force equilibrium Eq14) still governs the

relating strain in one direction to strain in the other. In Exf), it ~ Stress distribution in roll. The constitutive relations, including the

has been assumed that the strains from the continuum model rgfject of temperature, are

resent the actual strains whénp+h,,,. This will be true when

&

these strains equal the following alternate expressions: . _U' _ 1 T Vi P4 aF’
0 . T & = t ’
’ T ’ Vﬁfp/ ’ P ’ _h|VI'ﬁT/ ' E: ya
& ==, Epp ==, Ep—m/7—, Epy=F—
66 Ex or Eya rr Eya re hamEX U’ 1 V*a
a7 o= =~ P - T e, (25)
From Egs.(15—(17), the continuum constitutive properties are r ya EX

related to the physical properties of the w , and . .
phy prop vy Vor) whereP’ andT'* are the increments of in-roll pressure and ten-

b
y sion stress due to the temperature chaRgg).
< h * . h For simplicity, the material properties such as web moduli ex-
Ex *EEX’ Vor=Ver VrFE] Vrg- (18) cluding air and Poisson’s ratio are assumed independent of tem-

. ) . . . ) . perature. From Egg18) and (25)
Strain energy consideratiof3], gives the following relationship

between the constitutive properties: dey  hgm dT'* v, dP’ dF’
—= +— ——ta—.
dr hE, dr E, dr *dr

. . (26)
Yor _Vro (19)
Eya E} ' To arrive the above equation, we have assumed the load sharing
thickness, web circumferential modulus, coefficient of thermal ex-
pansion, and Poissons ratio are invariant with the radius. The
variation ofh,,, with radius is typically very small, and therefore

is neglected here. Combining Eq44), (25), and(26) gives the

"= differential equation for the increment in interlayer pressure due to
P’'=0. (20)

a temperature change

Combining Egs.(14) to (19 yields the following differential
equation for the incremental interlayer pressure:

r

, d%P’ dpP’ (1_ h E,

+3r——+
dl’2 dr hamEya
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2d2P'+3 olP'+ L h Ex o hy £ »
T T = L e Ll E, hy
h
h dF’ “

_ E}atExr W =0. (27) E" cc,
The boundary conditions for the second order ordinary differential
Eq. (27) are the following. At the periphery of the wound roll, (a) Excluding air effect.
there is no pressure increment

P’=0 at the periphery. (28)
At the surface of the corer &c/2) the radial displacement conti-
nuity due to the local pressure and core temperature change E,
(P1,F7) yields Ram
, Pic  accF; E, ca, E, cc,
UC(C/Z)__Z_EC+ 5 (29)
where «. is an equivalent thermal expansion coefficient of the . .
core, andE, is the core modulus evaluated at initial temperature (b) Including air effect.
and assumed not varying with temperature. _
Equation(29) is based on the assumption that the temperature Fig. 4 Stack modulus
increase within the core is uniform. This is a valid assumption
only if heat transfer in the core is much faster than that in the
wound roll so that the core reaches thermal equilibrium much h,E, Eg
faster than the roll. Ey:—ccoESJr hE," (32)
When Eq.(29) is combined with Eq(25), it yields the second ] )

boundary condition The above equation can be solved for the roughness moBuylifis

the stack modulug, , bulk modulusEg, and reference thickness
dpP’ of each layer are available.

2
dr c

r=cl/2 ¢

E,h, hy

N 2h,
Echam hamv

P+ EEX(Q{*%)FL

4.2 Stack Modulus Including Air Entrainment. Next,
(30)  consider partgb) and(c) of Fig. 2 that shows the relative position
Temperature variations after winding change the in-roll pressuf¥, the outermost two laps after the outer lap has passed onto the
and thus the air pressure, contact pressure, and contact cleard¥énd roll. In this figure, the reference web thicknelsg,,, is
change as well. These in-roll variables can be updated by the safq&/ the total web thickness |rjclud|ng the effect of air entrainment
routine as that in the in-roll analysis, except when the temperati#ad the effect of roughness if contact occurs under the outer lap

effect on air pressure is included, E§4) becomes such as shown in Patb) of Fig. 2. The contact reference clear-
ance is nowcc,, and air film reference isa,,. These quantities
(Pg+pa)ca,  (Pg+py)(cc—ccy+cag) (31) are computed in the outer lap analysis.

= E ' The air trapped in the roughness area between two laps will

) affect the compressibility of the roll. When air is included, the

V\{hereFS is the roll temperature at the start of the thermal a”aWoughness area is modeled as two springs in paréfigl. 4(b);

sis. Temperatureb and F are absolute in reference t6273°C  gne represents the roughness surface with reference thickagss

(—460°P. and modulusE, , and the other represents the air film reference
thicknessca,, and modulus€, . The total web is modeled as this
roughness layer and the support lageference thickneds, and

4 Modified Stack Modulus to Include Air and Tem- F”'k modulusEs) connected in series. The air film modulus is
rom the compressibility of the air. When air leakage through the

perature Effects sidewall is excluded and the air follows the ideal gas law, the air

In Eq. (19) the stack modulus with the air effedg,,, is a film modulus is,[6],

modified version of the stack modul&s without air entrainment.

The purpose of this section is to develop an expressiokfgin

terms ofE, and the thickness variables of the model. The analysis

first establishes basic definitions where air entrainment is

glected. This is followed by a derivation for the stack modulu

where air entrainment between the laps is considered. Finally, a (

Qerivation is presented for the stack modulus which additionally m when the laps are not in contact

includes the temperature effect. = + =

4.1 Stack Modulus Excluding Air Entrainment. Consider ° :

part(a) of Fig. 2, which shows incipient contact of two webs in aEya= Nam

vacuum. In this figure, the reference web thickness is the total h 1

web thicknes#, , and the contact reference clearancedg. The E + E. E,

total web thicknessh,, can be broken into two layers, one of —

which is the support with reference thicknéssand bulk modulus \ Caw

Es, and the other is the layer consisting of surface roughness with (34)

reference thicknessc, and modulusE, . When air is excluded, In the in-roll stress analysis, before ti lap is added, the

these two layers are modeled as elastic springs linearly connecséatk modulus is computed along the radius in the winding roll.

in series(Fig. 4(a)). The stack modulus of the total web excludingThis is done at each radial location as follows. First, the roughness

air is interface modulus is computed using E§2). Then Eq.(34) is

£ _(Pgt Pa)’
* (Py+pa)
he stack modulus of the total web is then

(33)

ham

when the laps are in contact

CcC
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Table 1 Winding conditions and results from experiments and model predictions

Start Finish Nip Torque  Contact Contact
tension tension force per  Accel at per pressure pressure at
Test Speed, per width, per width, width, cinching, width at at core, core from
# m/s N/m N/m N/m m/s core, N kPa model, kPa
1 4.3 622 263 263 0.76 572 73 97
2 4.3 727 306 263 >1.02 >762 >97 104
3 4.3 832 350 263 >1.02 >762 >97 108
4 5.1 727 306 263 1.02 762 97 102
5 5.1 766 766 263 1.02 762 97 103
6 5.1 832 350 263 >1.02 >762 >97 106

used to evaluate the stack modulus with the air entrainment effecfFinally, the roughness modulus is computed by inverting Eq.
included. Once the stack modulus is known, the incremental i(82) once the contact reference clearance is known. As previously
roll solution for theith lap can be found. Finally, the cumulativementioned, the contact reference clearance is determined from the
in-roll solution is determined. root-mean-square of the front and backsRle(measured via the

4.3 Stack Modulus Including Air Entrainment and Ther- Wyko®).
mal Effect._ We assumed t_he support and roughness m(_)duli @ Numerical Solution
not vary with temperature in the temperature range of interest. _ _ _
With this assumption, the effect of temperature on stack modulus!he solution of the above model was obtained numerically. The
depends solely o&,, the modulus of the air film. Using the idea|‘r‘1ume”r|cal_ algorithm “winds” one lap after another onto the
gas law under isothermal expansion, the air film modulus is ¢ore” until the last lap is wound. During winding of each indi-
vidual lap, the algorithm is as follows:

2
E _M (35) 1. Pressure roller nip analysisGiven the nip load, winding

& (Pé+ pa)F speed, web reference clearances, and roll/pressure roller ge-
ometry, the equivalent radius and equivalent modulus of the
roll/pressure roller are evaluated. Then E@b. to (5) are
solved by Newton’s iterative method for the contact force
f.(i), air forcef,(i), contact clearancec,(i), and air film
] clearanceca,(i) under the nip.

4.4 Stack Modulus Measurement and Data Reduction. 2 |nternal outer lap analysisThe contact force from the step 1
In order to perform numerical simulations using the winding s used to obtain the nip induced tension and wound-in-
model, several material properties and geometric parameters must tensjon. Then Eq9) is used to evaluatea,(i), the air film
be measured empirically. Some of these are measured COnVentiOn‘ Clearance under the outer |ap away from the n|p adjusted to

Then the stack modulus, including air entrainment and tempera-
ture effect, is available by substituting the above equation into Eq.
(34).

a”y (e.g., YOUI’Ig'S m_Odulus of the nghOWeVe.r, SeV.eral new the atmospheric pressure. Equaﬂc{ﬁs (10), and (11) are
variables have been introduced and so some discussion on how to splved afterwards to obtain the contact clearancgi), the
measure them is now provided. contact pressurd((i), and air pressurd,(i) under the

The new material properties required of the model include the
underlying support modulus and the roughness modulus as de
fined in Eqg.(32). To obtain these parameters, the circumferential
load carrying thickness and the total web thickness must be ference method is then applied to solve the ordinary differ-
known as well. The total web thickness is the sum of the load 4. iiq Eq.(20) with the boundary condition€21) and (22).
sharing thickness and the contact reference clearance. It is deter

ined f X | K aul ¢ |4. Roll profile and stress updat®esults from step 3 are used
mined from experimental stack modulus measurements as fol- ", \sqate the roll profile and in-roll stress distribution.

lows. First, three stacks of support are constructed from individualg  rapeat Stens 1 to 4 are repeated until all laps are wound
plies having an area of 1.27 cm by 5.08 cm. The number of plies ontrc)n the roIFI) P P
within each stack is chosen such that the height is 0.51 cm. Eacty Tharmal stréss analysis after windirighe nonlinear bound-

of the three stacks is sequentially placed between two parallel” 5./ \alue problem of the thermal stress analVEis. (27)) is
plates and compressed to a small preload of 103 Kpa. The load is so)llved bypNeWton’s iterative method. VB, (27)

then reduced to 13.8 KPa and the height of each stack noted via
the average output from three LVDT's located at 120° incremengs  Experimental Verification and Parametric Study
around the perimeter of the upper and lower platens. The total
stack height is divided by the number of individual plies and the 6.1 Experiments. Experiments are conducted in the Kodak
resulting thickness is averaged from the three separate measemiveyance and winding laboratory. The experiments consisted of
ments to yield the total web thickness. winding a sequence of polymer-coated paf##4 um thick and
Following this measurement, each stack is then compressed &925 m long, roll OD 1.5 monto 0.127 m(5 inch) outer diameter
constant strain rate of 0.51 mm/min up to a final stress of 12cé&rdboard cores. Test rolls are wound with a pressure roller force
MPa. Displacements are measured as the average output of dh@63 N/m (1.5 pli) contact force under two levels of speed, 4.3
three LVDTs and stress is measured using a load cell. From tlaisd 5.1 m/$850 and 1000 fpr and five levels of tension profile,
data, the radial compressive modulus excluding air is computad detailed in Table 1. The tension profiles, with the exception of
since the stack area is sufficiently small enough to mitigate the &bst 5, which is at constant tension, are linearly tapered with the
effect during compression. The bulk modulus is determined Ibgngth of the web wound onto the roll.
computing the tangent modulus from the stress-strain data neaAfter winding, the rolls are tested to evaluate the torque trans-
the upper end of the stress range. Presumably, at the high@ssion capability. Before testing, straight lines are drawn on both
stresses, the roughness interface has been significantly caides of every test roll. Then the rolls are repeatedly accelerated
pressed and the stress-strain behavior is predominately goveropdo 5.1 m/91000 fpm) using incremental acceleration rates and
by the bulk modulus. then stopped. The acceleration rate starts at 0.25 (&0 fpm/

outer lap away from the nip.
3. In-roll analysis The stack moduli including the air effect are
first evaluated using the in-roll conditions. Central finite dif-
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Table 2 Material properties used in modeling

c(m) 0.127  E,(MPa) 5720 v 0.02 Es (MPa) 179
cay (um) 8.387 h, (um) 235 E, (MPa) 2 density, kg/m 1107
CCy (um) 10.64 hy (um) 224 rp(m) 0.0762 roll OD, m 15
E. (MPa) 410 Mo 0.31 Up 0.495 lap number 3089

seq, and then increases up to 1.02 M(&00 fpm/seg in 0.25 from the non-air entrainment model is included for comparison
m/s increments. The rolls are then decelerated at a much gentierposes. Because of the low core modulus when the air effect is
deceleration rate of 0.05 n¥/s(10 fpm/seg. After rolls are included, the interlayer tension stress near the core is highly nega-
stopped, they are checked for cincHescumferential breaks of tive, which could potentially cause local buckling. The wound-in-
the straight lines on both endsResults are shown in Table 1,tension(tension in the outer lap downstream of the pressure joller
from which half of the six rolls do not cinch at 1.02 f/she is higher than the machine tensiension upstream of the pres-
maximum acceleration capability of the lab equizpment. Amongure rollej due to the friction force induced by the pressure load
the three rolls that cinched, one cinched at 0.76°rt160 fpm/ underneath the pressure roller nip. The interlayer tension stress
se0, and two cinched at 1.02 nf/sFor all of these three rolls, cin from the nonair entrainment model is different than that from the
ching takes place near the core. The acceleration rate when cinain-entrainment model, and in this example does not show a region
ing starts can be used to estimate the contact pressure at the aofrgsharp change near the core.

In this calculation, it is assumed that it is the contact pressure thafThe contact clearances under the pressure roller, under the outer
provides the roll with torque transmission capability. The contatdp away from the nip, and after winding are shown in Fig. 7. All
pressures at the core from the cinch tests are shown in Table tlearances are lower than the reference contact cleacaigcand

- . ir fil f | . This indicates that th hout
6.2 Model Predictions. The computer program descrlbedalr im reference clearanced, 's indicates that throughou

above is used to predict the in-roll stress distribution of rolls
wound at the winding conditions listed in Table 1. Key inputs to
the model are summarized in Table 2, and the relationship amo
contact clearance, contact pressure, and roughness modulus fi =~ 4 Total pressure w/ air
testing of the same polymer coated paper is listed in Table 3. Fro
the model prediction, the contact pressures at the core at differe %35
winding conditions are listed in Table 1, and they agree fairly welz
with the respective contact pressures from the torque transmissi=
tests. 0.25
When using the winding conditions of test 1 in Table 1, the tote:
interlayer pressure, contact pressure, and air gage pressure dicz "]
bution after winding are shown in Fig. 5. For comparison pur#
poses, the interlayer pressure from a nonair entrainment modelF
also included. With the air entrainment effect, the total pressure 2 0.1 |
the sum of contact pressure and air pressure, the former of whi=
is supported by roughness contact of two neighboring laps and t
later from air gage pressure. The result indicates the existence ¢ o
core zone where the total pressure and gage pressure start at
values and then rapidly increase to peak pressures. Further our -5, o 0z 03 04 05 06 07 08
the roll, the total pressure and gage pressure fall and become clt Beoll Radius {m)
to zero at the finished roll surface. The presence of the core zone
is mostly due to the soft cardboard core, which results in a loRig. 5 In-roll pressure stresses right after winding from both
core modulus, thus resulting in a sharp drop in the pressures at éiveentrainment model and nonair entrainment model. The gage
core. In winding and in downstream unwinding, the torque frorressure is the air pressure above the ambient pressure.
the core is transmitted from the inner laps to the outer laps by a ) -
friction force induced by direct contact pressure. The contact pre : P Rl
sure at the core therefore determines the local torque transmiss 1 5 =
capability. The interlayer pressure from the non-air entrainme
model is higher than the contact pressure but lower than the to i _
interlayer pressure from the air entrainment model. 5 T, T
Figure 6 shows the interlayer tension, wound-in-tension, arz m‘.ﬂm”n'ﬂm, v i
machine tension stress distributions. Again, the interlayer tensiz Bachin ic

0.45

.15

005

ension stress w/ uir

g ln lension streas W/ air ;
N P
Table 3 Roughness modulus of the polymer coated paper ex- g
cluding air effect 3 "
-
Contact Clearanceum  Contact Pressure, MPa  Stack Modulus, MPaP Rl
10.640 0.000 0.021 l
4.933 0.014 0.083
3.896 0.028 0.227 1.3
3.416 0.041 0.396
2 i i i
%%%8 8%22 }1222 "o 01 02 03 04 05 06 0T 0E
0.798 0.689 8.887 Roll Radios (m)
0.282 1.379 20.057
0.016 2.413 69.154 Fig. 6 In-roll tension stresses right after winding from both air

entrainment model and nonair entrainment model
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Fig. 7 Contact clearances under the pressure roller, under the

outer lap away from the nip, and after winding Fig. 8 The effect of roll radial CTE on total interlayer pressure

right after winding at 70°F and after heated to 100°F. Results are

from the air entrainment model. The radial CTE of the roll is

indicated in the figure. Other CTEs are  a,=10"%°F and a,

=10"%°F.

the winding process, no laps are floating or are purely supported

by air pressure. The contact clearance under the outer lap is below

the contact reference clearance due to the existence of the presgy{g.; of temperature change on interlayer pressure is similar to

roller, which squeezes out most of the air under the nip and onlg (ot interlayer pressure when the air effect is included.

lets a small amount of entrapped air into the roll. Contact clear- gasides the thermal expansion coefficients of the web, the

ance under the outer lap away from the nip is higher than thah g roll stress is also affected by the thermal expansion coef-

under the pressure roller, which suggests that right after beifgian of the core. At a temperature change from 70°F to 100°F,

compressed by the pressure roller nip, the air under the outer %s. 11 and 12 give the model predictions of the total interlayer

?thandS' dD_eptendl_ng Otrl]’] how much air passesldthtl)rough trf[_e NIP #Bssure and contact pressure at three levels of core coefficient of
e wound-in-tension, the gage pressure could be negative u rmal expansionz, =105, 104, and 10°3 (1/°F). Web coef-

the outer lap away from the pressure roller nip, resulting in sub-: . : PN ;
ambient air pressure locally. icients of thermal expansion are fixed @t=10"" 1/°F radially

and a,= 10 % 1/°F tangentially. When using the nonair entrain-

6.3 Thermoelastic Effect. After winding, the rolls are usu- ment model, the results are shown in Fig. 13. From the predic-
ally put into storage before unwinding. The typical storage timgons, the core effect is only localized to the laps close to the core.
varies from hours to years. Often, rolls are stored in nontempera-higher core thermal expansion coefficient than the web would
ture controlled warehouses where the roll temperature varies wihhance the thermal stress effect, and make the local in-roll pres-
the season. In some manufacturing processes, rolls are intentisure even higher when heated, and even lower when cooled.
ally stored at elevated temperatures for a specific time to control
certain web propertiegsuch as core set corlIn-roll stress
changes with roll temperature mostly because the coefficient ~f
thermal expansiofCTE) of the web is anisotropic, and the core
CTE is different than that of the web. The interlayer pressur
increases at elevated temperature when the CTE along the ra¢ .12
direction is higher than that of the circumferential direction be
cause the roll expands more along the radial direction than tl g
hoop direction.

In the following, the temperature effect on wound roll stress i
studied by assuming the roll is wound using te¢Tadble 1 wind-
ing conditions at an ambient temperature of 70°F, and after winiZ
ing there is a step change in roll temperature from 70°F to 100° .06
After the temperature change, the total interlayer pressure az
contact pressure from the air entrainment model are shown & 004
Figs. 8 and 9 at three levels of radial coefficient of thermal ex
pansion,a,=10"°, 10 %4, and 103 (1/°F). Other coefficients of

4 ——— '

ure [MPa)
=

thermal expansion are fixed at,= 10" ° 1/°F tangentially for the |

web, andac=10’4 1/°F for the core. As shown in Figs. 8 and 9,

the total interlayer pressure is much more sensitive to the rad % Y FE— 04 05 08 07 0.8
CTE than the contact pressure. This indicates that the increase Roll Radiss {m}

total interlayer pressure is mostly from the increase in gage pres-

sure(the difference between the total interlayer pressure and Cgflg. 9 The effect of roll radial CTE on contact pressure right

tact pressurg which is due to both a higher temperature and after winding at 70°F and after heated to 100°F. Results are from

lower air gap. the air entrainment model. The radial CTE of the roll is indi-
When using the non-air entrainment model, the temperatweted in the figure. Other CTEs are  a,=10"%°F and a,

effect to interlayer pressure is given in Fig. 10, which shows the10~*/°F.
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Fig. 12 The effect of roll core CTE on contact pressure right
after winding at 70°F and after heated to 100°F. Results are from
the air entrainment model. The core CTE of the roll is indicated
in the figure. Other CTEs are  a,=10"%°F and a,=10"%°F.

Fig. 10 The effect of roll radial CTE on interlayer pressure
right after winding at 70°F and after heated to 100°F. Results are
from the nonair entrainment model. The radial CTE of the roll is
indicated in the figure. Other CTEs are  a,=10"5%°F and a,
=10"%°F.

initial clearance and the web width. The results are computed at
A the completion of winding and indicate that wider webs with
7 Model Limitations smaller initial clearances have smaller air leakage and that less air

The model presented in this paper neglects the effect of sid@kage occurs at higher winding speeds. For example, as indi-
leakage both during and after winding. As the experimental resuisted in the Appendix, the initial clearance under the lap nearest
indicate, reasonable agreement is obtained for a specific test case.core after the 4th lap of the roll is added is equal 1.46#%
However, as process conditions are changed, it is expected thhais corresponds to results from test 1 from Table 1. Using these
this assumption will no longer be valid. For example, as welmlues and the web width in test 1, the percentage of air mass lost
width is decreased, the air under the outer lap will be more signder the lap nearest the core at the completion of winding is
nificantly affected by the atmospheric boundary conditions at gietween 25 and 40%. While this magnitude of air loss is signifi-
ther end of the roll. To further investigate the quantitative impacfant, it is cumulative over the winding duration and therefore
of this limitation, a simple theory was developed to establish timgrobably does not invalidate the winding model since the impact
scales for air leakage from a wound roll and is presented in thé added laps to interlayer pressure is localized to laps in the
Appendix. vicinity of the radial location of interest.

Results from the analysis are presented in Figs. 14 and 15However, since even more air will leak out of the roll after
These figures give a plot of the percentage of original air mass laghding, the subsequent assumption of no side leakage during the
from the first lap of the rol(nearest the cojeas a function of the thermoelastic portion of the analysis is probably invalid. This sug-
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Fig. 11 The effect of roll core CTE on total interlayer pressure
right after winding at 70°F and after heated to 100°F. Results are
from the air entrainment model. The core CTE of the roll is
indicated in the figure. Other CTEs are  @,=10"%°F and a,
=10"%/°F.
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Roll Radius (m)

Fig. 13 The effect of roll core CTE on interlayer pressure right
after winding at 70°F and after heated to 100°F. Results are from

the nonair entrainment model. The core CTE of the roll is indi-
cated in the figure. Other CTEs are a,=10"%°F and a,
=10"%/°F.
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) . ) Fig. 16 Geometry for lubrication analysis of squeezing flow
Fig. 14 Total mass of air lost from the first lap of a roll after

winding 3089 laps at 2.54 m /s (500 ft/min), expressed as a per-
centage of the original mass in the lap. The half-width of the
roller in centimeters, L, is indicated on the figure. Data are pre-
sented here for a core having outer diameter of 0.127 m 5
inches ), and for a web thickness of 224 um. Air Leakage in Winding. The purpose of this appendix is to
set forth a simple theory that establishes time scales for air leak-
age from a wound roll under a tensile load. The results of this
gests that for the range of speeds and for the web width consileory may be used to demonstrate the validity of various assump-
ered in this study that the no side leakage assumption is not réans used in winding models, which often involve issues regard-
sonable. However, as the web width is increased, the assumptiog air leakage out of the widthwise edges of a roll while winding
is better met and in the limit for a very wide web, our thermoelass occurring. The incorporation of air leakage into a winding
tic results will be accurate. Therefore, for many practical wetmodel introduces much complexity and is numerically intensive;
winding simulations, side leakage needs to be incorporated irae such, the subsequent analysis can justify when the added com-
the winding model. However, this will introduce much more complexity is necessary, and when a simpler nonleakage model is
plexity into the model and will be expected to be numericallpdequate.
intensive.

Appendix

—_~

Theory of Air Loss. We first consider a simple one-
) dimensional lubrication model for the “squeezing” of air out of a
8 Conclusions gap as it closes under a constant external load. This is to model

An air entrainment model was developed. The model includedf @pproximate air loss occurring on any single lap of the roll.
web roughness model, a pressure roller nip analysis, an outer then provide some Ilmltlng.cases of the Iuprlcatlon model.
analysis, and an in-roll analysis. In addition, the effect of temperk@Stly, we show how the model is used to approximate the cumu-
ture on thermoelastic stresses after winding is included. The wingtiVe &ir 10ss in a given lap as more laps are added to a roll.
ing model gives reasonable predictions compared with winding €onsider the configuration shown in Fig. 16 in which walls
experiments on polymer coated paper. The parametric study shd{pund a region containing air. They coordinate system is as
ing the effect of CTEs on in-roll stress is also presented. Corffidicated, and the-direction extends out of the figure. The do-
parison to previous models excluding air entrainment indicated 3N has lengttL; we assume that the flow is invariant in the
very significant reduction in contact interlayer pressure caused Fiirection. At the locatiorx=0, we assume that there can be no
the trapped air. The model does not include side leakage durity¥: @nd ax=L, we assume that the air pressure is atmospheric,
and after winding. An analysis was developed indicating the ranfle We assume that the top wall of the domain is entirely flat and

over which this assumption is valid. Future modeling will be exS set in motion due to a pressure difference between an external

tended to include the effect of side leakage. pressure loadP, , and an initial air pressure in the gap,, . We
parameterize the moving top wall location s h(t), while the

bottom wall aty=0 remains stationary. As a result, the internal air
generates a pressure fidgx,t) that opposes this load, and there

100 1 is a resulting air flow exiting from the domain at=L. We as-
sume that the air obeys a polytropic relation between the local
] densityp and pressure, i.e.,
L=0 1/
p=cPY, (A1)

wherec and y are constants. For isothermal compressipa,1,

while for adiabatic compression,=C,/C,, whereC, andC,

are the respective heat capacities at constant pressure and volume
(y~1.4 for ain; the flow is incompressible in the limit ag ap-
proaches infinity. We further assume that inertial effects are neg-

[o 3
o

Percent Mass Loss
n IS @
o S 153
8
] 3
3
g
B =
g
-3
g

0 ligible, and that the assumptions of lubrication theory are valid.
0.1 1 10 These two assumptions are satisfied, provided
Initial Clearance, microns
' h h

_ _ _ 21, (pOQS)(—O <1, (A2)
Fig. 15 Total mass of air lost from the first lap of a roll after L L
winding 3089 laps at 7.62 m /s (1500 ft/min), expressed as a .
percentage of the original mass in the lap. The half-width of the Wher_eho andpo are characteristic scales for th? gap clearance and
roller in centimeters, L, is indicated on the figure. Data are pre- density, respectively; we choose these quantitieb(as 0)=hy
sented here for a core having outer diameter of 0.127 m (5 andp(t=0)=pg. Qg is a volumetric flow per width scale given
inches ), and for a web thickness of 224  um. in (A3g). Our goal is to determine the pressure field in the small

Journal of Applied Mechanics NOVEMBER 2003, Vol. 70 / 911



gap, the location of the top surfad€t), and the mass of air The original mass in the domain per unit widtly, can be ex-
exiting the domain to atmosphere as a function of time. pressed in dimensionless form using the den@), initial con-

With the above stated assumptions, the dimensionless systeition (A3d), and the dimensionless scaling for mag given in
governing the location of the moving wall and internal pressure {#4d) as

given by -
Mo=PY". (Ade)
9 — R—
E{hpl/y) + = PQ)=0, (A3a)  Finally, combining(Add) and(Ade), we obtain the desired expres-
sion for the fraction of the original mass lost at any time as
— 9P — —_
=—h3— M(t M (t h(t _
Q=-h"3¢ (A30) O _MO_,_ %f PXOYAX (A4
MO Mo PHY 0
1
Pdx=1, (A3c) This concludes our derivation of the squeezing flow problem.
0 A numerical solution ofA3) is required except in certain lim-
- = = — iting cases. To proceed, a new variatle-hP? is introduced
P=Py, h=1 att=0, A3d)  jnto (A3). The resulting system is then solved using finite differ-
Pry ences with a Crank-Nicholson implicit scheme, and a full Newton
=0 atx=0 (A3e) iteration at each time step.
X ' An analytic solution to(A3) can be obtained for the limiting
S _ case of an incompressible fluid, for whigh-e in (Al). Under
P=P, atx=1, (A31)  such circumstances tHeY” terms in(A3a) are lost. Then, since

where P=P(x,t) andh=h(t), Egs.(A3a) with (A3b) are separable and
can be integrated; after subsequent application of the boundary

— P = Py = pa —x —t conditions in(A3) we obtain
P=5. Py=5, Pa=5o, X=o, t=+,
P P P L tg — - —
h=[1+6(1—P,t]~ Y2 (A5a)
— Q 12ul? h3P,
- = = = _ 3 _ _
o e, i (A9 P=5(1-Pa(1-X)+Py. (A5b)

As indicated in(A3), our convention is that overbars denote diye note here thatAsb) does not satisfy the initial pressure con-
mensionless variables. [A3), Q is the dimensionless volumetric dition in (A3d); an incompressible fluid instantaneously yields the
flow rate per unit width. The above systei3) is standard, ex- pressure field(A5b) underneath the closing gap for all times.
cept for the integral constraiA3c) that balances forces on theThere is no finite transient in pressure as can be obtained in the
moving wall. Note that in keeping with the constraints of lubricacase of a compressible fluid. For an incompressible fluid, the ex-

tion theory, we have also neglected inertial effect$ABc). The pression(A4f) for the fraction of the original mass lost from the
system(A3) is well posed to solve for the pressure and web locatomain becomes

tion.
Of particular interest is the mass exiting the domain to atmo- M(t) —
sphere ak=1. We determine this quantity as follows. First, the My =1-h(1), (ASC)
Eq. (A3a) is integrated inx between the limits 0 and 1 using the
pressure boundary conditions (A3e) and (A3f) to obtain which is identical to the fraction of the volume lost as expected.
. . On the other hand_, for cases of negligible fl&v-0 in (A3a),
6|7=1: - = (;it(ﬁf El’VdY). (Ada) and the systenfA3) yields the simple result that
Pa ° hP7=K, (A6)

The expressioliAda) yields the volumetric flow rate existing the . . o
domain. Since the flow is compressible, the mass flow @te, where K is a constant. This case correspon_ds to the situation
is the useful quantity. Using the density given(#), the relation }/yhgrg there is no air Ieﬁkage from the domain, and the pressure
between the dimensionless mass and volumetric flow rate can Is constant everywhere.

expressed as ‘e now consider how the preceding model may be used to
approximate the air leakage in a winding roll. To proceed, we

. Q assume that the air flow variations in the direction of the web

Qn=P3"Q, Qm:Tm, (Ad4b) motion are small compared with those across the width of the

cP7Qs web. Thus, we focus attention solely on the air flow occurring in

the widthwise direction towards the edges of the web. The no flux
condition located ak=0 in Fig. 16 is interpreted as a symmetry
o 90— (1— | condition for the roll width; thus, the computational length of the
Qo= 47 o)
0

and thus

(Adc) domain,L, is taken to be half of the roll width. We fix our view on
a given lap in the roll, and track the mass of air lost in that
articular lap as additional laps are added. Since the firdiilap
t the corg has the longest time available for air leakage and
generally experiences the highest pressure loading, the cumulative
amount of air leakage is the largest of all laps. For this reason, we

The result(Adc) is integrated over time to yield the total mass pe
unit width that has left the domain at any tirheM (t). Using the
initial condition (A3d), we thus obtain

B - S M examine the first lap in this appendix. We assume that when the
M(t)=PHY— h(t)f P(x,t)¥dx, M(t)=—, first lap is an outer lap of the roll, it experiences a constant load
0 Ms (due to the roll tensionuntil one revolution of the roll occurs, at
N which time a second lap begins to be wound. At this point, there is
Ms=cP_"hoL. (Add)  an instantaneous pressure load increase on the original lap, which
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0.35 between results for cases where the compressibility is assumed to
be adiabatic versus isothermal show some relatively small quan-

0.30 1 titative differences, but the qualitative trends are the same. Figure
14 gives a plot of the percentage of the original air mass lost from
0.25 1 the first lap of the roll as a function of the initial clearance be-

tween the web and the roll, for various web widths. Data is pro-

g 0.20 1 vided after winding 3089 laps for a winding speed of 2.54 m/s
< (500 ft/min); the air exits the web at the ambient atmospheric
& 0151 pressure. It is assumed that the initial pressure in the gap at time
010{ oo 0°° t=0 is equal to the imposed load presstie., P,=1 in (A3)
and(A4) in the first lap at the start of the calculatjorfrigure 15
0.05 | provides data for the same conditions as Fig. 14, except at 7.62
m/s (1500 ft/min. Note that in generating these figures, we started
0.00 , , : our calculation when the 4th lap of the roll was adde®, (
1 10 100 1000 10000 =(0.105 MPa ancta=hy=1.464um), as this is the first lap for
iLaps which the pressure in the clearar(ce., between the web and the
roller) is larger than atmospheric pressure. In the simple model, if
Fig. 17 Calculated absolute air pressures under the first lap the pressure in the clearance is subatmospheric, then air moves
(circles ) from full winding model. These air pressures are used into the gap and initially increases the clearance. Furthermore, the

to model the air loss under the first lap. simple model predicts a relatively large increase in clearance; cal-

culations show it takes hundreds of laps to again squeeze this
increased mass out of the domain as the pressure loading in-
again remains constant for the whole lap. This procedure is caieases. It is our opinion that this behavior is not physical, as the
tinued as more laps are added. For a web moving at sgediie  neglected local deformation of the web would presumably reduce
time to complete a revolutiorig, is given by this large increase in air mass. Figures 14 and 15 indicate that, as
expected, wider webs with smaller initial clearances have smaller
2a(r+(i—1)hy) air leakage, where less air leakage occurs at faster winding speeds.
S VAR (A7)

Thus, in(A7), any given pressure load is applied for the length of
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Weakly Nonlinear Stability

Analysis of Condensate/

Evaporating Power-Law Liquid
~usia | Film Down an Inclined Plane

B. Uma Weakly nonlinear stability analysis of thin power-law liquid film flowing down an inclined
plane including the phase change effects at the interface has been investigated. A normal
Department of Mathematics, mode approach and the method of multiple scales are employed to carry out the linear
Indian Institute of Technology, Madras, stability solution and the nonlinear stability solution for the film flow system. The results
Chennai 600 036, India show that both the supercritical stability and subcritical instability are possible for con-

densate, evaporating and isothermal power-law liquid film down an inclined plane. The
stability characteristics of the power-law liquid film show that isothermal and evaporating
films are unstable for any value of power-law index ‘n’ while there exists a critical value

of power-law index ‘n’ for the case of condensate film above which condensate film flow
system is always stable. Thus, the results of the present analysis show that the mass
transfer effects play a significant role in modifying the stability characteristics of the
non-Newtonian power-law fluid flow system. The condensate (evaporating) power-law
fluid film is more stable (unstable) than the isothermal power-law fluid film flowing down
an inclined plane[DOI: 10.1115/1.1631592

1 Introduction Using perturbation methods,nsal and ThomagL2] have in-
vestigated the nonlinear stability of vertical condensate film flow.

The stability of fluid flowing down a vertical or inclined wall . . . ;
has been the subject of considerable research due to its importaﬁ\é\’e{’mg and Wengi13] have examined the finite-amplitude stabil-

. . . L ; . . ity analysis of liquid film down a vertical plane with and without
in many industrial applications such as film coating and Intenca(T\réllterfacial phase change and have shown that both supercritical

heat and mass transfer Processes n chem!call tephnology an.dsefgbility and subcritical instability are possible for condensate film
ergetics. The problem of linear stability of thin liquid layers dralnﬂow system
;2? g%\f[\;lne?r?wérll(;illlrnid Prlsgeefeurfaarﬁeeiafaziig:Obns'fae;?ﬂg]?%rylh In contrast to the vast majority of investigations on Newtonian
the transition mechénism frorgn Iamingr to turbulgnt flow has rfi_lm flows (isothermal, condensate, evaporaingelatively few

h o . 1as p apers have been published on the dynamics of non-Newtonian
vided a motivation for later developments on nonlinear film st

- o ; X ilm flows. The dynamics of non-Newtonian fluids are important
\t,)vlgelé Eeﬂla?i'g:]n(Ef]frggdﬁl\r(r']hs[jr]fak::aevgnfgrgﬁé?ézdtgzeﬂgﬁtg:%egin the understanding of the rheological behavior of fluids during
bilit chiracteristics of an isothermal film on an inclined plane le manufacturing process, movement of biological fluids, appli-

Y X ) . P ‘ cation of paints and performance of lubricants. Apart from inves-
Although the theory of laminar film condensation flow due t

gravity has been analyzed by Nusg@ll, the stability of conden- igation on flow characteristics and linear stability analysis of non-

) . > - ewtonian fluid films along a vertical or an inclined plan&4—
sgte film has not been studied until th_e 1970s. ‘!’he_stab|l|ty ana 7], investigations on films of inelastic non-Newtonian fluids have
sis of a condensate film down a vertical or an inclined plane hg

been performed by Bankof], Marshall and Leé7], and Lin[8] Snsidered either the boundary layer development in the entrance

- S . region or linear instability analysis of the primary floyt,8,19.
and their investigations have revealed that the critical ReymldesMotivated by the scarcity of nonlinear theories for large Rey-

number is small for all practical condensation problems so that tng
liquid film can be re_garded as unstg_ble. They_ have also p0|nt8 ssed his attention on the investigation of stability characteristics
out that condensation would stabilize the film flow Whereagf

. - an inelastic fluid of shear-thinning type down an incline using
evaporatlop would destabilize the flow.nsal and Thc_)ma$9] dynamical systems approach. He has employed a new rheological
have considered the effects of mass transfer at the interface (@del with three parameters, called the modified power-law
have p.resented the linear stability analysis of condensate f'. ich exhibits the shear thinning behavior away from the zero
flow. It is known that the effects of heat transfer appear mainly '§hearing rate
thermocapillary and vapor recail effects. Slnc_e surface tensmnThe investigations on the stability characteristics of Newtonian
generally decreases with temperature, very thin layers of a ni

Ids number flows of non-Newtonian fluids, LE2O] has fo-

volatile fiquid on a heated surface tend to destabilize the film (liid film down an inclined/a vertical plane show that in the linear
- o "_theory, the film flow system is unstable for any Reynolds number.
Itriicc)ith[elrohfj?d’ vapor recoil effects are destabilizing for a volati owever, the finite-amplitude stability analysis of liquid films
quid, 119,14, down a vertical wall by Hwang and Werd.3] with interfacial

" hase change reveal that the isothermal and evaporating Newton-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF p fil 9 table f R Id b Ff)fl th 9 ist
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- 'an_ |_ms are unstable 1or any keynolds number while there eXI_S S
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. 3@ finite critical Reynolds number for the case of condensate film
2002; final revision, Apr. 23, 2003. Associate Editor: D. A. Siginer. Discussion on tgelow which condensate Newtonian film flow system is always

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmengqéme This shows that the effect of mass transfer at the interface
Mechanical and Environmental Engineering University of California—Santa Barbara, :

Santa Barbara, CA 93106-5070, and will be accepted until four months after firfd @ Newtonian fluid film strongly modifies the stability charac-
publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. teristics of the film flow when the phase change is considered. In
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The boundary conditions at the wall are the no slip condition of
velocity and a constant wall temperatufg,j given by

U=0, v=0, T=T, ony=0. (5)

The boundary conditions at the liquid-vapor interfdde,13, are
the balance of normal and tangential stresses, the relation of in-
terfacial energy balances and the equality of liquid and saturated

vapor temperaturesT() and are given by

[ oh_ (an\i _ gh|?\ 7t
PH2F ™\ x) W]
K2r]72(;/—1) (aT oh oT' 2( oh 2)_1
fo py \oy oax x| x|
#h[  (an\?] ¥ _ g
+o ﬁ 1 ((9__) =p, ony=h (6)

Fig. 1 Schematic representation of a thin film flow down an _
inclined plane oh . _ gh\ 3\ "t —

8_7(7W_7T)()+ 1— (9—— TW:O on y=h (7)
view of this, it becomes important to include the effects of phase dT  oh aT) oh _oh _ _ —
change at the interface in the study of stability characteristics of a W XX —phig| Z-Fu———v =0 ony=h (8)
fluid film down an inclined or a vertical wall. Such an investiga-
tion has not been considered so far, for non-Newtonian inelastic T_T T_h
fluids Ts ony=h ®)

In this paper, the weakly nonlinear instability of condensatethere

evaporating power-law liquid film flowing down an inclined plane _ 1
is investigated. The finite-amplitude stability of the power-law P ﬂ (7_U (10)
film is examined and the study extends the investigation by Lin o St EN
and Hwang[21] by including the effects of phase change at the o
interface. The method of multiple scales is employed to solve the - au\"
nonlinear generalized kinematic equation order by order. This Txy— Tyx— HMn ay ) (11)
leads to a secular equation of Ginzburg-Landau type. The analysis
shows that supercritical stability and subcritical instability are o Ju/lou\n-1
both possible for the film flow system. Applications of the results Tyy= _Z'u"a_Y EY (12)

to isothermal, condensate, and evaporating power-law film flow
indicate that mass transfer inteway from the liquid phase sta- and u,, is the consistency coefficient, is the flow index. When

bilizes (destabilizes the film flow and that the power-law index the power-law exponent is equal to 1, then the model describes
‘n" strongly influences the stability characteristics of the nonthe Newtonian fluid; Iin<1, the fluid is said to be pseudoplastic

Newtonian inelastic fluids. or shear thinning and ifi>1, the fluid is called dilatant or shear
thickening. It is important to note that the zero shear assumption
2 Mathematical Formulation in Eq. (7) is a reasonable approximation for external gravity domi-

i o ) nated flows(6>0 deg only and not for shear dominated horizon-
A thin power-law liquid film flow with phase change at thetal or near horizontal flows. Using the dimensionless quantities
interfacey = h(x,t) flowing down an inclined plang=0 (Fig. 1)  defined by
is considered.
The governing equationd,13,21], are the two-dimensional
mass, momentum, and energy balance equations for the power-
law model given by

u v
u=—, v=—,
UO aUO

o g (velocities in thex and 'y directions, respectively
1%

x ay O @) N
(ﬁ+_(ﬁ+_aw = 8E+ ing(1—y)+ a%+ Iy "o "o
PtV oy~ o pgSInB(1—y)+ —= ay B B
2 augt h ] )
_ _ _ _ — t=—— (time), H=—, (film thickness,
dv +_o7v +_¢9v . ap o1 N 8T)7+ Ity hg hg
Plot UG TV gy~ gy POCOSOl=y+ -+ —r
@) w2
&?+_&?+_a— K (92?+ 2T , Frzm, (Froude number
AETH] e 52 Ty @
whereK is the thermal conductivityp is the densityc, is the — n [pg(l—y)sing

i
) h{"* """ (reference velocity,

liquid specific heatg is the gravity,y is the ratio of vapor density o= n+1
to liquid density andr is the temperature.

Mn
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27Th
a:T (wave number,
p= P Pa (pressurg,
pu;
T
0= (temperaturg
sT lw
pu; "hg
Re,= (Reynolds number (13)
n
Unflﬁfn
Prn—'un 0 K 9o P (Prandtl number

Pe,=Pr,-Re, (Peclet number

CoAT
p—(hfgflatent heat,
htg

Fin=— (3n+2)/(n+2)

=We, Reg,
Puoho

1

1 (3n—=2)/(n+2)
(sin 0)

n+1 n(3n—2)

We,=op ! =

1U(n+2)
wg]““)v“}

X[(1—

(Weber number)

d 5 2 L[ oH| 2\ 71
p+ Ren 2 o T ATy T @ o | Txx 1t a X

J°H

-§-a/ZFIn
ax?

SH\ 2\ —3”2
1+ a? ) )

ax

. 90, dH 002 L[ H\?\ ™
+NdRe, “(y—1) W_a X ax 1+« X

=0 on y=H (29)

,H aH\2\ 71
a? (Tyy T+ 1—a? v T,y ON y=H (20)

a0 ﬁH a0 P JH JH —0
W‘“W& CaPe G UG YT
on y=H (22)
®=1 ony=H. (22)

In (21), &0 corresponds to condensate film flai% 0 to evapo-
rating film flow andé=0 corresponds to isothermal film.

It is to be noted that when= 1, #=90 deg, the above equations
and boundary conditions reduce to evaporating or condensating
Newtonian flow down a vertical wall investigated by Hwang and
Weng[13] and for £=0 (with no phase change at the interface
they reduce to the equations obtained for isothermal power-law
fluid film flow investigated by Lin and Hwanf21]. Whenn=1,
£=0 and #=90 deg, the equations agree with the equations gov-
erning the Newtonian film flow down a vertical wall investigated
by Hung et al[22] (for a fluid with no micropolar effe¢t Since
the long wavelength modes are the most unstable ones for the film
flow, the physical quantities, v, p, and® are expanded in pow-
ers of small wave numbet. Substituting these i(14)—(22) and
collecting the coefficients of like powers ef the zeroth and the
first-order equations are obtained. Noting that,Vi& large in
practical applicationsg®We, is taken to be of order one. Also,
since the effect oNd has been found to be negligible on stability,
[9], Nd Re; is taken to be of orden?. Further, in the analysis,
Re,=0(1) and Pg=0(1). Thesolutions are given by

the nondimensional governing equations and the boundary condi-

tions are obtained as

&u &v
(14)
T y
U gu  ou dp\ sing o dry 1 dry
“(E*”WUW&)‘?*@ x ' Re ay
(15)
o[ v v v Jp cosl « ﬁryx+(97yy
at u— U@ W Fr @ Ix ay
(16)
FRC) 5 a®+ a®+ 90 , 770 17
ay? @l g Uk vﬂy a,;x (17)
u=0, v=0, =0 ony=0 (18)
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n

g (R = (H—y) )

Re,sing| "
o=|—pF —

1in

Re,sin6®
vo=—|—5—

n
1/n —_y)n+Lin_
XHy Hy+ —— (H—y)

H(n+1)/n i
n+1

cosé

Po= (H y)—a °Fi nHxx

(23)

y
G)O:ﬁ
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U= ¥ 1) aPe,

Re, £ (Rensine

= (H(n+2)ln (H y)(n+2)/n)}

(2—n)/n
- 1/n (n+1)/n_ __\\(n+1)/n
) H{H (H (H=y) /) — —

R
L
(n+1)?
Re, cosf|Re,sing)t~mn
(n+1) Fr Fr
Re, [Re,sing)t—n/m
(n+1) Fr

Re, sin 0) (8=ny/n

= (HZ(n+l)/n_(H_y)Z(n+l)/n)}

HXHl/n|: H(n+l)/n(H(n+1)/n_(H _y)(n+l)/n)_

2(2n+1)

HX[H(n+1)/n_(H _y)(n+l)ln]

aZFi nHXXX[H(n+1)/n_(H _y)(n-%—l)ln],

(H y)(2n+l)ln

(2—n)/
R Re, & Re,sing|'“ "M H, | ey H(2n+1)/n
™ (n+1)aPe, Fr H2 2n+1

2n+1

n
(n+2)/n _\N\2(n+1)/n__ 2(n+1)/n
n+2(H Y+ 2 Y i+ 1) ”

H(lfn)/n

Re, £ (Ren sin 0)(2”)’” Hy

(2n+1)/n
* (n+1)aPe, Fr H H )

2n+1

(H(n+1)lny+ (H— )(2n+l)ln_

n 2n+1

H(n+2)ln”

n+2 (n+2)

— H(n+1)/n) (Hzlny+ (H y)(n+2)ln

n+1
1/n 1n (n+1)/n__
+—n H (H y+—(H y) —(n+1)

(H y)(2n+l)/n

Re, ( Re, sin 0) (8=m/n

— H(2n+l)ln)
(n+1)2\  Fr

HxxH 1In[ H(n+ 1)/n( H(n+l)lny+

2n+1 2n+1

n
©2(2n+1)

n
(H_y)(3n+2)/n_ H(Bn+2)/n
(3n+2)

n
2(n+1)/n
Y* Gnr2)

Re,
(n+1)2

(H _y)(2n+1)/n_

+1

Re, sin | ¢~ "M HZ
) 2n+1

_XH(l—n)/n{H(n+1)/n( (n+1)/ny+ H(2n+1)/n)
Fr n

n
(3n+2)

n

_ 2(n+1)/n,
2(2n+1) y+

)(3n+2)/n_

(H_y H(3n+2)/n”

n
(3n+2)

(H y)(2n+1)/n H(2n+1)/n)

2n+1

Re, [Re,sing|E-mn
2n+1

H)Z(Hl/n|:n+ 1 Hlln( H(n+1)/ny+
(n+1)2\ Fr n

n+1 n n
+ (n+1)/n 1/n, + _y\(n+1)/n__ (n+1)/n
n H HTY n+1 (H=y) (n+1) H

(n+1)

_ 2(n+1)/n_
2n+1 (H=y)

n
2(n+1)/n
2(n+1) H ”

(H y)(2n+1)/n

(n+2)/n
(H y+2m+1)

H(2n+1)/n

Re, coséd ( Re,siné

(1-n)/n
+(n+1) Fr Fr ) HXX[HmH)/ner

2n+1 2n+1

Re, cosf ( Re, sin 6)(1“)’”H2 n+1

T F Fr Hl/ny+—(H y)(””)’“—LH(”“)’”}

n+1 n+1

(H y)(2n+1)/n H(2n+1)/n

2n+1

Re, [Re,sing
2n+1

(n+1) Fr

(1-n)/n
) aZFionxx{rﬁn+1V“y+

Re,

n
- (H_y)(n+1)/n_ H(n+1)/n ,
(n+1)

n+1

Re, sing|-m/n
Fr )

n+1
@?FiHyH o [Hlmy4—

n+1
L(H?’
6aPgH?

nZ

©(3n+1)(4n+1)

£ Re,sing\'" n 1
— 3 _ _n= - - (n+1)/n _
01=Pe V)~ Gapgn H¥)* ( Fr ) 2Hx M 6 6

(H=y)® HZ(H-y)
n+1H

[(H_y)(4n+1)/n_H(3n+1)/n(H_y)]}:|. (24)
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The generalized kinematic equation is obtained f@%) using
(23) and(24) as

Hi+X(H)+A(H)H+B(H)Hyy+ C(H)Hyyxt D(H)Hf

3.1 Linear Stability Analysis. For the linear stability analy-
sis, the nonlinear terms of EQR6) are neglected and the linear-
ized equation

+E(H)H H +O(a2)=0 7]t+X,7]+A7]X+B7’XX+C7]XXXX:o (27)
X EXXX
where is obtained. Assuming the normal mode solution as
3 £\ 1 p=ad* i ge 10x-dh (28)
X(H):——(l——)—, . : . .
aPsg, 3/H the complex wave celerity corresponding to linear stability prob-
. lem is given by
1/
A(H)= w H(n+1)/n i . ,
Fr d=d,+id;=A+i(B—C—-X") (29)
Re, sin 6\ " n(6n+1) " whered, is the linear wave speed, addis the linear growth rate
-¢£ Er ) 6(3n+1)(4n+ 1) Hn*+Dn of the amplitudes. The flow is in a linearly unstable supercritical
condition ford;>0 and in a linearly stable subcritical condition
& {(Ren sin 0)(2—n)/n (3n+2)(n+2) 2/n] for d;<0. Ford;=0, the flow is neutrally stable.
P, Fr 2n(n+1)%(2n+1) ’ 3.2 Nonlinear Stability Analysis. The nonlinear stability
o (3=n) analysis of Eq(26) by the method of multiple scalef3], yields
B(H)= 2a Re, Re,sing| ™" nH(3n+3)/n . , , . .
(2n+1)(3n+2) Fr (LoteLyt+eLy)(en+e“nm+ € 73)=—€Ny— €N
H (1-n)/n (30)
__aRe, cost Re sing H(2n+ 1n where
(2n+1) Fr Fr ' 25)
«®Re, [Re,sing| - n(eX.Xq, Lty 1) = en+ e mot+ € n3;
C(H= —n| — Ej H@2n+1in
(2n+1) Fr n ’ ti=et, t,=€’t, X;=ex
D(H)= 2a Re\(3n+3) [Re,sin 9)<3n)mH(2n+3)ln 9 i+ 9 62_(9. i_)i Ei
n(2n+1)(3n+2) Fr at ot aty at,” X Ix  dXq
_ «Re, cosé [Re, siné?)<l”)’”|_|(n+l)/n ] P A J . P2 . P
n Fr Fr 0—E+ + &‘l’ ﬁ+ g
o (1 f) : ’ .
- BEVITE J J J J
Pe, 3/H Li=—+A—+2B + (31)
) = ﬁtl (9X1 0X&X1 ax3ax
a®Re, [ Re, sing) t~m/n !
E(H)= _— FiHM D/
n Fr " & J*
Lo=—+ B—2+6C?
3 Stability Analysis Mo g 9X“9Xy

As the variation of the film thickness of the base flow is found
to be very small fotaH,|<1 using an analysis based on Nusselt

assumption, the dimensionless film thickness is expressed as
H=1+ n(x,t)

X"
NZZ? 77§+A, 7171+ B’ 7171t C' 71715000t D nix

+E D13 71xxx

m

where 7(x,t) is the perturbation of the stationary film thickness.
The approximationaH,|<1 gives qualitative results for the con-
stant film thickness assumption at the zeroth order. It is important
to note that this constant film thickness approximation with long
wave perturbations are reasonable approximations only for certain
segments of weakly condensing and evaporating flows. Substitut-
ing for H(x,t) in (25) and retaining terms up to the order gf,

the evolution equation for is obtained as

7+ X' 1+ Ant Bt Couxx
X// 7]2 X/I/ 7]3
2 6
2
7
"+ B —
B'n+B >

7
+ +| A’ n+ AH?) My

+

7
Nt | C'pt CH?) Mxxxx

+(D+D’ ) ni+ (E+E" 7) nxeux| + O(7%)

N3=X"717,+ 3 3+ A (M2t M2t M7k,
+ B (71725271 771xx1+ N1xxM2) + C' (71 Moxxxx

+4mn, T 1xxx% + Nixoxx2) D (2715 Mox+ 2115 7]1x1)

+E(71xM2xxx 3 71x 771xxx1+ Nixxxoxt 771xxx771x1)

n " n
A 2 B 2 C 2 ’ 2
+ 2 N1t 2 N1 M1xxt 2 71 M1t D 7177k

+ B 71715 P 1xxx -

The solution of Eq(30) at the ordeiO(¢€) is obtained by solving
Lo71=0 and is in the form

7y =ae x40+ ge i d (32)

(26)

where the values oK, A, B, C, D, E and their derivatives are
evaluated at the dimensionless height of the firs 1.

Journal of Applied Mechanics

where a(x,,t;,t;) is the nonlinear amplitude function and
a(xq,tq,ty) is its complex conjugate. The solution of the equation
Lo+ Li7=—N, at theO(€?) is in the form

7, =ealedix i)  gg2e=2ix=d;t) (33)
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Using the solutions fory; and 7, in the O( %) equation given by \all and the interface as,— T,,= =47 K. Under such tempera-
Loms+Lim+Lo7=—Ng, the equation for the perturbation am-yre conditions, the phase change parametéakes valuegé
plitude a(xy,t;,t;) is obtained as =0.0872(with phase changaand|§?:0 (without phase change
P 2 In what follows, attention is focussed on the investigation of the
oa oa . = influence of the phase change at the interface on the stability of
at, + Dlﬁxf € “dia+(E,+iFy)a‘a=0 the flow of the power-law fluid film down an incline.

4.1 Linear Stability Solutions. The linear stability analysis

i 3
from the secular condition foD(e"), where yields the neutral stability curve, which separates éhe plane

D,=B-6C, into two regions depending on the value of phase change param-
" eter & Figure 2 shows the neutral stability curve for isothermal
F,=(X"—5B’+17C’ +4D—10E)e,+A'e, + — (§=Q), condensat(a§>q) and evaporating§<_0) power-law films.
2 It is observed that linearly unstable region becomes smaller as

the phase change parameter increases and the linearly stable re-
gion is more for dilatant fluids than pseudoplastic fluids. The neu-
X" 3 3 tral stability curve for condensate film shows that, there exists a
—A’ei+(7— > B"+ EC”+ D'— E’) (34) critical value forn, above which condensate power-law fluid film
is always stable. It is also observed that condensate power-law
X" fluid film is more stable than the corresponding isothermal and
-5 +B'=C'+D- E) —iA’ evaporating power-law fluid film.
. Figure 3 shows the temporal growth rate of power-law fluid
(16C—4B+X’) given by Eq.(29). It is observed that the temporal growth rate is
The weakly nonlinear behavior of the fluid film can be investiless for a condensate power-law fluid film than for an isothermal
gated using Eq34). It is important to note that such an expansiofPower-law fluid film. On the other hand, for an evaporating
is only valid for wave numbers close to neutral and not neapower-law film, the temporal growth rate is more than for isother-
critical whena approaches zero. The solution(8#) for a filtered mal power-law film. Further, temporal growth rate decreases with
wave in which spatial modulation does not exist and the diffusidicrease in power-law indem. The results of the linear stability
terms in(34) vanishes is obtained by takireg=ase ™ °(2t2, This ~analysis are in agreement with those of Hwang and Wergj

leads to the Ginzburg-Landau equation given by (Newtonian condensate/evaporating filmnd Lin and Hwang
[21] (isothermal power-law liquid films

E,=(X"—5B’+17C’' +4D— 10E)e,

etig=

dag

W:(Eizdi_Elaé)ao (35) 4.2 Nonlinear Stability Solutions. As the perturbed wave
2 grows to a finite amplitude, linear stability theory cannot be used
(b(ty)ty) 5 to predict the flow behavior accurately. Therefore, in order to
5—tz: 180- (36) examine whether the finite-amplitude disturbance in the linearly

stable region causes instabilifgubcritical instability and to in-
The second term in Eq35) induced by the effect of nonlinearity vestigate whether the subsequent nonlinear evolution of distur-
can either accelerate or decelerate the exponential growth of thences in the linearly unstable region develops into a new equi-
linear disturbance depending upon the signglodndE;. The librium state with a finite-amplitudg(subcritical stability or
perturbed wave speed caused by the infinitesimal disturbances gws to be unstable, the nonlinear stability analysis is employed.
pearing in the nonlinear system can be modified using(B@). It is observed from the nonlinear amplitude E85) that a nega-

The threshold amplitudea, is given by tive value of E; can make the system unstable. Such a type of
q instability in the linearly stable region is called subcritical insta-
€ay= \/I (37) Dility. In this case, the amplitude of disturbance is larger than the

E: threshold amplitude and causes the system to reach an explosive

state.

The neutral stability curves are obtained from E(®9) and
(34) by equating to zero, the linear amplification rateand the
nonlinear amplification rat&,. Figure 4 shows regions of sub-

) ) ) ) critical instability (d;<0,E;<0) in the linearly stable region and
It is observed from(37) that in the linearly unstable regior( g percritical explosive statel (> 0,E,<0) in the linearly unstable
>0), the condition for existence of a supercritical stable region tegion. It is clear from Fig. 4 that both these states of the film flow

E,>0 andeq, is the threshold amplitude. In the linearly stableyysiem are possible for isothermal as well as condensate or evapo-
region (d;<0), if E;<0, then the flow has the behavior of Subyiing films. However, for the condensate film, supercritical ex-
critical instability andea, is the threshold amplitude. The condi-

. . o e plosive state exists only for pseudoplastic fluids. The condensate
tion for the existence of a subcritical stable regiorEis>0 and {1, “exhibits two distinct disjoint regions of subcritical instability

E.1=0 gives the condition of existence of a neutral stability curveyear |ower and upper branches of neutral stability curve. This is in
contrast to the isothermal and evaporating films, which exhibit
4 Numerical Results and Discussion only one sgch region. The regions qf supercritica.llstabiltﬂy”(
>0,E;>0) in the linearly unstable region and subcritical stability
In o_rder to understand the_ flow characteristics_ an_d the asso@:<0,E,;>0) in the linearly stable region are shown in Fig. 4.
ated time dependent properties of power-law fluid film down apyrther, from Fig. 4 it is observed that subcritical stable region
inclined plane, the conditions obtained for linear and nonlinegicreases, while supercritical stable region decreases as the phase-
stability of the flow system are numerically evaluated for Reychange parametey increases. Also, for the condensate film, su-
nolds number Re Weber number We, and Prandtl number Pr  percritical stable region exists only for pseudoplastic fluids. For
which are defined in terms of power-law indexThe values of condensatéevaporatingfilm, the region of stability is moréess
dimensional quantities are taken d&1], p=998 Kg/n®, wu, than that for isothermal film.
=1.002x10°mPa8,  he=10"*m,  0=0.0727  N/m,  An infinitesimal disturbance in the linearly unstable region
y=0.000611, and¥=60 deg. The temperature at the interface igd,>0) will attain a finite equilibrium amplitude, when the non-
taken asT;=373 K and the temperature difference between thaear amplification rateE; in the region is positive. Figure 5

and the nonlinear wave speed is given as

F
Nc, = 62b=dr+diE—1. (38)
1
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Fig. 2 Neutral stability curves for isothermal, condensate, and evaporating films

shows the threshold amplitude and the nonlinear wave speednumber «. It is observed that the threshold amplitude and the
the supercritical stable region for various values of wave numbeonlinear wave speed increase with the increase in phase change
a. It is noted that the threshold amplitude and the nonlinear waparametei and it is more for dilatant fluids.
speed are less for the condensate pseudoplastic fluid film. In the
supercritical stable region, the nonlinear wave speed of t%e C USi
pseudoplastic fluid is more than the linear wave speed. onclusion

Figure 6 shows the threshold amplitude and the nonlinear waveWeakly nonlinear stability of a condensate or evaporating
speed in the subcritical unstable region for various values of wagewer-law liquid film flowing down an inclined plane is investi-
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Fig. 3 Growth rate for different values of phase change parameter, (a) isother-

mal film flow, (b) condensate film flow, (c) evaporating film flow
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Fig. 4 Neutral stability curve in the  a-n plane: (a) isothermal film flow, (b)
condensate film flow, (c) evaporating film flow

gated by the method of long-wave perturbation. The interfacitiie film flow system is always stabl&ig. 2), while isothermal
boundary conditions include the effects of phase change acrossahe evaporating power-law fluid films are unstable for any value
interface. The generalized nonlinear kinematic equation of the frgepower-law index 1.

surface is obtained for the condensate or evaporating film and therhe nonlinear stability analysis of the power-law film flow sys-
stability of the film flow system is investigated. As the power-lavy

exponent 0 decreases, the effective viscosity decreases al %{n using long-wave theory and the results obtained in the previ-
herrjlce f influences the I,?eynolds number Rand \);Veber number °9S sections are based on ra_ther restrlctlv_e asgumpnons_._ These
We, . The effect of increasing the phase change parangdgeto results are even more qualitative than the linearised stability re-
stabilize the film flow system. Further, the dimensional quantitigd!lts and they reveal that

used to discuss the stability characteristics of the power-law(i) both subcritical instability §;<0,E,;<0) and supercritical
model in terms of the power-law exponemt show that there stability (d;>0,E;>0) are possible for isothermal and evaporat-
exists a critical value ofrf’ for the condensate film, above whiching power-law fluid films.
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Fig. 5 Amplitude and nonlinear wave speed of supercritical wave for different
values of n, (a) isothermal film flow, (b) condensate film flow, (c) evaporating
film flow
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Fig. 6 Amplitude and nonlinear wave speed of subcritical wave for different
values of n; (a) isothermal film flow, (b) condensate film flow, (c) evaporating
film flow
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Constant Flux Diffusion Across a the exterior surface heated by constant flux. Note that for constant
flux heating, conformal mapping is impractical. We shall use the
Corner domain decomposition method.

The corner is partitioned into a squafi@egion 2 and a strip
(Region 2 with their own axes as shown. The other leg is a

C. Y. Wang reflection of Region 2. Let| be the constant flux on one surface
Department of Mathematics, Michigan State University, andT, be the fixed temperature on the other surface. Construct a
East Lansing, Ml 48824 Mem. ASME normalized temperatur&=(T'—Ty)x/qH where T’ is the di-

mensional temperature andis the thermal conductivity. If the
interior is heated by constant flux, the boundary conditions are

The temperature distribution of a curved barrier heated by con- T1(x,00=0 @h)]
stant flux on one side is studied. Both the right-angled corner and
the rounded corner are solved by the method of domain decom- Ty(x,00=0 )
position and matching. It is found that hot spot temperatures may
reach 2.5 times that of a flat barrier but may be tempered with (7_-'—2()( 0=1 3)
appropriate rounding at the cornefDOI: 10.1115/1.1629105 ay '
Also due to symmetry alongE

Introduction T106Y)=Ta(y:x) “)

The diffusion of mass or heat across a barrier is important #’d continuity along the partition
many engineering and biological processes. We shall use the ter- T.(1y)=T,(0y) )
minology of heat transfer, although the results may apply to mass LY 20
transfer as well. Previous work on diffusion across a corner con- aT, aT,
sidered constant temperature boundary conditions. For a right- a_x(l‘y): W(O,y). (6)

angled corner, it is possible to solve the Dirichlet problem by
conformal mapping(see e.g., Wang1] and Ivanov and Tru- Equations(2)—(8) are to be solved. The general solution Bf
betskov[2]). For a rounded corner numerical methods or domaigtisfying Eqgs(1), (4) and the Laplace equation is
decomposition and matchinfg], are needed.

The present paper considers the case where one surface of the

©

corner is heated by constant flux. This situation occurs when the Ty=2, By[sin(Aay) (et~ D — g~ n(x+1)
heating is produced by an exothermic chemical reaction or by n=1
electric heating elements. In most cases, the boundary condition is +sin(A,X) (et~ — g~ nly+1))] 7)

somewhere between constant temperature and constant flux con-
ditions. Both the right-angled corner and the rounded corner willhere,,=(n— 3) 7 andB,, are constant coefficients. The general
be studied. solution to Eqs(2), (3) is

— i —ApX
The Right-Angled Corner TH*; An SIN(Apy)e " ®)

Figure 1@) shows the right-angled corner with lengths normak,q qerjes are truncated M terms and the matching conditions

ized by the thicknessl. Two subcases are considered. The int : SO i ; 3
rior surface DEF) heated by constant flux and the exterior su?—EqS'(S)’ (6) are applied. Multiplying with siry) and integrat

. .ing from O to 1 give a set of linear algebraic equations which can
face (ABC) cooled by constant temperature or vice-versa, Wltbeg easily invertgd 9 q

Comtibuted by the Abplied Mechanics Division ofiE A . The accuracy can be improved by increasig In general
ontributed by the Applied Mechanics Division ol MERICAN SOCIETY OF [P i ; _ ; u
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- three significant digits are obtained fbi=40. There is a “cold

CHANICS. Manuscript received by the ASME Applied Mechanics Division, FebSPOL” ON t.he inSid? heated surfaceTig(1,1)=0.649. Linear tem-
1999, final revision, Aug. 2000. Associate Editor: L. T. Wheeler. perature is established far from the corneyat .
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Fig. 1 (a) the right-angled corner, (b) the rounded corner

Next we look at the subcase where the constant flux heatingTc
on the outside. Equatior(4@)—(3) are supplanted by

05
s 0= —1 9
—lix0o=—
7y (x,0) 9) . ‘ . . '
0 05 1 b 15 2
T,
T»(x,1)=0, W(X’O): -1 (10) Fig. 2 Hotspot temperature T, for exterior constant flux heat-
ing and coldspot temperature T, for interior constant flux heat-
The appropriate expansions are ing of a rounded corner. Dashed lines show exact annular for-
mulas.
T1=2-x=y+ 2, By[COg\ny)(eMntDf-ghnlx+ )
n=1
+cog A px)(eM0 ™D 4 g7 nly+1))] (12) To(X,y)=1—y+ D, A,cogAyy)e (15)
n=1
” N where\,=(n— %) . The matching conditions are then similarly
T=1-y+ 2 Agcodhzy)e (12) applied,
=
Using the matching conditions and similarly integrating, one ob- T.(y+b,B)=T,(0y) (16)
tains the coefficients.
We find there exists a “hot spotT,(0,0)=2.542 at the outer 1 4T aT
corner. Since the maximum temperature of a flat plate is 1 under [ —1(y+ b,8)= —Z(O,y)_ 17
the same circumstances, such a right-angled corner heated from (y+b) a6 X
the outside elicits a local temperature more than 2.5 times highgficept for very low values o, convergence is fairly fast. Usu-
which is unlikely to be acceptable. ally five terms in the series would ensure a three-digit accuracy.

In the case the rounded corner is heated from the outside, the

proper expansions are
The Rounded Corner

(ean(9*3)+ e~ an(9+ﬁ)) (18)

We investigate whether the rounded corner would alleviate the r

local temperature rise due to constant flux heating. Let the Tl(r70)=(l+b)|n(6)

rounded section have inner radiosouter radius b and open-

ing angle B. Figure 1b) shows polar coordinates ) for the ) r

rounded sectionRegion 1 and Cartesian coordinates for the +3B,sin an'”(g)

straight section. \

First consider constant flux heating on the inside. The expan- . _

sion for T, satisfying the cylindrical Laplace equation and the To(x,y)=y+3 A, sin(Amy)e o (19)

boundary conditions on curved surfaces is Figure 2 shows the predicted hot spot and cold spot tempera-
tures on the constant flux heated surface. The barrier becomes flat
for eitherb—o or B=0, where the temperature on the heated

Ta(r,0)=b In(T) surface would be 1. The dashed lines correspond to the case of

' annular cylinder, either heated inside by constant flux or outside
< r by constant flux. The exact formulas are
+ 2 B, co{ an In(B)
n=1

(exn(0=h)  e=an(0+B))  (13)

1
The eigenvalues are uncommon, T.=b |”( 1+ 5) (20)
1 1'
”*g)ﬂ Th=(1+b)In| 1+ 5). (21)
=TT 1) (14)
These curves serve as bounds for the temperature extremums.
The expansion fofl, is Note that B=w/4 is the right-angled rounded corner and
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B= /2 represents a cylinder head withJashaped cross section. equation and its use in the solution of related fluid mechanics
Due to poor convergence for small results forb<0.05 are not problems. In his study, he also provided some exact solutions for

presented, although extrapolationkie- 0 is possible. mathematical models of turbulence. Caldwell and Snijigh
solved Burgers’ equation for two different initial conditions by
Conclusion and Discussion using a finite element method and a finite difference method. The

. . S - numerical results provided by the two methods for various Rey-
The constant flux heating of a corner is studied in detail. Iﬁoﬁ P y y

X . s numbers were discussed and were found to be in good
contrast to constant temperature heating, there exist hot spots ement with those generated by analytical solutions. More re-

cold spots on the heated surface. The worst case is the righlyy the differential transformation method has been applied to
angled corner heated from the outside. The local temperaturen?ény nonlinear problems. For example, in 1996 Chen an{i3Ho

1.6 times highefwhenb=0). C

We have used the domain decomposition and matching methg
which is quite efficient. Numerical finite differences can also b,
used, but the infinite geometry and the sharp corners need to
compromised.

en[4] adopted a hybrid method combining the Taylor transfor-
tion and the finite difference approximation to solve the non-
fmear transient conduction-convection-radiation heat transfer an-
mRfar fin equation.

The purpose of this paper is to present the use of a hybrid
method, which combines differential transformation and finite dif-

References ference approximation, in the analysis of Burgers’ equation with
[1] Wang, C. Y., 1995, “Diffusion Across a Corrugated Saw-Tooth Plate,” MechSP€Cified initial conditions and boundary conditions. The study
Res. Commun.22, pp. 589-597. begins by applying differential transformation and finite differ-

[2] :X/iﬂoé V. l-,tandA Lrugf;skml/, M. P;Rl§9§1andb§0k ofR Confolr':Tal Mapping ence approximation methods to the complete nonlinear Burgers’
[3] Wang, C. ., 1693, Steaty.State Heat Conduction Actoss & Bent SheefidUtion and to its initial and boundary conditions. The study then
Mech. Res. Commun20, pp. 237—242. considers two different cases of initial condition and boundary
conditions and uses the proposed method to solve Burgers’ equa-
tion in the form of a finite power series. Finally, the results which
are derived using this method are compared carefully with those

given by analytical solutions, particularly in the case of high Re

Application of a Hybrid Method to the numbers. The validity of the proposed method is demonstrated by

Solution of the Nonlinear Burgers’ comparing the steady-state solutions of Burgers’ equation derived
. by the proposed hybrid method with those obtained from the ana-
Equatlon lytical approach.

Problem—Burgers’ Equation

Bor-Lih Kuo
Department of Mechanical Engineering, Chengshiu f IIThe complete nonlinear Burgers’' equation is expressed as
.T0llIOwWS:

Institute of Technology, Kaohsiung, Taiwan 833, Republic
of China gu gu 1 U
e-mail: borlih@cc.csit.edu.tw U T Rege @)

whereu=u(x,t) in some domain and Re is the Reynolds number
Chao-Kuang Chen . . . . which characterizes the flow. The equation is a parabolic partial
Department of Mechanical Engineering, National Cheng gifterential equation, which is composed of an unsteady term, a
Kung University, Tainan, Taiwan 710, R.O.C. nonlinear convective term and a viscous term.

The initial condition is given by

u(x,00=f(x) asx<b. 2)
This paper presents the use of a hybrid method which combines »
differential transformation and finite difference approximation '€ boundary conditions are expressed as

techniques in the solution of the nonlinear Burgers’ equation for u(a,t)=g(t)
various values of Reynolds number including high values. In or- (3)
der to demonstrate the accuracy and validity of the proposed u(b,t)=w(t) t>0.

method, it is used to solve several examples of Burgers’ equation, ) )
with each example having different initial conditions and bound?ifferential Transformation
ary conditions. It is found that the results obtained are in good The pasic principles of the differential transformation method
agreement with the analytical solutions, and that the results afgay pe explained as follows.
more accurate than those provided by other approximate numeri-pjtferential transformation of functiog(t) is defined as
cal methods. [DOI: 10.1115/1.16291Q7
HY| dy(t
voo="1 y(®)

otk

4

t=0

Introduction
Burgers’ equation is used as a model for governing equationslafth'S equatlpn,Y(k) is the tlra}nsforme(.j f”F‘C"O” n the transfor-
tion domainy(t) is the original function in the time domaik,

many mechanics problems. Therefore, it is important to develégyah ¢ / aHdis the time i |
analytical methods or numerical approaches which may be used he tg:_\fr;s Or'”?al“_on paramete;, St %t'line. interval. d
its solution. Cole[1] studied the general properties of Burgers' | ne differential inverse transformation ¥{k) is expressed as

o0
k
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF y(t)= z (l) Y(k). (5)
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- ico \H

CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 19, o . .

2002; final revision, Apr. 12, 2003. Associate Editor: D. A. Siginer. Substituting Eq(4) into Eq. (5) yields
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1.00
— : present solution
(6) X : exact solution

Equation(6) implies that the concept of differential transforma-
tion is derived from the Taylor series expansion. Therefore, the
basic operation properties of the differential transform are given
by

U
Linearity: T{y(t)+z(t)}=Y(k)+Z(k) @
Convolution: T{y(t)~z(t)}:Y(k)*Z(k):2 Y()Z(k—1)
k=0
(8) 0.20
d"y(t k+1)(k+2)---(k+n 0.00 T T T T T
Derivative: T{ ¥ )] = ( A Lt )Y(k+ n) ' ' ! '
dtn HP 000 020 040 060 080  1.00
©) X
whereT denotes differential transformation and™denotes the Fig. 1 Comparison of present results with exact solutions for
convolution operation in the transformation domain. Re=1
If the method of differential transformation is applied with re-
spect to the time domaim, then Eqs(1)—(3) may be rewritten in
the following form:
? ) Uo(k)= (k) 1)
k+1 du(x,! 1 d?U(x,k _
e U(x,k+1)+2 —d(x )U(x,k—l):R—e—(z ) Uj(k)=0 t>0
1=0 dx wherej represents the number of the final position in the flow
(10) direction, and
U(X,O):F(X) (11) " 1 for k=0
U(a,k)=G(k) 12 29710 otherwise
U(b,k)=W(k) When the various values df;(k) are obtained by using Eq.

where U(x.K), F(x), G(k), and W(k) are the spectrum of (13)a_tt§>geth?|; WlthI trtl'e tra?sé{ormeg initial t(_:onc_iltlo_n ancé)boundary
u(x,t), f(x), g(t), andw(t), respectivelyk andl are transfor- conditions, the solution ot BUrgers equation is given by
mation parameters arid is the time interval. Z ok

The finite difference approximation method may be applied u(x,t)=2 (—) Ui(k). (22)
with respect tax in Equations(10)—(12). The regiona<x<b is =0 \H,
divided into several equal intervals. Each intervsl,is given by For the present study, the functiargx,t) is expressed by the
A=(b—a)/m, where m is the total number of intervals. By “Singollowing finite series:
the second-order accurate central difference formula for the first

and second derivatives, it is possible to express (EQ). at any ® [tk
position, i, within the flow as u(x,t)=k2_0 m Ui(k)
k
k+1 Ui(k+ le Uira(D—Uia() Ui(k—1) where k represents the number of terms within the series, and
H ! =) 2A : depends on the convergence of the solutions. In the cases consid-

ered with the current study, a value lof 6 was adopted.
~ 1 Ui (k) —2U(k) + U4 (k)

= Be 2

13 . . .

(13) Numerical Results and Discussion

wherei indicates the position number in the flow direction. In order to illustrate the proposed hybrid method, a series of
To demonstrate the use of the hybrid method in the solution BEmerical calculations were carried out at various values of Rey-

Burgers’ equation, the present study considers two different cagidds Number. Figures 1 and 2 compare the numerical results with

of initial condition and boundary conditions. These are as follow#€ exact solutions of Burgers’ equation under case 1 conditions

for values of Re=1 and 100, respectively. It is seen that the nu-

Case 1: u(x,0)=sinmx 0Osxs<1 (14)  merical results obtained from the proposed hybrid method are in
_ _ good agreement with the exact solutions. Tables 1 and 2 provide a
u@H=u(1H=0 =0 (15) detailed comparison of the obtained numerical results with the
Case 2: u(x,00=0 0=x=1 (16) exact solutions for Rel and 100. Observation of these tables
confirms that the present results agree very closely with the exact
uiop=1 17) solutions. It is to be noted that the analytical results of the equa-
UW1H=0 t>0 tion (i.e., the exact solutions referred to abpaee obtained from

the closed-form solution derived by Cdl&], which is presented
Applying the method of differential transformation to these inias an Appendix in this paper. Using the present method, it is
tial and boundary conditions gives necessary to determine the number of intervals tf be used for
the nonlinear convergence problems. In this study, the number of

Case 1: U;(0)=sinmx (18) intervals was chosen to be 20 and 100 for the cases sfiRend
Uo(k)=U;(k)=0 (19) _100, resp_eptlvely. When the value of Reynolqls number is high, ’|t
is very difficult to determine the exact solution of the Burgers
Case 2: U;(0)=0 (20) equations or to obtain numerical approximations using existing
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Fig. 2 Comparison of present results with exact solutions for
Re=100

techniques. In this study, the proposed hybrid method was used to
solve the equation for value of R&.0,000. The numerical results
are shown in Fig. 3. These results show the appearance of increas-
ing disturbance for higher values of Reynolds number. The distur-
bance is manifested in the form of a ripple effect which becomes
more exaggerated, and which decays more slowly, as the Rey-
nolds number rises to 10,00@s discussed also by Caldwell and
Smith [2]). The proposed method was used to obtain the steady-
state solutions of Burgers’ equation for values of Reynolds num-
ber from 1 to 10,000, and with initial and boundary conditions of
u(x,0)=0; u(0jt)=1, u(1,t)=0. From Fig. 4 it can be seen that
the numerical results are once again in good agreement with the
analytical solutions. Figures 5 and 6 show that the time history of

Table 1 Solutions of Burgers’ equation for Re =1
t=0.01 t=0.10 t=0.20
X Exact Present Exact Present Exact Present
.00 .000000 .000000 .000000 .000000 .000000
10 273239 .273310 .109538 .109727 .041929
.20 .521564 .521697 .209792 .210164 .079994 .080306
.30 .721852 .722028 .291896 .292437 .110622 .111060
.40 .854590 .854784 .347924 .348604 .130822 .131351
50  .905713 .905901 .371577 .372348 .138473 .139045
.60 .868333 .868496 .359045 .359836 .132582 .133141
.70 .744098 .744222 .309905 .310624 .113469 .113957
.80 .543820 .543902 .227817 .228369 .082841 .083203
90 .286998 .287039 .120687 .120987 .043689 .043881
1.00 .000000 .000000 .000000 .000000 .000000 .000000
Table 2 Solutions of Burgers’ equation for Re =100
t=0.10 t=1.00 t=2.00
X Exact Present Exact Present Exact Present
.00 .000000 .000000 .000000 .000000 .000000 .000000
10 235941  .235947 .075382 .075383 .042964 .042964
.20 .461225 461237 .150645 .150648 .085915 .085915
.30 .664325 .664343 .225666 .225670 .128840 .128841
40 .831864 .831887 .300309 .300315 .171726 .171728
50 .947414 947440 .374420 .374429 .214558 .214560
.60 .990156 .990179 .447816 .447828 .257322 .257325
.70 .934119 .934140 .520268 .520285 .299998 .300002
.80 .750783 .751328 .591476 .591499 .342409 .342435
90 423599 427744 .660019 .660351 .373278 .374070
1.00 .000000 .000000 .000000 .000000 .000000 .000000
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Fig. 3 Numerical results obtained by the present method for
Re=10,000
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Fig. 6 Time history of propagating wave fronts for Re =10,000

differential transformation and finite difference approximation,
has been employed to analyze Burgers’ equation for various val-
ues of Reynolds numbefscluding high values of Re Two ex-
amples of Burgers’ equation have been investigated using the pro-
posed method, i.e., with two different sets of initial condition and
boundary conditions. It has been demonstrated that the obtained
numerical results are in good agreement with the analytical solu-
tions. The numerical results indicate that the proposed hybrid
method is simple, fast, and accurate. For large values of Re, it is
difficult to determine the solutions of Burgers’ equation using ana-
lytical methods or other numerical approximations such as the
Fourier series approach, spline collocation method, boundary ele-
ment method, etc. However, it is the current authors’ belief that
the method presented in this paper overcomes these problems and
provides a powerful technique for the solution of the nonlinear
Burgers’ equation with initial and boundary conditions, particu-
larly for cases where the value of Reynolds number is high.
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Discussion: “On Global Energy f*(g NG S| o)

Release Rate of a Permeable Crack in R ’ ’

Piezoelectric Ceramic” (Li, S., cannot follow from(44), i.e.,

2003 ASME J. Appl. Mech., 70, pp. FX,=h(X)=0, —e<X<e, ©
whereh(x) is given by(12) in [1].

246—252) In addition it is seen from81)—(83) that the height of a rect-
angular crack has been taken into account. However, for such a

X.-F. Li rectangular crack,(or strictly speaking a rectangular hgle

T . . oyv2(X,0), eyz(X,0), Dy(X,0), andEy(X,0) should have no sin-

College of Mathen_"'at'c§ and Computer Science, gularity near the points#a,0) since the points£a,0) are not

Hunan Normal University, Changsha 410081, the crack tips 1p>0). Instead, the electromechanical field near

People’s Republic of China. the apexes of the rectangletf,+=hy) exhibits a singularity.

Moreover, the singularity is no longer an inverse square-root sin-
gularity. The classical definition of field intensity factors is there-
fore employed directly except for the casehgf=0.
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[1] Li, S., 2003, “On Global Energy Release Rate of a Permeable Crack in a

In studying crack problems in a piezoelectric material, many  Piezoelectric Ceramic,” Transactions of the ASME, J. Appl. Medf, pp.

crack models have been proposed and some fracture criteria have 246-252:

been established. The author [df] presented a new permeable

crack model. That is, a permeable crack is modeled as a rectan-

gular hole having heighty. The first-order perturbation solution

in terms of small parametér, is derived, and asymptotic electro-Closure to “On Global Energy Release

elastic field, together with field intensity factors, local and glob

energy release rates are further determined. The obtained theggate of a Permeable Crack in

ical prediction agrees basically with experimental observatioRjezoelectric Ceramic” (2003 ASME J.
Here, we would like to make some discussiong bh !

In deriving the results if1], Eq. (45) is crucial. However, Appl Mech., 70, p. 930
based on(44), (45) does not hold unlesBy(X,Y) and E¥(X,Y)
are linear functions with respect to variaMeand independent of S Li
variableX. The reason is that, if denoting - L

~ ~a Department of Civil and Environmental Engineering,
f(X,=h(X))=Ex(X, =h(X)) = Ex(X, =h(X)), (1) university of California, Berkeley, CA 94720
the Fourier cosine transform &fX, = h(X)) is
(1) For a finite heighthy>C, C>0, we define real functions
hy, [X|<a
W LI
0, |X|>a

fmf(x, +h(X))cog {X)dX= Jaf(x, +hg)cog {X)dX
0 0

w 1)
+f f(X,00c08 X)X, (2)

a and
rather than F(X,h(X)) =Ex(X,h(X)) ~EX(X,h(X)). #)
sin(ag) It is true that in general the Fourier transformffX,h(X)),
f*(grih() § ’ (3) .
where F*(§)==jO F(X,h(X))cog {X)dX#f*(£,h*({)),  (3)
f*(g,v):rf(x,v)cos(mdx. (ay “here
0 o
Consequently(45), i.e., Y= JO F(X,Y)cod £X)dX, )

930 / Vol. 70, NOVEMBER 2003 Copyright © 2003 by ASME Transactions of the ASME



E (2) From the perspective of classical fracture mechanics, it is
h*(¢) ==f h(X)cog {X)dX. (5) also true that for a finite rectangular slit, there is no singularity for
0 the electrical/mechanical fields ¥t +a anY=0. The singulari-
However, wherhy—0, ties will appear at the four corners of the rectangular slita(
. *hyp), with a singularity power index different from1/2.
f F(X,0)coq £X)dX=f*(£,0). ©) Nonetheless, it has become a consensus now that the fracture
0 process of a piezo-electric ceramic is in fact a coupled multiscale
phenomenon. This can be argued based on both its physical nature
In other words, we expect and its mathematical structure.
lim F*(&)—f*(£,0). @) Ref.[1] tried to _e_xplore the asymptoti_c multiscal_e structure of
hg—0 the problem. Intuitively, the crack-tip field was viewed as the

. N __outer problem, and it was assumed that it has the form of the
During this limiting process, the four corners of the slit willg|agsical solution with respect to the “slow” coordinate variables
merge and become the two crack tips ¥5(*a,0). One of the (iherefore there is basically no slit ther©n the other hand, the
main technical difficulties of fracture mechanics of piezoelectrigioctrostatic problem inside the crack was viewed as an inner
materials is how to corre_ctly descripe this limiting Process.  proplem that is controlled by the slit heighty, which is the
Ref. [1] suggests that in the Fourier transform domain the liMgngth scale of the problem and it is associated with the “fast”
iting process may be approximated as coordinate variable.
The essential idea of this approach is using Byto match the
)—>f*(§,0) outer(macrg solution with the innefmicro) solution. Of course,
@® the asymptotic multiscale analysis could be done differently.

which, the author believed, is plausible in an asymptotic sense.
Moreover, the approximatiof8) becomes exact whefR(X,Y) Ref
is a linear function with respect variab¥e which is the difference elerence

= a H At [1] Li, S., 2003, “On Global Energy Release Rate of a Permeable Crack in a
gf Ex(X,Y) ?Lnd EX(X’Y)' To require the same restriction on Piezoelectric Ceramic,” ASME Journal of Applied Mechani@§, pp. 246—

Ex(X,Y) andE%(X,Y) may be too strong. 252.

sin(ag)
0

lim F*({)— lim f*(éﬁh*@)):f*(é‘h 7

hg—0 hg—0
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