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The Interaction of Two Spherical
Gas Bubbles in an Infinite Elastic
Solid
The elastic strain and stress fields between two bubbles of different sizes and dif
pressures were estimated by using the fundamental result of Eshelby. The equ
inclusion method was extended to the case of two inclusions in an infinite elastic
This approach, which remains totally analytical, was compared successfully to finite
ment calculations. The mean stress provides information about gas diffusion betwe
bubbles: according to the results, the bubbles are likely to progressively equalize
sizes. Moreover, the derivation of the von Mises equivalent stress showed that its va
the vicinity of the bubbles, is larger than the elasticity limit. Therefore, for a comp
mechanical description of the problem, plasticity should be taken into account. In sp
its simplicity, this method nevertheless leads to results, which are very close to the
diction of numerical calculations.@DOI: 10.1115/1.1629110#
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1 Introduction
The elastic interaction of two spherical cavities with intern

pressure~bubbles! is important from the standpoint of materia
engineering and has already been investigated by several au
One of the common applications is the aging of nuclear fu
nuclear fission produces helium atoms, which form bubbles
eventually damage the material~Lässer@1#!. The knowledge of
the stress field between two bubbles gives information about t
further evolutions. More specifically, the von Mises equivale
stress level is related to the possible occurrence of local dam
associated with plastic strain, while the mean stress~hydrostatic
pressure! is associated with bubble growth. An analytical or/a
numerical approach on this kind of material is necessary, sinc
is very difficult to carry out direct measurements of the mate
evolution with time. It is also relevant to derive analytical expre
sions of the mechanical interaction between two bubbles,
could be simply implemented into more complex numerical m
els. Sternberg and Sadowsky@2# were the first to be interested i
the problem of interaction of two spherical cavities of the sa
size. They solved it for a uniform field of tension at infinity usin
the Boussinesq@3# stress-function approach to obtain a series
pansion solution. Other authors then extended this method to m
than two cavities and for cavities of different sizes under uniax
loading along the common axis of the cavities, Miyamoto@4#, and
uniaxial tension in the direction perpendicular to the axis of
cavities, Tsuchida, Nakahara, and Kodama@5#. Shelley and Yu@6#,
still following Sternberg and Sadowsky@2#, developed this
method for inclusions. Chen and Acrivos@7# extended it to an
arbitrary strain field applied at infinity. Willis and Bullough@8#
proposed a slightly different approach: They considered the t
energy of the bubbles, i.e., the elastic energy, the energy of
gas, and the surface energy. Their approach was therefore not
mechanical but also thermodynamical. They gave a solution
the energy interaction between two excess pressure bubble
they did not derive precisely the stress field from their results

All the above authors, except Willis and Bullough, started th

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Februa
26, 2002; final revision received, June 10, 2003. Associate Editor: A. Needlem
Discussion on the paper should be addressed to the Editor, Prof. Robert M. McM
ing, Department of Mechanical and Environmental Engineering, University
California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be acce
until four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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analysis with Boussinesq@3#, Papkovitch @9#, or Neuber @10#
functions and gave series expansion solutions. In this work
different approach is proposed, based on the fundamental resu
Eshelby@11# extended to two inhomogeneities. The determinat
of the eigenstrain of each inclusion from the equivalent inclus
method is used to derive the stress and strain fields between
inclusions. The present approach involving cavities with an in
nal pressure is the same as for cavities in a material submitte
external loading, but it seems important to explain the transp
tion from one problem to the other. This method is quite gene
since it allows the interaction between two gas bubbles of diff
ent sizes and different pressures to be investigated. Three con
rations are analyzed, i.e., two identical bubbles with the sa
pressure, two bubbles of different sizes with identical pressu
and two identical bubbles with different pressures. For each c
the mean stress and von Mises equivalent stress are displ
along the symmetry axis of the bubbles and in the form of i
value maps. These results are then discussed by comparison
finite element calculations that are described later. It should
noted that, although finite element calculations generally give
curate results for linear problems, they may nevertheless so
times depart from the exact solution. In particular, finite elem
solutions around voids are very mesh sensitive. Numerical res
need therefore be considered carefully when compared with
analytical derivations.

2 The Equivalent Inclusion Method of Eshelby
Eshelby has established the following fundamental result.

D be an elastic and isotropic infinite body. ConsiderV as a part of
D, small in comparison withD. We can isolate fictitiouslyV
which is supposed to represent an ellipsoidal inclusion. Now
move this inclusion fromD and impose to it an eigenstrainbI , that
has no relation with any stress: for example, a thermal defor
tion or a phase transformation. If the inclusion is replaced intoD,
which has not been transformed yet, its deformation is no lon
free due to the influence of the surrounding matrix. Thus, a st
field appears inV andD. The inclusion deformation,jI , due to the
presence of the matrixD, is related to the eigenstrain byjI
5S= :bI , whereS= is the fourth-order Eshelby tensor. Through th
derivation, Eshelby showed that the deformation of an ellipsoi
inclusion embedded in an infinite homogeneous medium, s
mitted to uniform remote loading, is homogeneous. This res
allows the inhomogeneity problem to be dealt with. Consider n
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an ellipsoidal region, referred to as an inhomogeneity, in an i
nite medium, with elastic constants different from the rest of t
material.

The Eshelby result is applied to the inhomogeneity. Consi
the infinite elastic body of Hooke tensorC= , submitted tosI 0 and
the corresponding strain«I 0 at infinity. The ellipsoidal inhomoge-
neity V with Hooke tensorC= i disturbs locally the stress field. Th
aim of the analysis is to determine the perturbations caused by
inhomogeneity. The basic idea of Eshelby is to substitute to
inhomogeneity an homogeneous inclusion with the same pro
ties as the matrix, but submitted to an eigenstrain. The eigens
must be determined such as to produce the same stresses
strains as the former inhomogeneity. In the inhomogeneity,
elastic strain is«I 01jI , whereas in the equivalent inclusion it i

given by«I 01jI 2bI . The equivalence condition for the stresses
the inhomogeneity and the inclusion is therefore

C= i :~«I 01jI !5C= :~«I 01jI 2bI ! (1)

which, combined withjI 5S= :bI allows the eigenstrain tensorbI to
be determined.

3 Extension of the Equivalent Inclusion Method
of Eshelby

While the problem of interacting inhomogeneities cannot
solved in closed form~the ‘‘exact’’ solution involves infinite series
expansions,@12#!, an approximate analytical derivation is pro
posed below. In a first step, the interaction of two bubbles w
equal internal pressures will be dealt with. Using the superposi
principle illustrated in Fig. 1(a), 1(b), and 1(c), it is sufficient
to consider merely cavities. Application of the equivalent incl
sion method extended to two inclusions then leads accordingl
introduce two eigenstrains,bI

I and bI
II , that depend on the spac

coordinates. For the sake of simplicity, they will be approximat
by their values at the centers of the respective bubbles. In a
ond step, the effect of a pressure differenceDp between the two
bubbles will be addressed in the form of a small perturbation
the above solution. It is worth to note that the boundary conditio
at the bubble surfaces, i.e.,s rr 52p ands ru50, are not strictly
fulfilled by such an estimation of the exact solution.

Solid inhomogeneities will first be considered, but in furth
derivations their elastic constants will be set equal to zero in or
to deal with cavities. The problem, which is axisymmetric, will b
solved in a plane containing the center of the two inhomoge
ities. In Fig. 1, the transition from gas bubbles to cavities witho
internal pressure is shown, withp1 greater thanp2 , p5(p1
1p2)/2 andDp5p12p. The case illustrated in Fig. 1(b) is more
difficult to solve than the other ones that are quite obvious
seems important to remind that the applied stress at infinity
hydrostatic, so thatsI 0 is a diagonal tensor.

Fig. 1 Decomposition of the problem
790 Õ Vol. 70, NOVEMBER 2003
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Problem (b) of Fig. 1 will first be solved for inhomogeneities
Consider two ellipsoidal inhomogeneitiesV1 andV2 with Hooke
tensorsC= I andC= II in a matrix with Hooke tensorC= under remote
stresssI 0. Deformation in inhomogeneity I is influenced by inho
mogeneity II such that

«I I5«I 01jI
I1hI II (2)

with

jI
I5S= :bI

I (3)

whereS= is constant and the same for the two inclusions since
expression depends only on the shape of the inclusions, which
both spherical here, and

hI II5D= II :bI
II (4)

whereD= II is the influence tensor associated with inclusion
Thus, the strainhI II represents the influence of inclusion II o
inclusion I. In the same way, the influence of inclusion I on inc
sion II is hI I.

Note that the eigenstrains could be expanded in polynom
series, e.g.,

b i j
II ~x!5Bi j

II 1Bi jk
II xk1Bi jkl

II xkxl1 . . . . (5)

As jI 5S= :bI andhI 5D= :bI , they could be expanded in polynomia
series in the same way.

However, to a first approximation, the eigenstrainsb I and b II

will be assumed uniform, whence

jI
I5S= :bI

I (6)

is constant while

h i j
II ~x!5Di jkl

II ~x!Bkl
II (7)

remains a function of the space variables through the influe
tensor.

The equivalence conditions for the stresses in the two inho
geneities and the two inclusions can now be written:

H C= I:~«I 01jI
I1hI II !5C= :~«I 01jI

I1hI II2bI
I! in V1

C= II :~«I 01jI
II1hI I!5C= :~«I 01jI

II1hI I2bI
II ! in V2 .

(8)

Since the material is isotropic, the constitutive equation can
written in the following form:

s i j 52m« i j 1~k22m/3!«kkd i j (9)

wherek andm are the bulk and shear moduli, respectively.
Equation~8! then becomes

2m I~« i j
0 1Si jkl bkl

I 1Di jkl
II bkl

II !

1~k I22m I/3!~«kk
0 1Skkmnbmn

I 1Dkkmn
II bmn

II !d i j

52m~« i j
0 1Si jkl bkl

I 1Di jkl
II bkl

II 2b i j
I !

1~k22m/3!~«kk
0 1Skkmnbmn

I 1Dkkmn
II bmn

II 2bkk
I !d i j in V1

2m II~« i j
0 1Si jkl bkl

II 1Di jkl
I bkl

I !

1~k II22m II /3!~«kk
0 1Skkmnbmn

II 1Dkkmn
I bmn

I !d i j

52m~« i j
0 1Si jkl bkl

II 1Di jkl
I bkl

I 2b i j
II !1~k22m/3!

3~«kk
0 1Skkmnbmn

II 1Dkkmn
I bmn

I 2bkk
II !d i j in V2 . (10)

As seen above, the Eshelby tensors are the same forV1 and
V2 . The above system must now be solved in order to determ
the eigenstrains for each inclusion.

4 Analytical Resolution

4.1 Derivation of the Influence TensorsDijkl . The expres-
sion ofDi jkl for a spherical inclusion of radiusa is given by Mura
@12#:
Transactions of the ASME
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8p~12n!Di jkl ~x!5C,kli j 22ndklF, i j 2~12n!@F,kld i l

1F,kid j l 1F, l j d ik1F, l i d jk# (11)

with

F5
1

2
@ I ~l!2xkxkI K~l!# and

C, i5
xi

2
@ I ~l!2xkxkI K~l!2a2~ I I~l!2xkxkI IK~l!!# (12)

and

(13)

Here, the following convention is used: summation from 1 to 3
extended over repeated lower case indices; capital indices tak
same values as the corresponding lower case ones but wi
summation. Note that, in Eq.~13!, the number of indicesn50, 1,
or 2.

As seen before, the unknown eigenstrain tensorsbI
I andbI

II are
assumed to be uniform in each inclusion. Owing to axisymme
the expressions of the eigenstrains can be simplified~Fig. 2!.

Sinceb115b22, b135b23, andb1250, only three eigenstrain
components are to be determined, namelyb11, b33, andb13. The
linear system~10! then decomposes into one set of four equatio
for the ‘‘diagonal’’ unknownsb11

I , b33
I , b11

II , andb33
II on the one

hand, and a set of two equations for the ‘‘nondiagonal’’ unknow
b13

I andb13
II . This system will be solved for two inclusions cen

tered at~0,0,0! and~0,0,d!. The~constant! values of the two eigen-
strain tensors are those derived at the center of the assoc
inclusion, although such a choice is somewhat arbitrary since
could be calculated anywhere in the inclusions. The derivatio
detailed below for one inclusion,V1 . Thus, owing to axisym-
metry,hI can be written in the following form:

hI 5S h11 0 h13

0 h11 h13

h13 h13 h33

D (14)

Therefore only 336518Di jkl components are needed:

Fig. 2 The two cavities and the set of Cartesian coordinates
Journal of Applied Mechanics
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D11115D22225
9a2

515a2
3~122n!

30~12n!

D33335
15a2

5210a2
3~22n!

15~12n!

D11225D22115
3a2

525a2
3~122n!

30~12n!

D33115D33225
26a2

515a2
3~122n!

15~12n!

D11335D22335
26a2

515a2
3~11n!

15~12n!

D13135D23235
212a2

515a2
3~11n!

30~12n!

and all the otherDi jkl 50.
In the above equations,a25a2 /d, and for the second inclusion

the corresponding components are the same witha15a1 /d.

4.2 Derivation of the Eigenstrains and the Stress Field
As seen above,jI can be written in the following form:

jI 5S j11 0 j13

0 j11 j13

j13 j13 j33

D (15)

with the 18 associatedSi jkl :

S11115S22225S33335
725n

15~12n!
S12125S2323

5S3131

425n

15~12n!

S11225S22335S33115S11335S22115S33225
5n21

15~12n!

and all the other Si jkl 50.

The system~10! can now be solved. Fori and j 51,3, it leads
very easily to

b13
I 5b13

II 50 (16)

so that the system reduces to four equations for only four
knowns. The elastic modulim I, m II , k I, andk II are now set equa
to zero, since cavities are considered, and the hydrostatic loa
is accounted for by specifying« i j

0 5(p/3k)d i j . The following sys-
tem is obtained:

5
A11b11

I 1A12b33
I 1A13b11

II 1A14b33
II 52p

A21b11
I 1A22b33

I 1A23b11
II 1A24b33

II 52p

A31b11
I 1A32b33

I 1A33b11
II 1A34b33

II 52p

A41b11
I 1A42b33

I 1A43b11
II 1A44b33

II 52p

(17)

where the coefficientsAi j , given in the Appendix, depend on th
components of the Eshelby and influence tensors. Once the e
strains are determined~see Appendix!, the interaction fields be-
tween the inclusions can be calculated with the help of the in
ence tensorsD= I andD= II .

The strain field in the matrix associated with the case of F
1~b! can now been written in the form
NOVEMBER 2003, Vol. 70 Õ 791
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Fig. 3 The finite element mesh: „a… general view; „b… the area close to the
cavities
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«I 5«I 01D= I~x1 ,x2 ,x3!:bI
I1D= II~x1 ,x2 ,x3!:bI

II . (18)

Owing to the axisymmetric configuration, the interactions a
analyzed in the plane (x1 ,x3). Since the eigenstrain tensor has t
following diagonal form:

S b11 0 0

0 b11 0

0 0 b33

D , (19)

the only required components of the influence tensor areDi j 11 and
Di j 33. The interaction strains for the case of Fig. 1(b) are given
by

h115~D1111
I 1D1122

I !b11
I 1D1133

I b33
I 1~D1111

II 1D1122
II !b11

II

1D1133
II b33

II

h225h11 (20)

h335~D3311
I 1D3322

I !b11
I 1D3333

I b33
I 1~D3311

II 1D3322
II !b11

II

1D3333
II b33

II .

Therefore, only 12 components of the influence tensor need
calculated. The stresses for the case of two cavities with the s
pressurep are then obtained from the constitutive Eq.~9!. Fur-
MBER 2003
re
e

be
ame

thermore, the effect of a pressure difference between the
bubbles may be estimated to a first approximation by adding
stresses determined in~25! below.

It is worth to note that the general solution of the proble
proposed here is only an estimation. Indeed we first assumed
eigenstrains uniform. The second approximation is related to
boundary conditions. In order to apply the principle of linear s
perposition, the tangential components due to the pressure d
ence between the bubbles are neglected. Under such approx
tion, the equality between the boundary conditions illustrated
Fig. 1 remains correct.

For two cavities with the same internal pressurep, the solution
of the case depicted in Fig. 1~c! is

« i j
c05~2p/3k!d i j . (21)

Since« i j
c01« i j

0 50, the strain field for two interacting cavities wit
the same pressure is the linear superposition of solutions for
problems illustrated in Fig. 1~b! and 1~c!:

«I 5D= I~x1 ,x2 ,x3!:bI
I1D= II~x1 ,x2 ,x3!:bI

II (22)

The case depicted in Fig. 1~d! is easy to analyze since the stre
field of an isolated bubble in an infinite elastic solid has an a
Transactions of the ASME
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Fig. 4 „a… Mean stress along axis x 3 for two bubbles of same size with same pressure; „b… mean stress
along axis x 3 for two bubbles of different sizes with same pressure; „c… von Mises equivalent stress along
axis x 3 for two bubbles of same size with same pressure, and „d… von Mises equivalent stress along axis
x 3 for two bubbles of different sizes with same pressure
are
lytical expression. If an internal pressureDp is applied in the
absence of remote loading, the displacement field exhibits sph
cal symmetry:

u5ur~r !er (23)

whereer denotes the radial unit vector.
Resolution of the equilibrium equations then yields

u~r !5
Dp

4m

a3

r 2 , « rr 52
Dp

2m

a3

r 3 , «uu5«ww5
Dp

4m

a3

r 3 ,

(24)
Applied Mechanics
eri- s rr 52Dp
a3

r 3 , suu5sww5
Dp

2

a3

r 3 . (25)

Finally the mean stress and the von Mises equivalent stress
derived:

sm5
1

3
~s111s221s33! (26)
.

s̄VM5A1

2
@~s112s22!

21~s222s33!
21~s332s11!

2#13~s12
2 1s23

2 1s31
2 !. (27)

Hence the distribution of the two above quantities for two cavities of different sizes with different pressures can be analyzed
For the spherical coordinates, we change 1→r , 2→u, and 3→w.
NOVEMBER 2003, Vol. 70 Õ 793
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Fig. 5 Mean stress and von Mises equivalent stress maps for two bubbles of same size with same
pressure
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5 Results and Discussion
It is important to note that for an isolated bubble, the me

stress vanishes at any point:

s rr 52Dp
a3

r 3 , suu5sww5
Dp

2

a3

r 3 ⇒sm50. (28)

It is therefore not possible to determine the influence ofDp on the
mean stress around the two bubbles because the contributio
the configuration illustrated in Fig. 1~d! is zero. The above ap
proach is expected, however, to give a good estimation of the
Mises equivalent stress.

The present method allows various configurations to be ea
investigated. Three parameters can be changed: the size and
sure of each bubble, and the distance between the bubble ce
70, NOVEMBER 2003
an

n of

von

sily
pres-
ters.

In the following, three different cases are considered. The fi
case~i! consists of two bubbles of same size with same inter
pressure, the second one~ii ! of two different bubbles of different
sizes with same pressure, and the third one~iii ! of two bubbles of
same size with different pressures. In the two first cases the m
stress and the von Mises equivalent stress are analyzed, whil
the third case only the von Mises equivalent stress can be
cussed~see above!. Two representations of the results are used
each case: the stresses are displayed both along the symmetr
and on a map in the half-plane (x1 ,x3). To discuss the analytica
approach, the results are compared with numerical calculat
carried out with the Abaqus® software. An example of the me
used for two bubbles of equal size is given in Fig. 3. It is divid
into two different regions: in the first one, close to the cavitie
Transactions of the ASME
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Fig. 6 Mean stress and von Mises equivalent stress maps for two bubbles of different sizes with same
pressure
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where the stress fields are to be determined precisely, the elem
are small. The second one, far away from the cavities, is mad
larger elements. To obtain the best results, the mesh must be
fine and the elements must be close to squares. Moreover
ensuring a good representation of an infinite solid, the mes
very large compared to the bubble sizes and infinite elements
used far away from the bubbles. These requirements are fulfi
in the mesh. In Fig. 4, the stress distributions along the symm
axis are displayed for the two first cases. The corresponding m
are given in Fig. 5 and 6. The last case is shown in Fig. 7.
calculations were carried out using the elastic constants of p
dium, which is usually employed to store nuclear fuels, i.e.k
5171.3 GPa,m542.7 GPa, andn50.385.
pplied Mechanics
ents
e of
very
for
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lled
try
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As shown on the curves and the maps, there are slight dif
ences between the analytical and numerical values of the m
stress, which are very small with respect to the von Mises equ
lent stress. This is because the nonzero mean stress is induc
the interaction of the bubbles~it vanishes for an isolated bubble!,
whereas this interaction only introduces a perturbation of the
Mises equivalent stress.

The errors brought to the exact solution by the abo
mentioned approximations can be estimated by considering
values of the normal stresses at the bubble surfaces, in partic
along the symmetry axisx3 . The discrepancies between the exa
values ~i.e., s rr 52p) and that predicted by the analytical ap
proach are less than 1% for the three investigated configurati
NOVEMBER 2003, Vol. 70 Õ 795
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Fig. 7 Von Mises equivalent stress along axis x 3 and von Mises equivalent stress maps for two
bubbles of same size with different pressures
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The largest errors~overestimations! occur of course at points
where the two bubbles are facing. Moreover, the gap is sign
cantly smaller along the equators of the bubbles.

In Fig. 4, it is apparent that the analytical curves are very cl
to the numerical results except for a few points where the la
are slightly larger than the analytical predictions. The assump
of uniform eigenstrains is likely to be responsible for this discre
ancy. Similarly, the von Mises equivalent stresses derived ana
cally ~see Fig. 5 and 6!, exhibit local maxima along thex1 andx3
axes, that can be related to the Taylor first-order expansions.
first analysis therefore shows that, despite its simplifying assu
tions, the present approach leads to analytical results which
quite similar to the finite element predictions.

The mean stress maps allow the material regions underg
70, NOVEMBER 2003
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tensile or compressive loading to be easily localized. Such res
can be taken into account in a diffusion model. Helium atom
after being created by tritium decay, diffuse in the material
wards the bubbles. From the point of view of mechanics,
evolution of a pair of bubbles of different sizes can be predic
from the mean stress map in Fig. 6. The tension mean stres
larger near the smaller bubble than near the larger one. He
atoms will therefore diffuse preferentially towards the sm
bubble, until the latter reaches the same size as the larger one
thus likely that the bubbles will tend to progressively equal
their sizes. This is a part of the mechanism of diffusion, wh
should be added to a thermodynamical analysis to obtain a c
plete description of the evolution of the system.

The above results can also be used to predict the occurrenc
Transactions of the ASME
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cracks in the vicinity of the bubbles. The levels of the von Mis
equivalent stresses also give quite an important information a
the areas where plasticity occurs, i.e., at each point where the
Mises equivalent stress is larger than the yield stress~0.23 GPa! of
the material. Therefore, a complete mechanical description of
material evolution will require to take plasticity into account.

6 Conclusions
A new approach for the estimation of the elastic fields betw

two bubbles loaded by an internal pressure was proposed. In
of its simplicity, it leads to analytical results, which are in go
Journal of Applied Mechanics
es
out
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agreement with finite element calculations. The diameters
pressures of the two bubbles can be easily varied, such that
ous configurations can be investigated straightforwardly. The
main results are the following:

i. According to the mean stress distributions, the mechan
contribution to the diffusion process is likely to progre
sively equalize the sizes of the neighboring bubbles.

ii. The levels of the von Mises equivalent stresses indicate
areas where plasticity must be taken into account for a co
plete mechanical description of the system.
Appendix

„a… Analytical Expressions of theAij Coefficients of the Linear System„17…

A115H(69t18) A3152H(21t28)

A125H(21t28) A32516H(3t11)

A135H$22a2
3@6a2

2(3t11)15(3t21)#% A3352A14

A145H$a2
3@12a2

2(3t11)25(3t14)#% A345H$28a2
3@(3a2

225)(3t11)#%

A215H$22a1
3@6a1

2(3t11)15(3t21)#% A4152A22

A225H$a1
3@12a1

2(3t11)25(3t14)#% A425H$28a1
3@(3a1

225)(3t11)#%

A235A11 A435A31

A245A12 A445A32

whereH5 2m/15(3t14) with t5 k/m.
of
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n

ob-
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-
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„b… Analytical Expressions of the Eigenstrainsb i j

b11
I 52

1

12

A11
I

B11
I

p

k

with

A11
I 520~81t31135t2136t!a1

5a2
6

28~486t31972t21486t172!a1
5a2

5

1120~27t3163t2142t18!a1
5a2

3

275~25t3148t2116t!a1
3a2

6

160~81t31171t2196t116!a1
3a2

5

25~891t312160t211536t1320!a1
3a2

3

130~15t3130t2116t!a2
31~243t31756t21768t1256!

B11
I 5~225t2!a1

6a2
62144~9t216t11!a1

5a2
5

1120~9t219t12!a1
5a2

31120~9t219t12!a1
3a2

5

210~117t21144t140!a1
3a2

31~81t21144t164!.

Similarly, b11
II 52 1/12A11

II /B11
II p/k where A11

II and B11
II are ob-

tained fromA11
I andB11

I by permutation ofa1 anda2 .

b33
I 52

1

12

A33
I

B33
I

p

k

with
A33
I 520~81t31135t2136t!a1

5a2
6

28~486t31972t21486t172!a1
5a2

5

1120~27t3163t2142t18!a1
5a2

3

2300~3t214t!a1
3a2

61240~9t2115t14!a1
3a2

5

25~81t31540t21816t1320!a1
3a2

3

230~27t3160t2132t!a2
31~243t31756t21768t1256!

B33
I 5~225t2!a1

6a2
62144~9t216t11!a1

5a2
5

1120~9t219t12!a1
5a2

31120~9t219t12!a1
3a2

5

210~117t21144t140!a1
3a2

31~81t21144t164!

Similarly, b33
II 52 1/12A33

II /B33
II p/k where A33

II and B33
II are ob-

tained fromA33
I andB33

I by permutation ofa1 anda2 .
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Crushing of an Elastic-Plastic
Ring Between Rigid Plates With
and Without Unloading
Load-deflection curves are computed for an elastic-plastic ring that is slowly crus
between frictionless, rigid plates (platens). The ring is assumed to be inextensiona
plane sections remaining plane and to obey a bi-linear stress-strain law with isotr
hardening. These assumptions lead to a local nonlinear moment-curvature relation
tical to that developed by Liu et al. When inserted into the exact equation for mo
equilibrium, this constitutive relation yields a second-order, nonlinear ordinary differ
tial equation for the anglea between the deformed centerline of the ring and the ho
zontal. The numerical solution of this equation, which uses a combined pen
continuation method, along with an auxiliary equation relating the vertical deflection
a, leads to overall load-deflection curves that depend on two dimensionless parametl
and m. The first is the ratio of the plastic modulus to the elastic modulus; the sec
measures the ratio of plastic to elastic effects. Asm→0, the overall load-deflection curve
of Frish-Fay for the elastica is recovered; asm→`, that of DeRuntz and Hodge for a
rigid-perfectly plastic ring is recovered. Three scenarios are considered: I0 , in which an
initially straight, stress-free beam is bent elastically into a ring and then crushed; II0 , in
which an initially stress-free ring is crushed; and III0 , in which an initially straight beam
is bent first elastically and then elastically-plastically into a ring and then crush
Results for scenario II0 are shown to agree well with experiments of Reddy and Re
l50.01 andm510 and 20 and with experiments of Avalle and Goglio ifl50.02 and
m511. In scenarios I0 and II0 , the effects of unloading prove to be small, reinforcing
similar conclusion of Liu et al., who considered the large-deflection of an elastic-pla
cantilever under a tip load. If no unloading is assumed, a more analytical treatme
possible, as shown in the second part of the present paper. The model predicts th
ring always remains in full contact with the platens, in agreement with recent experim
by Avalle and Goglio on annealed aluminum tubes. Pull-away from the platens
observed in experiments is ascribed to end effects which cannot be modeled by
dimensional beam theory. However, it is argued that, even if there is pull-away, the
on the overall force-deflection relation must be small because in both cases the
exerted by the platens are concentrated at the ends of the contact region. Moving pi
of successive stages of deformation of the ring showing the formation of plastic loa
and unloading zones in all three scenarios may be found on the web
www.people.virginia.edu/;jgs/ring.html. @DOI: 10.1115/1.1630814#
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1 Introduction

The determination of the load-deflection curve of an elas
plastic ring of initial mean radiusR and thickness 2H, slowly
crushed between two frictionless rigid plates~platens!, is a funda-
mental problem in mechanics because a knowledge of the en
absorbed is essential to the design of crash-worthy vehic
Moreover, the experimental determination of the load-deflect
curve for a ring affords perhaps the easiest verification of
accuracy of various approximations used in modeling more ela
rate structures.

In computing such a theoretical load-deflection curve, th
scenarios of ever increasing complexity come to mind.~I! An
initially straight, stress-free beam is bent slowly by end coup
into a ring and the ends then butt welded. The beam rem

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 2
2001; final revision, April 22, 2003. Associate Editor: N. Triantafyllidis. Discussi
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering, University of California
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months
after final publication of the paper itself in the ASME JOURNAL OF APPLIED
MECHANICS.
Copyright © 2Journal of Applied Mechanics
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elasticduring this process. In this scenario, a portion of the ring
always elastic, both before and after the ring has flattened aga
the platens, because flattening tends to reduce the strain.~II ! The
ring is initially stress-free. Here, the ring may or may not beco
plastic before it starts to flatten against the platens, dependin
whether the half-thickness-to-radius ratio,H/R, exceeds the yield
strain.~III ! The ring is formed as in~I! except the beam become
plastic ~beginning at the outer fibers and moving inward towar
the centerline! before a complete ring has been formed. A comp
cating factor in all three scenarios is that, due to changes in
ometry during crushing, portions of the ring may begin tounload
as the external load increases.

Finally, we note that our one-dimensional ring model may a
commodate a tangential extensional strain,e, or it may beinex-
tensional, as in the classical theory of curved beams. Thus, th
are at leastsix plausible scenarios we might consider:I 0 , I e , ¯ ,
III e . The present paper focuses onI 0 , II 0 , and III 0 , i.e., on
inextensional scenarios.

A major difficulty in applying numerical methods to elastic
plastic structures is that the plastic strains are often much la
than the elastic ones. To bypass the potential difficulties ass
ated with such a disparity, DeRuntz and Hodge@1# assumed rigid,
perfect plasticity and derived a formula for the load-deflecti
curve that occurs after four plastic hinges have formed, two at
points of contact with the rigid plates and two at the ends o

0,
n

part-
—
four
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horizontal diameter. Redwood@2# refined the model of DeRuntz
and Hodge by adding linear strain-hardening. Reid and Reddy@3#
and Reddy and Reid@4# refined these models by assuming a rig
linearly hardening moment-curvature relation within a small
gion near horizontal, diametrically opposed points where
bending moment is the greatest and where the deformed curv
is relatively high. They ignored unloading and assumed that
ring moved as a rigid body in the portions of the ring betwe
these plastic zones and the points of contact with the plat
However, as we shall show, elastic effects may contribute sig
cantly to the deflections of the ring, depending of the load,
relative thickness, and the material properties. In a subsection
lowing Eq. ~12!, we discuss pull-away from the platens, after w
have introduced certain assumptions and notation.

The first aim of the present paper is to quantify the relat
roles of elasticity and plasticity in the crushing of a ring and
account for the possible effects of unloading. In particular,
show by numerical calculation that unloading is not a major eff
in the overall load-deflection behavior of a ring in scenariosI 0 and
II 0 , but is in scenarioIII 0 . To this end, we assume that th
dominant hoop stresss in the ring can be represented by a b
linear stress-strain relation which, if there is no unloading,
given by the followingodd function of the engineering strain«:

s5ŝ~«![EH « if u«u,«Y

~12l!«Y sgn«1l« if «Y<u«u, (1)

whereE is Young’s modulus,«Y.0 is the yield strain,l is the
~constant! ratio of the plastic to elastic modulus,EP /E, and
sgnx5uxu/x, xÞ0. See Fig. 1~a! of Liu et al. @5# ~where theira is
our l!.

If unloading first begins at some strain«1 at some point in the
ring, then isotropic hardening~Lubliner @6#, p. 137! implies that
we have a new stress-strain relation of the form~1! but shifted to
the right by«1* 5(12l)(«12«Y sgn«1). That is,

s5ŝ1~«2«1* !, (2)

whereŝ1 meansŝ with «Y replaced byu«1u. If there is a second
unloading at a strain«2.«1 , then in~2! we replace the subscrip
1 by a 2, etc.

As will be seen, the governing dimensionless equations con
besidel, the two additional dimensionless parameters

m5
H

R«Y
and n5

3P

bEH«Y
2 , (3)

where 2P is the net vertical load on the ring produced by t
platens andb is the width of the ring. Clearly, 0<l!1, but 0
,m,`; if l50, we have elastic-perfectly plastic behavior. T
parameterm is a measure of the relative balance between ela
and plastic effects. Asm→0, the effects of plasticity diminish and
our analysis reduces to that of Frish-Fay@7# for an elastica com-
pressed between platens, providing we first re-scale the dim
sionless load by settingn/m253PR2/bEH3. As m→`, we ob-
tain rigid-plastic behavior. However, as we shall see, in scen
I 0 ~where the ring is formed by bending a straight beam elastic
and inextensionally! we must assume that 0<m<1; in scenario
III 0 , which is the complement of scenarioI 0 , 1,m,`. In sce-
nario II 0 , 0<m,`.

The second aim of the present paper is to show that in scen
II 0 appropriate choices ofl ~which measures relative strain
hardening! andm ~which measures the relative ratio of plastic
elastic effects! give an excellent fit to the experimental data pr
sented by Reddy and Reid@4# and Avalle and Goglio@8#.

Because of the possibility of unloading, we must solve the g
erning ordinary differential equation numerically. A penalt
continuation method proves to be particularly effective. Howev
as we show numerically, the effect of unloading on the ove
force-deflection curves for scenariosI 0 andII 0 is small. This jus-
800 Õ Vol. 70, NOVEMBER 2003
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tifies the analysis in the second part of this paper that igno
unloading, thus permitting a more extensive analytical treatm

In scenarioIII 0 , where a relatively thick beam (m.1) is first
bent into a ring, there is plastic deformation before crushing
gins and more than half of the ring begins to unload as the pla
start to move together.

2 The Equilibrium Equations and Kinematic
Relations

Elementary equilibrium considerations show that, at any po
on the deformed centerline of the ring, the horizontal compon
of the stress resultant is zero and the downward vertical com
nent is equal toP. The remainingexactequation of moment equi-
librium is, from equation~O.5! of Chap. IV of Libai and Sim-
monds@9#.

dM/ds5~11e!P cosa, (4)

whereM is the bending moment~positive in a counterclockwise
sense and with dimensions of@FORCE#3@LENGTH#), s is dis-
tance to the right along the undeformed centerline of the be
measured from the fixed lowest point on the bent ring, anda is the
angle the tangent to the deformed centerline makes with the h
zontal. The vertical distance moved by the platens is

d52FR2E
0

p/2

~11e!sinadsG . (5)

Once constitutive relations are in hand that expressM ande in
terms ofk, the bending strain, andN52P sina, the tangential
component of the stress resultant,~4! reduces to a second-orde
ordinary differential equation for the unknowna. The boundary
conditions are

a~sB!50, a~Rp/2!5aH . (6)

Here,sB is the location of the~generally! unknown pointB where
the lower right quarter of the ring loses contact with the low
platen. See Fig. 1. The value ofsB depends on the dimensionles
load n, the combined geometric-yield strain parameterm, and the
specific form of the constitutive relations. IflÞ0, thehinge angle
aH5p/2, whereas ifl50, aH may be less thanp/2, depending
on m, n, and the scenario (I 0 , II 0 , or III 0). Herein, we approach
perfect plasticity (l50) by letting l→0 (l51026, numeri-
cally!. Later in this paper, where we assume no unloading,
treat perfect plasticity exactly by takingl50 and solving for the
hinge angleaH .

3 Constitutive Relations for ScenariosI 0 , II 0 , and
III 0

At the outset, we make a major~but conventional! assumption:
The deformed reference curve is inextensional, i.e.,e50 in ~4!
and ~5!. This assumption, which simplifies the analysis consid
ably, may be justified heuristically by noting that the maximu
tangential compressive force in each vertical half of the ring isP
and occurs at the extreme horizontal pointsC and C8 in Fig. 1
~that shows the successive stages of deformation in scenarioI 0 ,
but that is typical of the general trend in scenariosII 0 and III 0).
The maximum bending moment also occurs at these points
from elementary equilibrium considerations, is equal toPL, where
L is the unknown horizontal distance from pointB where the ring
separates from the platen to pointC. We estimate the direc
stresses in the deformed reference curve atC to be O(P/bH) and
the outer fiber~bending! stresses to be O(PL/bH2). Thus, the
ratio of the direct stresses to the bending stresses is O(H/L),
which is quite small except near the final stages of crushing w
most of the net vertical displacement has already taken plac
somewhat different argument for ignoring the effects of exte
sional strain is given by DeRuntz and Hodge@1#; experimental
evidence for near inextensionality is offered by Avalle and Gog
Transactions of the ASME
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Fig. 1 Two crushing sequences for an initially straight beam bent elastically
into a ring „scenario I0… with mÄ0.5. The parts of the rings shown in solid
black are elastic; dashed „loading … and solid gray „unloading … parts are plas-
tic. In „a…, lÄ10À6; in „b…, lÄ0.1.
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in the second column on p. 232 of@10#. However, we remind the
reader that the analysis to be presented already represents a
eralization of the two extreme cases,m50 andm→`, examined,
respectively, by Frish-Fay@7# and DeRuntz and Hodge@1#. To
introduce yet another dimensionless parameter to measure e
sional strain effects would distract from the main focus of t
present investigation which is to determine the load-deflec
curve predicted by the more representative elastic-plastic str
strain relations~1! or ~2! in which 0<m,`.

Scenarios I 0 and III 0. The procedure for obtaining a
moment-curvature relation is standard: we consider a finite p
of the ring under a uniform bending momentM. ~This would be
the setup were this relation to be determined experimentally.! By
symmetry, plane sections remain plane and a straight unstret
fiber at a distancey from the undeformed centerline of the straig
beam deforms into a stretched circular fiber a distancey@1
1«N(y)# from the deformed centerline, where«N is the normal
engineering strain—a Poisson ratio effect that will be neglecte

For an initially straight beam, we take the bending strain to
the curvature of the bent but unstretched centerline,
anics
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k5da/ds so that «52yk. (7)

SinceM522b*0
Hysdy, it follows from ~1! and (7)2 that

m5 f ~h![H h if uhu<1

S 12l

2 D F32
1

h2Gsgnh1lh if uhu.1,
(8)

where

m5
3M

2bEH2«Y
and h5

Hk

«Y
(9)

are a dimensionless moment and a dimensionless curvature.
ure 2 is a graph ofm versush for l50, 0.01, 0.1. This is essen
tially Fig. 3 of Liu et al. @5#, with their a equal to ourl.

Whether points in the ring are loading or unloading, to solve
governing equations we need only the slope of the mome
curvature relation, namely
NOVEMBER 2003, Vol. 70 Õ 801
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dm

dh
5 f 8~h!5 H 1 if elastic

~12l!uhu231l if loading plastically.

(10)

Scenario II 0. The major difference from scenariosI 0 and
III 0 just analyzed is that, in place of (7)1 , the bending strain is
now defined as

k5R̄212R21, where R̄5ds/da (11)

is the radius of the deformed centerline. To relatek to the bending
momentM, we consider again a segment of the ring under a p
bending moment, except now we have an initially circular fiber
length (12y/R)ds lying a normal distancey from the centerline
of the undeformed ring. Under the action of a uniform momentM
and the assumption that the centerline is inextensional, this fi
deforms into another circular arc of length@12(y/R̄)(1
1«N)#ds, where, as before,«N is the normal strain. Thus, th
engineering hoop strain is

«52

yS 11«N

R̄
2

1

RD
12y/R

52yk@11O~«N ,H/R!#. (12)

Henceforth, we shall neglect the effects of normal strain~Pois-
son ratio effect! and relative thickness. That is, we shall take«
52ky, as in Eq. (7)2 for scenariosI 0 andIII 0 . This means that
the dimensionless moment-curvature relation~8! and its derivative
~10! remain unchanged.

Contact With the Platens. Both referees of the original ver
sion of this paper have insisted that we discuss why our mo
fails to predict the partial separation~pull-away! of the ring from
the platens observed in some experiments. However, recen
perimental work on tubes by Avalle and Goglio@8,10# and finite
element calculations on infinite tubes in a state of plane strain
Leu @11# have shown that, away from their ends, annealed alu
num tubes flatten against the platens andneverseparate. That is
end effects must be the essential cause of pull-away. Indee
quote from p. 231 of@10#,

It can also be noted that at the front@and rear# end of the
tube . . . where a plane stress condition prevails, the upper
lower walls lose contact with the plates and assume curvat
opposite to those of the undeformed state. Conversely, in
central portion~and most! of the tube, the material remains i
contact with the compressing plates.

Because we model a one-dimensional beam and not a
dimensional circular cylindrical shell, we cannot account for e
effects. Moreover, because contact between the platens an
ring is assumed to be frictionless, there is no way this con
could generate a compressive hoop stress that might cause

Fig. 2 Dimensionless moment-curvature relation for an
elastic-plastic ring
802 Õ Vol. 70, NOVEMBER 2003
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buckling, i.e., pull-away. Finally, we note that once the beam
gins to flatten against the platens,the only contact forces are fou
identical concentrated vertical loads at the ends of the cont
regions. This conclusion follows immediately from~4! and the
moment-curvature relation of Fig. 2; sinceP vanishes inside the
contact region, the momentM and hence the curvaturek is con-
stant there. Thus, whether there is pull-away or not, the con
forces are always concentrated at the ends of the contact re
so any differences in the overall force-displacement curve mus
small.

These remarks are still at odds with the finite element anal
of Leu @11# who considers an infinite tube in plane strain a
whose results show that, although an annealed, strain-harde
aluminum tube indeed remains in contact with the platens
non-annealed nearly perfectly-plastic aluminum tube maynot.
However, Leu shows that, according to his analysis, if th
is sufficient friction between the platens and the tube~Fig. 6~a!
of @11#! or if the elastic modulus is sufficiently high~Fig. 7~a! of
@11#! or if the tube is sufficiently thin~Fig. 8~a! of @11#!, there is
no pull-away. Because Leu does not present dimensionless gr
and because he only takes three elements in the thickness d
tion ~as opposed to 10 in@8#!, it is difficult to assess whether hi
results for the nonannealed aluminum tubes are a numerical
fact or a result of some dimensionless parameter exceeding a
cal value. We note that, although Leu refers to pull-away
‘‘buckling,’’ he never attempts to give a physical explanation
this phenomenon.

Finally, we mention a paper by Wang@12# which analyzes a
tube with an elastic-perfectly plastic moment curvature relat
that is crushed between frictionless platens. He finds no pull-a
from the platens but states in his introduction that his analy
‘‘applies to verythin @original emphasis# flexible rings or tubes.’’
He then states that ‘‘For thick inelastic rings the crushed sh
consists of plastic hinges and segments of rigid arcs. In suc
case a rigid-perfectly plastic constitutive equation is more app
priate ~DeRuntz and Hodge@1# and Reid and Reddy@3#!.’’ We
find this statement most curious because Wang’s mom
curvature relationincludes rigid-perfect plastic behavior as a lim
iting case. ~Let Young’s modulusE→` and the yield curvature
k0→0, keepingEk0 a constant.! Thus, were there a combinatio
of parameters where pull-away occurs, Wang’s analysis fails
reveal it.

4 The Governing Differential Equation and Boundary
Conditions

Because the centerline of the ring is a circle of radiusR before
crushing, we henceforth sets5Ru. With this change of variable
and with the introduction of~7!, ~10!, and ~11! along with the
dimensionless quantities defined by~3! and~9! into the basic dif-
ferential Eq.~4!, we have, becausee50,

f 8~h!
d2a

du2 5
n

2m2 cosa. (13)

If l.0, as we now assume~and regard perfect plasticity as th
limit as l→0), there are no plastic hinges and the boundary c
dition (6)2 can be replaced by

a~p/2;n!5p/2. (14)

Here, in anticipation of the continuation method that we introdu
presently, we have included the dimensionless load as the se
argument of the deformed angle. Furthermore, because our m
that assumes frictionless contact, has no mechanism that pe
the ring to separate from the platens~as is sometimes observed i
practice—see Fig. 4 of@1# and Fig. 3~b! of @4#!, we may replace
(6)1 by the boundary condition and constraint,

a~0;n!50, a~u;n!>0, 0<u<p/2. (15)
Transactions of the ASME
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5 The Penalty Method
An effective way of handling the constraint in~15! numerically

is with a so-calledpenalty method. In the present case, this entai
replacing ~13!–~15! by the unconstrainedtwo-point boundary
value problem,

f 8~h!
d2a

du2 5
n

2m2 cosa1pT~a!, T[H 0 if a>0

a2 if a,0
, p→`,

(16)

subject to the boundary conditions

a~0;n!50, a~p/2;n!5p/2. (17)

In practice, we takep to be large, say 105. Physically, the penalty
termpT imposes a very large vertical force at any point along
centerline corresponding to a point on the outer face of the
that penetrates the platens.

6 The Continuation Method
Any solution of the nonlinear boundary value problem~16!,

~17! is of the forma5a(u;n). To use the continuation method o
solution, we differentiate the ordinary differential Eq.~16! and the
boundary conditions~17! with respect ton. Noting from (3)1 ,
(7)1 , (9)2 , and~11! that

hn5maun and f u85m f 9~h!auu , (18)

where partial derivatives are denoted by subscripts, we obtain
linear boundary value problem,

@ f 8~h!Au#u1F n

2m2 sina2pT8~a!GA5
cosa

2m2 , 0,u,p/2,

(19)

A~0;n!50, A~p/2;n!50, (20)

coupled with the twononlinear initial value problems

an5A~u;n!, a~u;0!5u, 0,n,` (21)

and

hn5mAu~u;n!, 0,n,`,

h~u;0!5 Hm in scenario I 0 or III 0

0 in scenarioII 0
. (22)

In ~19! a andh are regarded as known and in~21! and ~22! the
dimensionless loadn plays the role of a timelike variable.

One advantage of the continuation method is that the solu
of ~19!–~22! at any intermediate value ofn represents the state o
the ring when it ispartially crushed. Another advantage of th
continuation method is that there is loading$unloading% if hhn is
positive $negative%, an easily monitored variable. At any value
u whereuhu.1 andhn5mAu50, the expression forf 8(h) may
switch from the first line of~10! to the second.

7 Determining A„u;0…
The simplest numerical procedure for solving the coupled s

tem ~19!–~22! is to ~i! computeA(u;0) andAu(u;0) from ~19!
with a5u and p50; ~ii ! compute a(u;Dn) from ~21! and
h~u;Dn! from ~22!, whereDn is some small increment ofn; ~iii !
substitute these value into~19! and setp to some suitably large
value; ~iv! solve for A(u;Dn) and Au(u;Dn); and ~v! repeat to
obtain a~u;2Dn! and h~u;2Dn!. Although A(u;0) can be deter-
mined numerically, the following simple closed-form expressio
are easily obtained. Becausea5u if n50, we can drop the pen
alty term in ~19! in this initial step.

Scenario I 0„0ËµÏ1…. Here, the beam remains elastic as
is bent into a ring withh5m<1. Thus,f 8(h)51 and hence
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A~u;0!5
1

2m2 S 12
2u

p
2cosu D[

g~u!

2m2 . (23)

ScenarioII 0„0ËµË`…. Here, the ring is initially unstressed
so thath50 and f 8(h)51. Hence,

A~u;0!5
g~u!

2m2 , (24)

the same as for scenarioI 0 .

Scenario III 0„µÌ1…. Here, as the beam is bent by en
couples, it first deforms elastically into an open circular arc a
then, once its dimensionless curvatureh exceeds 1, undergoe
plastic loading as it is bent further into the final shape of a r
with dimensionless curvatureh5m.1. Next, when the dimen-
sionless loadn is first applied, the ring begins to ovalize, i.e., ne
point A ~see Fig. 1! h begins to decrease fromm ~unloading!
whereas near pointC, h begins to increase fromm ~loading!.
Thus, asn→01, there is some value ofu5u* where f 8(h)

switches from 1 to (12l)m231l. With A(u;0)[A
0
(u), ~19!

and ~20! may be replaced by

A
0

95
cosu

2m2 , 0,u,u* (25)

and

A
0

95
cosu

2m2f 8~m!
, u* ,u,p/2, (26)

subject to the boundary conditions

A
0

~0!5A
0

~p/2!50, (27)

the continuity condition

A
0

~u* 1 !5A
0

~u* 2 !, (28)

and the condition thatu* marks the boundary between loadin
and unloading,

A
0

8~u* 6 !50. (29)

Thus,

A
0

5
1

2m2 H 12u sinu* 2cosu, 0,u,u*

~p/22u!sinu* 2cosu

f 8~m!
, u* ,u,p/2

, (30)

whereu* satisfies the transcendental equation

u* sinu* 1cosu* 5
~p/2!sinu* 2 f 8~m!

12 f 8~m!
,

sin21~2/p!,u* ,p/2. (31)

From~10!, l, f 8(m),1 if 1,m,`, so it is easily seen that~31!
always has exactly one solution on the given interval.

8 The Shape of the Ring During Crushing
The shape of the ring at successive loads is given by solving

differential equations with initial conditions

dx̄/du5cosa~u;n!, x̄~0;n!50 and dȳ/du5sina~u,n!,

ȳ5~0;n!50, (32)

where (Rx̄,Rȳ) are the Cartesian coordinates of a point on t
deformed centerline of the ring.

Figure 1 shows the ring at several stages of loading forl
51026 and l50.1 for scenarioI 0 with m50.5. Note the near
NOVEMBER 2003, Vol. 70 Õ 803
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formation of a plastic hinge at pointsC and C8 if l'0 and n
sufficiently large. Similar figures~not shown! are obtained for
scenariosII 0 and III 0 . Overall load-deflection curves for an in
extensional centerline (e50) follow from ~5! and (32)2 as

d/2R512 ȳ~p/2;n!. (33)

Figures 3, 4, and 5 plot these curves for several values ofl andm.
The dashed lines are produced if we assume no unloading
solid lines correspond to unloading. In scenariosI 0 and II 0 the
effect of unloading is small, but not so in scenarioIII 0 . As we

Fig. 3 Dimensionless load-deflection curves for an initially
straight beam bent elastically and inextensionally into a ring
„scenario I0… for various values of dimensionless material „l…
and geometric-material „m… parameters. Solid curves include
unloading effects; dashed curves do not.

Fig. 4 Dimensionless load-deflection curves of an initially
stress-free ring „scenario II0…. Solid curves include unloading
effects; dashed curves do not.

Fig. 5 Dimensionless load-deflection curves of an initially
straight beam bent elastically-plastically into a ring „scenario
III0… with lÄ0.1. Note that unloading effects „dashed curves …

become increasingly important as m increases.
804 Õ Vol. 70, NOVEMBER 2003
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show later in this paper, the assumption of no unloading permit
more detailed—but not total—analytic treatment of scenariosI 0
and II 0 .

In Fig. 6, we have re-scaled the ordinate in Fig. 4~for scenario
II 0) to readn/6m and superimposed the resulting graphs forl
50.01 andm510, 20 on Fig. 3~a! of Reddy and Reid@4# that
gives experimental data forP/P0 versusd/2R for a variety of
metal tubes—not rings—both ‘‘as-received’’ and annealed. Agre
ment is quite reasonable for the given metals form between 10
and 20. Here,P0 is what DeRuntz and Hodge@1# call the yield
point loadof the tube. If we regard each cross section of the tu
as a ring~and thus neglect the end effects discussed in@4#!, then
the dimensionless yield point load isn056m. See the Appendix
for a derivation. In Fig. 7, we have compared the predicted loa
deflection curve of our model forl50.02 andm511 against the

Fig. 6 Comparison of rescaled dimensionless predicted load-
deflection curves for scenario II0 with lÄ0.01 and mÄ10,20
with experimental data from Reddy and Reid †4‡

Fig. 7 Comparison of predicted load-deflection curve for Sce-
nario II0 with lÄ0.02 and mÄ11 with experimental data from
Avalle and Goglio †8‡
Transactions of the ASME
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experimental results presented in Fig. 6 of@8#. The agreement is
quite good. Note, especially, how the model captures the ra
rapid increase in slope near complete crushing.

Because unloading does not have a major effect on the ov
load-deflection curves in scenariosI 0 and II 0 , we now show that
the neglect of this phenomenon in these two cases permits a
detailed analytic treatment of crushing.

9 Elastic and Plastic Regions in ScenarioI 0 „No Un-
loading…

Recall that in this scenario, we assume that, when the initi
straight beam is bent into a ring, the resulting deformation
elastic. That is,m<1. Thus, when the load is first applied throug
the platens, the ring is elastic. From Eqs.~4.52!, ~4.57!, and~4.66!
of Frish-Fay@7#, the maximum dimensionless elastic bending m
ment occurs at pointsC andC8 in Fig. 1 and is given by

mC5AmA
21n, (34)

where the subscriptsA or C denote values of the unknowns
pointsA or C. As n increases,mA decreasesand vanishes, accord
ing to Frish-Fay, when the dimensionless loadn5(1/p)
3@G(1/4)/G(3/4)#2m25(2.78̄ )m2, where G is the gamma
function. For higher loads, the portion AB of the ring in Fig.
lies flat against the lower platen and suffers no bending mom
Moreover, because the bending moment (unlike the vertical sh
force) is continuous at B, there is always some part of the ring
the right of B that remains elastic.

The inextensionality of the centerline of the ring may be e
pressed with the aid of (3)1 , (7)1 , and (9)2 as

p/25E
0

p/2

du5uB1E
0

aH

~du/da!da

5uB1mF E
0

aP

~da/h!1E
aP

aH

~da/h!G . (35)

Here,aPP(0,aH# is the angle~if any! at which plastic deforma-
tion begins whereas, as explained following~6!, aH5p/2, except
possibly if l50. As we shall see, aplastic hingeforms if the
dimensionless loadn exceeds 32h2(0). Wenote that the change
in variable from u to a in ~35! is permissible becausea is a
strictly increasing function ofu for uB,u,aH . Once h as a
function of a has been determined, the first integral on the rig
side of ~35! can be evaluated in terms of elliptic integrals; t
second, if needed, can be evaluated numerically with the aid
symbol manipulating program such asMathematica.

10 Solution of the Differential Equation of Moment
Equilibrium and Determination of the Load-Deflection
Curve for Scenario I 0

Taking a rather thans5Ru as the independent variable in~4!,
applying the chain rule, using (7)1 and ~8!, introducing the di-
mensionless loadn and curvatureh from (3)2 and (9)2 , and
ignoring the extensional straine, we obtain

h f 8~h!
dh

da
5

n cosa

2
, 0,a,aH . (36)

Solution in the Elastic Region 0ËaËaP Where hÏ1.
From ~10!, f 8(h)51 and ~36! can be integrated immediately t
yield

h~a!5Ah2~0!1n sina. (37)

If the ring has flattened, thenh(0)50. The dimensionless curva
ture h increases witha until either a5p/2, in which case the
entire ring remains elastic and Frish-Fay’s analysis applies
else, from~37!, there is a value
Journal of Applied Mechanics
her

rall

ore

lly
is

h

o-

t

nt.
ear
to

x-

ht
e
f a

-

or

aP5sin21F12h2~0!

n G,
p

2
(38)

at whichh51.
The deflection of the inextensional ring due to pure elastic

formation,dE , is computed from~5!. Using (7)1 to switch froms
to a as the variable of integration and noting (3)1 , (9)2 , and
~37!, we find that

dE

2R
512mE

0

aP sinada

Ah2~0!1n sina
. (39)

The integral is elliptic. To bring it to standard form, make th
change of variable

sina5122 sin2 f, fP<f<p/4, (40)

and let

p25
2n

h2~0!1n
and fP5sin21SA12sinaP

2 D . (41)

Thus,

E
0

aP sinada

Ah2~0!1n sina
5A2/npE

fP

p/4 ~122 sin2 f!df

A12p2 sin2 f

5A2/n~2/p!E
fP

p/4S A12p2 sin2 f

1
1/2p221

A12p2 sin2 f
D df (42)

so that, from~39!,

dE/2R512~2A2/n!~m/p!$E~p,p/4!2E~p,fP!1~1/2p221!

3@F~p,p/4!2F~p,fP!#%, (43)

whereF(p,f) and E(p,f) are, respectively, Legendre’s ellipti
integrals of the first and second kind.

Solution in the Plastic Region aPËaÏaH Where hÌ1.
Substitution of~10! into ~36! and integration from 1 toh yields

n~sina2sinaP!5~h21!@2~12l!h211l~h11!#

; H 2, l50
lh2, lÞ0 as h→`. (44)

Since the left side of~44! is bounded, the last line on the righ
shows that a plastic hinge can occur, i.e.,h can approach infinity,
only if l50.

The deflection due to any purely elastic deformation of the r
is given by~39! or, equivalently, by~43!. The additional elastic-
plastic contribution is given by

dP522RmE
aP

aH sinada

g~a;aP ,l,n!
[22RmD, (45)

whereh5g(a;aP ,l,n) is that root of~44! which equals 1 when
a5aP . ~This involves finding the root of a cubic polynomial.!

For the special case of elastic-perfect plasticity,l50 and~44!
has the explicit solution

h5g~a;aP,0,n!5
2

21n~sinnP2sina!
5

2

32h2~0!2n sina
.

(46)

Clearly, if n>32h2(0), there is a valuea5aH<p/2 whereh
becomes infinite. Substitution of~46! into ~45! yields

D5cosaP2cosaH1~n/4!@aP2aH1~cosaP2cosaH!sinaP

1~sinaH2sinaP!cosaH#. (47)
NOVEMBER 2003, Vol. 70 Õ 805
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For lÞ0, we used Mathematica to first determine
g(a;aP ,l,n) analytically and then to evaluate the integral in~45!
numerically. There are two cases to be considered.

(i) Unflattened ring: 0,h (0),1, uB50.
As can be seen from~38!, if n<12h2(0), the ring remains

elastic. By (41)2 , fP50 and from~43! the deflection reduces to

d/2R512~2A2/n!~m/p!@E~p,p/4!1~p2/221!F~p,p/4!#.
(48)

Except for a slightly different notation, this is Eq.~4.67! of Frish-
Fay @7#.

To relate the dimensionless loadn to d/2R, we follow Frish-
Fay and impose the inextensionality condition~35!. With the
change of variable~40!, we have, sinceuB50 andaP5p/2,

p

2m
5A2/npE

0

p/4 df

A12p2 sin2 f
5A2/npF~p,p/4!. (49)

Thus,

n

m2 5
3PR2

bEH3 5
8p2F2~p,p/4!

p2 . (50)

Substitution of this result into~48! yields

d

2R
512

p@E~p,p/4!1~1/2p221!F~p,p/4!#

p2F~p,p/4!
. (51)

The load-deflection curve for the unflattened ring in the ela
range is thus given in parametric form by~50! and~51! with p as
the parameter.

If n.12h2(0), thering becomes plastic whena5aP<p/2,
where aP is given by ~38!. In this subcase, the analytica
numerical procedure is as follows: Fixl and m ~both less than
one!. For each value ofn, solve forh~0! by requiring that

A2/nmp@F~p,p/4!2F~p,fP!#1E
aP

p/2

g21~a;aP ,l,n!ds5p/2.

(52)

This was done using the secant method inMathematica. Once
h~0! was found, we computed the total deflection from~43! and
~45! as d5dE22RmD(p/2), whereD was determined by inte
grating ~45! numerically.

(ii) Flattened ring: h(0)50, uB.0.
Numerically, this case is simpler than the first subcase beca

the inextensionality constraint~35! may be regarded as an equ
tion for determininguB ~which is not needed in determining the
load-deflection curve—the goal of the present paper!. Again there
are two subcases.

If n<1, the ring remains elastic and the analysis in Section
of Frish-Fay @7# applies. In this subcase,~39! reduces tod/2R
512(m/An)*0

p/2Asinada which leads to the load-deflectio
curve

n

m2 5
3PR2

bEH3 5
p

4 F G~3/4!

~12d/2R!G~5/4!G
2

. (53)

If n.1, then, by~38!, the ring is elastic if 0<a<sin21(1/n)
and plastic otherwise. The total deflection isd5dE1dP , where,
from ~41! and ~43!, p5&, 2n sin2 fP5n21,

dE/2R512~2m/An!@E~&,p/4!2E~&,fP!#, (54)

anddP comes from integrating~45! numerically~with the aid of
Mathematica!.

Our final results agree with the dashed curves presented in
3 that were computed using the numerical methods discusse
Sections 5–7.
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11 Elastic and Plastic Regions in ScenarioII 0 „No Un-
loading…

In this scenario, the parameterm that measures the ratio o
plastic to elastic effects has the full range 0,m,`. Moreover,
the bending strain at pointA in Fig. 1 ~which is drawn for scenario
I 0 , but whose general features are the same as for scenarioII 0)
decreases from zeroas the load is applied. If the ring flattens, the
R̄5`; i.e., from (9)2 and ~11!, h52m. As h521 marks the
transition from elastic to plastic behavior, the ring will not g
plastic before it flattens ifm<1.

At point C in Fig. 1 the bending strainincreases from zero.
BecauseM ~and hencek! is a continuous function ofu, there is
always some point betweenA andC ~which depends on the load!
where k50. Thus, in scenarioII 0 , some segment of the rin
always remains elasticso that there are two values,a2 anda1 ,
depending onl, m, and n, such that the ring is elastic for 0
<a2<a<a1<aH<p/2. This in turn implies that there may b
two separate plastic zones, 0<a<a2 where h,21, and a1

<a<aH<p/2 whereh.1.

12 Solution of the Differential Equation of Moment
Equilibrium for Scenario II 0

Taking, as before,a rather thanu as the independent variable i
~4!, applying the chain rule, using~10! and ~11!, introducing the
dimensionless loadn and curvatureh from (3)2 and (9)2 , and
ignoring the extensional straine, we have

~h1m! f 8~h!
dh

da
5

n cosa

2
. (55)

Solution in the Elastic Region 0ÏaÀÏaÏa¿. From ~10!,
f 8(h)51. Integrating~55! from a2 to a, we have

h52m1A@h~a2!1m#21n~sina2sina2!. (56)

If m<1, the ring is relatively thin; as the load increases fro
zero, the ring first flattens atn5(1/p)@G(1/4)/G(3/4)#2m2

5(2.78 . . . )m2 and becomes plastic atC whenn5(11m)2. As
the load increases further, asingle plastic zone spreads fromC
inward to some point wherea5a1 .

If m.1, the ring is relatively thick and—if we look ahead t
~70!—first becomes plastic atA when the dimensionless loadn is
such thatp/25A2/nmpF(p,p/4), wherep is given by (67)1 with
a250 andh(0)521. ~The ring need not to have begun to fla
ten at this load!. As the load increases further, this zone sprea
from A, extending to some point wherea5a2 . ~It makes no
difference in the analysis to follow whether the ring has flatten
or not because we work with the deformed anglea which is
always zero at the point of contact of the ring with the low
platen, whether that point be atA or B.! At some load level, which
must be determined numerically, a second plastic zone begin
spread fromC. We now analyze both cases simultaneously w
the understanding that ifm,1, a plastic zone near the platen
does not exist.

Solution in the Plastic Region 0ÏaÏaÀ„ÀµÏhËÀ1….
If h,21, then from~10!, f 8(h)52(12l)h231l. Substituting
this expression into~55!, integrating, and choosing the constant
integration so thath→21 asa→a2 , we obtain

~11h!Fm~12l!~12h!

h2 1
2~12l!

h
12lm2l~12h!G

5n~sina2sina2!. (57)

Upon multiplying byh2 we obtain a quartic polynomial inh. Let

h5g2~a;a2 ,l,m! (58)

denote that root which reduces to21 whena5a2 .
Transactions of the ASME
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Solution in the Plastic Regiona¿ÏaÏaHÏpÕ2. Because
h.1, ~10! yields f 8(h)5(12l)h231l. Substituting this ex-
pression into~55!, integrating, and choosing the constant of in
gration so thath→1 asa→a1 , we obtain

n~sina2sina1!5~h21!Fm~12l!~h11!

h2 1
2~12l!

h
12lm

1l~h11!G5 H21m, l50
lh2, lÞ0 as h→`.

(59)

As in scenarioI 0 , the last line on the right of this equation show
that a plastic hinge is possible only ifl50. Upon multiplying the
first line of ~59! by h2 we obtain a quartic polynomial inh. Let

h5g1~a;a1 ,l,m! (60)

denote that root which reduces to 1 whena5a1 .

13 Determination of aÁ if µÌ1 and the Ring has
Flattened

To find a2 , seth52m at a50 in ~57!. It follows that

a25sin21H ~m21!2@11l~m21!#

mn J . (61)

To find a1 , impose~56! at a5a1 whereh51. It follows with
the aid of~61! that

a15sin21H 4m21~m21!2@11l~m21!#

mn J . (62)

14 Computation of the Load-Deflection Curve for
Scenario II 0

If 0 ,m<1 ~i.e., if the ring is relatively thin!, there are three
distinct stages of deformation as the load slowly increases:~i! the
entire ring is elastic and there is no flattening;~ii ! the ring begins
to flatten, but remains elastic;~iii ! a plastic zone begins to sprea
from C. Qualitatively, the stages of deformation are similar
those for scenarioI 0 shown in Fig. 1. Ifl50 ~elastic-perfect
plasticity!, a plastic hinge can form atC.

If m.1, but not too large~say m52), there are four distinct
stages of deformation as the load slowly increases. To desc
these, letD denote the point wherea5a2 andE the point where
a5a1 . ~i! the entire ring is elastic and there is no flattening;~ii !
the segmentAD is plastic whereasDC remains elastic and there i
no flattening;~iii ! AB is flattened and plastic,BD is plastic, and
DC elastic;~iv! AB is flattened and plastic,BD is plastic,DE is
elastic, andEC is plastic. Althoughl andm are given, the load a
which any point switches from elastic to plastic is usually u
known and must be determined numerically. For larger value
m ~say,m510), stage~ii ! above is modified:AD is plastic,DE is
elastic, andEC is plasticbeforeflattening occurs.

If l50, a plastic hinge can form atC under a sufficiently high
load. To find the associated hinge angle,aH , we setl50 and let
h→` in ~59!. Using ~62!, we obtain

aH5sin21S m2116m

n D . (63)

Clearly, the denominator must exceed the numerator for the h
angle to be less thanp/2.

The deflection in scenarioII 0 , from (3)1 , ~5! ~with e50),
(9)2 , and~11!, is

d

2R
512mE

0

aH sinada

m1h
. (64)

Breaking the integral into the sum of three integrals and us
~56!, ~58!, and~60!, we have
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2R
512mF E

0

a2 sinada

m1g2~a;a2 ,l,m!

1E
a2

a1 sinada

A@h~a2!1m#21n~sina2sina2!

1E
a1

aH sinada

m1g1~a;a1 ,l,m!G
[12m@D2~a2 ,l,m!1D~a2 ,a1 ,l,m!

1D1~a1 ,aH ,l,m!#. (65)

Unless the ring has flattened, that would allow us to use~61!–
~63!, the anglesa2 , a1 , andaH must be determined~numeri-
cally! as part of the solution.

The middle integral is elliptic and may be brought to standa
form with the change of variable

sina5122 sin2 f, f1<f<f2 , (66)

and by setting

p25
2n

@h~a2!1m#21n~12sina2!

and f65sin21A12sina6

2
. (67)

Thus—see~42! and ~43!—,

D5A2/npE
f1

f2 ~122 sin2 f!df

A12p2 sin2 f

5A2/n~2/p!$E~p,f2!2E~p,f1!

1~p2/221!@F~p,f2!2F~p,f1!#%. (68)

As in scenarioI 0 , the dimensionless deflections in the elast
plastic portions of the deformed ring,D6 , were computed nu-
merically with the aid ofMathematica.

In case~i! for 0,m<1 and cases~i! and ~ii ! for m.1, where
the ring has not yet flattened, the inextensionality constraint m
be satisfied, which produces a relation between the dimension
loadn and the dimensionless deflectiond/2R. ~In the other cases
inextensionality merely serves to determine the extent of the
tened portion of the ring, if needed.! Thus, in analogy to~35!, we
have

p/2m5E
0

p/2

da/~m1h!

5E
0

a2 da

m1g2~a;a2 ,l,m!

1E
a2

a1 da

A@h~a2!1m#21n~sina2sina2!

1E
a1

p/2 da

m1g1~a;a1 ,l,m!

[c2~a2 ,l,m!1c~a1 ,a2 ,l,m!1c1~a1 ,l,m!.

(69)

With the change of variable~66! and the definitions~67!, the
middle integral reduces to

c5A2/np@F~p,f2!2F~p,f1!#. (70)

The integralsc6 were computed numerically usingMathematica.
NOVEMBER 2003, Vol. 70 Õ 807
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Load-deflection curves for scenarioII 0 without unloading agree
with the dashed curves in Fig. 4 that were computed by the
merical methods described in Sections 5–7.

In the Appendix, we show that as the material approaches ri
perfect plasticity (l50,m→`), we recover from ~65! what
DeRuntz and Hodge@1# call theyield point loadof the tube,P0 ,
which, in dimensionless form, is given byn0 /m56.

15 Conclusions
We have produced numerical solutions for three simple ben

mark problems for circular rings made of a bi-linear elastic-plas
material that may undergo isotropic hardening. In scenarioI 0 , an
initially straight beam is bent elastically into a ring and th
slowly crushed; in scenarioII 0 , and initially stress-free circula
ring is slowly crushed; in scenarioIII 0 , the complement of sce
nario I 0 , a straight beam is bent first elastically and then pla
cally into a ring before being slowly crushed. For simplicity, t
centerline of the rings has been assumed to be inextensiona
indicated by the subscript 0.

The analysis confirms, in a more quantitative way than befo
what workers in the field have long known, namely, that wh
both strains and deflections are large, the amount of strain h
ening has a significant influence on the deformed configuratio
a structure. This is quite evident in Figs. 3 and 4, where the
fluence ofl, the ratio of the plastic to elastic modulus, is e
tremely pronounced in the final stages of crushing. On the o
hand, the effect of unloading in scenariosI 0 and II 0 is not large.
This observation motivated the more analytical treatment of th
two cases given in Sections 9–14.

Although it may be justly claimed that a bi-linear stress-str
relation is an idealization, we remind the reader that our purp
was to analyze precisely, a simple mechanical model that not
may used to check elaborate structural codes, but also ma
compared against experiments, as Figs. 6 and 7 demonstrate

Appendix

Determining the Limit Load „lÄ0, µ\`… in Scenario II 0.
Herein, we show that ifl50 ~perfect plasticity!, then the dimen-
sionless deflection for scenarioII 0 given by ~65! yields

n

m
;

6

A12~d/2R!2
as m→`. (A1)

This expression corresponds to Eq.~14! of DeRuntz and Hodge
@1# and also, according to Redwood@2#, to a similar formula in an
unpublished report by Burton and Craig@13#. Redwood@2# refined
the analysis of DeRuntz and Hodge by assuming a rigid, lin
strain-hardening stress-strain relation and generalized their l
deflection relation with his Eq.~1!.

From ~57!–~60! we have

g6~a;a6,0,m!5O~1! as m→`. (A2)

Moreover, if we assume that the ring has flattened so thath(0)
52m andh(a2)521, then, settingn5km in the denominator
of the second integral in~65!, we have
808 Õ Vol. 70, NOVEMBER 2003
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A~m21!21km~sina2sina2!5m1O~1! as m→`.
(A3)

Thus,~65! yields

d/2R512E
0

aH

sinada1O~m21!5cosaH1O~m21!.

(A4)

But from ~63!,

cosaH5A12~6/k!21O~m22!. (A5)

Solving for k5n/m, we obtain the asymptotic dimensionles
force-deflection relation~A1!.

The dimensionlessyield point load

n0 /m56, (A6)

corresponding tod/2R→0 in ~A1!, may be derived from simple
mechanical considerations. At the load 2P0 when the ring first
flattens at pointA—see Fig. 1—, the dimensionless bending stra
there,h~0!, is equal to2m. Thus, asm→`, we have a plastic
hingebothat A andC, with moments of magnitudeE«YH2 but of
opposite sign. Because the ring is essentially rigid before th
hinges come into play, equilibrium of a quarter of the ring requi
that P0R52E«YbH2. By ~3!, this is just the dimensional form o
~A6!. According to DeRuntz and Hodge@1#, the yield point load
P0 was first computed by Drybye and Hansen@14#.
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Effective Constitutive Equations
for Porous Elastic Materials at
Finite Strains and Superimposed
Finite Strains
A method is developed for derivation of effective constitutive equations for po
nonlinear-elastic materials undergoing finite strains. It is shown that the effective co
tutive equations that are derived using the proposed approach do not change if a
motion is superimposed on the deformation. An approach is proposed for the compu
of effective characteristics for nonlinear-elastic materials in which pores are origina
after a preliminary loading. This approach is based on the theory of superimposed
deformations. The results of computations are presented for plane strain, when pore
distributed uniformly.@DOI: 10.1115/1.1630811#
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1 Introduction
Effective constitutive equations are constructed using w

known general principles that are considered, in particular,
Hashin and Rozen@1#, Christensen@2#, Kachanov et al.@3#, and
Mauge and Kachanov@4#. A representative volume~area for the
two-dimensional case! which mechanical behavior represents t
properties of material as a whole is extracted in a body. The s
problem of nonlinear elasticity is solved for this volume at giv
loads applied to its boundary. Then the strains and stresse
averaged over the representative volume~area!, and the effective
constitutive equations are constructed as a relation between
average strains and the average stresses.

It should be noted that there is a rigorous approach for hom
enization, when the limit is taken for the homogenized const
tive equations as the characteristic size of a representative re
tends to infinity~at the fixed characteristic size of structural e
ments!. In particular, this approach is described by Zhikov et
@5#. For nonlinear inhomogeneous periodic media~without voids!
this approach has been developed by A. Braides@6# and by S.
Müller @7#. This problem goes beyond the scope of this pap
Note also that the approach of@6# is extended to nonlinear inho
mogeneous materials with initiated cracks by Braides et al.@8#.

Analyzing the effective properties of inhomogeneous mater
one should answer the question, how to define a ‘‘comparis
material so that the physical sense of this definition will be cl
~for the use in experiments!, and the mathematical representati
of this definition will be simple enough? In addition, it is not cle
how to define the average strains for porous medium corre
because the strains within the pores are undefined~this is the
difference between porous materials and composites with ela
inclusions!. For infinitesimal strains these problems are solv
simply enough,@2,3,9#. In particular, the strain tensor of the com
parison material is taken as

Ee5
1

V E
V
EdV5

1

2V E
V
~¹u1u¹!dV,
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whereV is a representative volume. Then, using the diverge
theorem, one can write

Ee5
1

2V R
G
~nu1un!dG,

whereG is the boundary of the representative volume. By th
one can formally find the average strains within pores using
assumption that the pores are filled by a special elastic materia
that the displacements of boundary points of the special mate
are the same as the displacements of the correspondent poin
the matrix material at the boundaries of the pores, and the stre
within the special material are equal to zero~provided that there is
no pressure in pores!. This approach permits one to determine t
average strains over the volume of a pore by the displacemen
its boundary; these displacements are obtained from the solu
of the elasticity problem. So, there is no need to determine str
at each point of a pore.

This approach can’t be applied directly for finite strains beca
each strain tensor~for example, the Green or the Almansi stra
tensor! nonlinearly depends on the displacement gradient in
coordinate basis of the initial or the deformed state,@10#, and,
therefore, it is impossible to replace the volume integral by
surface integral using the divergence theorem. By this, the follo
ing difficulty takes place: the averaging of each strain tensor o
a representative volume gives different results if we define
displacements within pores by different ways, even if the con
nuity of displacements over the boundaries of pores is assum

Therefore, if the strains are finite, it is necessary to modify
approach that is used by Kachanov et al.@3# and Vavakin and
Salganik@9# for infinitesimal strains. We use the following way
the deformation gradient~but not the strain tensor! is averaged
over a representative volume in the undeformed state, and the
strain tensor of the comparison material is expressed in term
the averaged deformation gradient.

2 Definitions in the Case When the Shapes of Pore
are Given in the Undeformed State

Let the shape of pores be determined in the undeformed s
Let V0 be a representative volume extracted in this state,G0 the

boundary ofV0 , N
0

the normal to the boundaryG0 . Let V be the
correspondent representative volume in the deformed state,G its
boundary,N the normal to the boundaryG. ~We assume that the
boundary of the representative volume does not intersect the

9,
the
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ar-
after
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space!. By ¹
0

and¹ denote the gradient operators referring to t
base of the initial and the deformed states, respectively. LeC

5I1“

0
u5(I2¹u)21 denote the deformation gradient,u the dis-

placement vector,R position vector of a point in the deforme
state.

Let the boundary condition

N•suG5N•s̃uG (1)

be given at the boundaryG of the deformed volume. Heres is the
true ~Cauchy! stress tensor, ands̃ is an arbitrary constant~inde-
pendent on coordinates!, symmetric tensor.

Following Hashin and Rozen@1#, it may be shown that if the
condition ~1! is satisfied and the body forces are equal to ze
then the averaged true stresses over the deformed volume
equal tos̃. Indeed, the equilibrium equation in this case has
form

¹•s50. (2)

Consider the identity

¹•~sR!5~¹•s!R1s•~¹R!* 5~¹•s!R1s•I5~¹•s!R1s.

Taking into account~2!, we obtain from this identity

s5¹•~sR!.

Integrating the last equation over the deformed volume
using the divergence theorem, we have

E
V
sdV5E

V
¹•~sR!dV5 R

G
N•sRdG.

Using ~1! and taking into account that the tensors̃ is symmetric
and constant, we get

R
G
N•sRdG[ R

G
N•s̃RdG[ R

G
s̃•NRdG5s̃• R

G
NRdG.

And finally, applying the divergence theorem to the last integ
we obtain

s̃• R
G
NRdG5s̃•E

V
¹RdV5s̃•E

V
IdV5Vs̃.

Thus,

1

V E
V
sdV5s̃.

Note that the boundary condition~1! may be written in the
coordinates of the undeformed state in the form

N
0

•S
0

uG0
5~detC!N

0

•C* 21
•s̃•C21uG0

. (3)

HereS
0

is the second Piola-Kirchhoff stress tensor,@10#:

S
0

5~detC!C* 21
•s•C21. (4)

Now we shall give the definition of a comparison material. L
a representative volumeV0 be extracted in an undeformed poro
material, and let the loads be applied to the boundaryG0 of this
volume in accord with~3!. Let the true stresses in the porou
material be averaged over the deformed volume~the average true
stresses in this case are equal tos̃, as shown above!, and the
deformation gradient of the porous material be averaged over
undeformed volume. Then a uniform material is called a comp
son material if the following condition holds: if the true stresses
this material are equal tos̃, then the deformation gradient of thi
material is equal to the averaged deformation gradient of the
rous material.

In accord with this definition we can write
810 Õ Vol. 70, NOVEMBER 2003
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se5s̃5
1

V E
V
sdV, Ce5

1

V0
E

V0

CdV0 . (5)

Here and further in this paper the superscript ‘‘e’’ over a quantity
indicates that this quantity is a property of a comparison mate

Using the divergence theorem, we can write the second Eq~5!
in the form

Ce5
1

V0
E

V0

CdV05
1

V0
E

V0

~ I1¹
0

u!dV05I1
1

V0
R

G0

N
0

udG0 .

(6)

Consider now an approach to the construction of effective c
stitutive equations for porous materials on the basis of the p
posed concept. A representative volumeV0 is extracted in a po-
rous medium~in the undeformed state!. The solution of the
nonlinear elasticity problem is obtained subject to the bound
condition~3! at the external boundaryG0 of this volume~it will be
recalled thats̃ in ~3! is a constant, symmetric tensor!, and the
boundary conditions at the boundaries of pores. In particular,
displacement vectoru is obtained. Next, the deformation gradie
Ce of the comparison material is obtained from~6!. Then the

Green strain tensorE
0

e and the second Piola-Kirchhoff stres

tensorS
0

e of the comparison material are determined using
relations

E
0

e5
1

2
~Ce

•Ce* 2I !, (7)

S
0

e5~detCe!~Ce!* 21
•se

•~Ce!21

5~detCe!~Ce!* 21
•s̃•~Ce!21, (8)

and the effective constitutive equations are constructed as a

tion betweenS
0

e and E
0

e. For example, these equations may

written in the formS
0

e5F(E
0

e).
There is a limitation of our method, because of the assump

that the boundary of the representative volume does not inter
the pore space. This assumption is not valid for the case when
pore space has a connected component which spans all spac~for
example, for open-cell foamed plastics!. In our opinion, the pos-
sible approach in this case is to impose affine boundary condit
on the displacements at the boundary of the representative re
and to calculate the resulting average stress through its inte
over the representative volume. For gridwork materials this
proach is developed by Brovko and Ilyushin@11#.

Note also that our approach to the homogenization is prima
similar to the one developed by R. Hill@12#, although Hill did not
consider porous materials as a special case of inhomogen
materials.

3 Analysis of Superimposed Rigid-Body Motions
Now we claim that the effective constitutive equations that

constructed using the method which is described above are
changed if a body, including a representative volume extracte
it, carries out a rigid motion after the deformation. Let the body
passed to a certain state after the rigid motion. Following Lu
@10#, we shall prime the quantities relating to this state. LetO be
the orthogonal tensor that describes this rigid motion; by defi
tion of a rigid motion this tensor is independent on coordinates
is known,@10#, that the deformation gradientC and the true stress
tensors are transformed by the rules

C85C"O, s85O* •s•O, (9)

when the rigid motion is superimposed on the deformation.
Using ~5! and ~9! and taking into account that the tensorO is

constant and orthogonal, we have
Transactions of the ASME
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C8e5
1

V0
E

V0

C8dV05
1

V0
E

V0

C " OdV05
1

V0
S E

V0

CdV0D •O

5C8e
•O,

s8e5
1

V8 EV8
s8dV85

1

V E
V
O* •s•O detOdV

5
1

V
O* •S E

V
sdVD •O5O* •se

•O.

Thus,

C8e5Ce
•O, s8e5O* •se

•O. (10)

Taking into account Eq.~10! we obtain, from~7!, ~8!,

E
0

8e5
1

2
~C8e

•C8e* 2I !5
1

2
~Ce

•O " O* •Ce* 2I !

5
1

2
~Ce

•Ce* 2I !5E
0

e,

S
0

8e5~detC8e!~C8e!* 21
•s8e

•~C8e!21

5~detCe detO!~Ce!* 21
•O " O* •se

•O " O21
•~Ce!21

5~detCe!~Ce!* 21
•se

•~Ce!215S
0

e.

Thus, the tensorsE
0

e and S
0

e that are determined by the ap
proach which is described above do not change when the r
motion is superimposed on the deformation. Therefore, the r
tion between these tensors~that is, the effective constitutive equa
tion! doesn’t change, too.

4 Some Particular Cases
At infinitesimal strains the proposed approach to averaging

incides with the conventional approach, which is presented,
example, by Kachanov et al.@3# and Vavakin and Salganik@9#.
Indeed, if we substitute~7! into ~6!, we have

E
0

e5
1

2V0
R

G0

~N
0

u1uN
0

!dG01
1

2V0
2 S R

G0

N
0

udG0D
•S R

G0

uN
0

dG0D .

If strains are infinitesimal, we can write this equation up to t
first order of smallness as

E
0

e5
1

2V0
R

G0

~N
0

u1uN
0

!dG0 . (11)

This equation is similar to the well-known relations presen
in @3,9#.

In our previous papers,@13,14#, another definition of a compari
son material was given. Let us outline the approach that was u
in those papers. Let a representative volume~area!, which as-
sumes the shape of a parallelepiped~parallelogram in the two-
dimensional case!, be extracted in a porous body. Then a unifo
material is called a comparison material if the following conditi
holds. If the representative volume~area! is filled by the compari-
son material, then the average displacements over each side o
volume~area! are equal to the ones for the given porous mate
at the same loads.

The definition that is given in this paper is more general th
the definitions proposed in@13,14#, because it doesn’t impose re
strictions to the shape of the representative volume. If the re
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sentative volume assumes the shape of a parallelepiped~parallelo-
gram!, then our new definition gives the same equations forCe as
the definitions that are given in@13,14#.

Consider now the equations which follow from~6! in some
special cases.

If the representative volume assumes the shape of a rectan
prism such that its edges are parallel to the coordinate a
(ABix1 , ADix2 , AEix3 , Fig. 1!, then the components of th
deformation gradient for the comparison material may be de
mined as

C1i
e 5d1i1

1

uABu @^ui&uBCGF2^ui&uADHE#,

C2i
e 5d2i1

1

uADu @^ui&uDCGH2^ui&uABFE#, (12)

C3i
e 5d3i1

1

uAEu @^ui&uEFGH2^ui&uABCD#,

~ i 51,2,3!.

Here we use the notation̂u&uPQRS51/s*PQRSudl, wherePQRS
is an arbitrary side of the parallelepiped, ands is the area of this
side.

In ~12! and further, where equations are written in suffix no
tion, it is assumed that the Cartesian coordinates are chosen i
basis of the state, in which the problem is solved.

In the two-dimensional case~in plane strain! a representative
area is considered instead of a representative volume. Sup
that the representative areaS0 is a parallelogram of sidesa andb
that make angles ofa andb with thex1-axis, respectively~Fig. 2!.
Let A, B, C, D be the vertices ofS0 , then the components of th
deformation gradient of the comparison material may be fou
from the equations

C1i5d1i1
1

S0
S E

AB
ui sinadl1E

BC
ui sinbdl2E

CD
ui sinadl

2E
DA

ui sinbdl D ,

Fig. 1 Three-dimensional case: the representative volume is a
rectangular prism
NOVEMBER 2003, Vol. 70 Õ 811



e

d

a

t

t

h
i

k

ex-

m-

ith

and
ons

er

ma-
on

s

l. In
t

ed
-
dary
e
me

are
n
in
n
in-

se
ua-

teri-
C2i5d2i2
1

S0
S E

AB
ui cosadl1E

BC
ui cosbdl

2E
CD

ui cosadl2E
DA

ui cosbdl D ,

whereS05ab sin(b2a).
These equations are equivalent to the correspondent equa

given by Levin et al.@14#. In the particular case, when the repr
sentative area is a rectangle of sidesa andb that are parallel to the
axesx1 andx2 , respectively~i.e., ata50, b5p/2), we have

C1i5d1i1
1

ab S E
BC

uidl2E
DA

uidl D ,

C2i5d2i1
1

ab S E
CD

uidl2E
AB

uidl D . (13)

Equations~13! coincide with the correspondent equations th
are presented by Levin et al.@13#, within a notation.

5 Approximate Method for the Construction of Effec-
tive Constitutive Equations

In general, the considered approach to the construction of
fective constitutive equations is not restricted by the value of
deformation. This approach may be used whenever the boun
value problem of nonlinear elasticity with the boundary conditio
~1! or ~3!, wheres̃ is an arbitrary constant, symmetric tensor, m
be solved for a representative region with holes. However, it is
clear whether this model adequately reflects the overall mech
cal behavior of a porous material when the strains are infini
increased. In addition, as is known,@10#, even in the two-
dimensional case the exact solutions of nonlinear problems
elasticity at large strains are found only for some special po
tials. By these reasons we consider the approximate method
the construction of the effective constitutive equations. T
method is based on the solution of nonlinear problems of elast
using the perturbation technique. Naturally, this approach may
used at a limited range of strains. Note that even when the ave
strain is small, the local strain in some regions could be lar
depending on the microstructure. In particular, this effect ta
place for a body with closely situated circular holes, especia
when one hole is considerably larger than another in its s
~Levin and Zingerman@15#!, or for a body with narrow slots~for
example, elliptical!.

Let the nonlinear problem of elasticity with the boundary co
dition ~3! at the external boundary of the representative volume
solved by the perturbation technique up to the second order. T
we can represent the components of the displacement vectoru as

Fig. 2 Two-dimensional case: the representative area is a
parallelogram
812 Õ Vol. 70, NOVEMBER 2003
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um5 u
~0!

mi js̃ i j 1 u
~1!

mi jkls̃ i j s̃kl5 u
~0!

mi js i j
e 1 u

~1!

mi jkls i j
e skl

e .
(14)

Substituting~14! in ~6!, we get

Cmn
e 5dmn1 S

~0!

mni js i j
e 1 S

~1!

mni jkls i j
e skl

e . (15)

If we substitute~15! into the expression~7! for the Green strain
tensor of the comparison material and retain in the obtained
pression only linear and quadratic terms, we have

E
0

mn
e 5 T

~0!

mni js i j
e 1 T

~1!

mni jkls i j
e skl

e , (16)

where

T
~0!

mni j5 S
~0!

mni j1 S
~0!

nmi j ,

T
~1!

mni jkl5 S
~1!

mni jkl1 S
~1!

nmi jkl1 S
~0!

mpi j S
~0!

npkl .

T
(0)

mni j and T
(1)

mni jkl are the first-order and the second-order co
pliance moduli, respectively.

Solving system~16! with respect tos i j
e by the perturbation

technique up to the second order, we have

smn
e 5 C̃

~0!

mni jE
0

i j
e 1 C̃

~1!

mni jklE
0

i j
e E

0

kl
e .

And finally, if we substitute the last expression together w
expression~15! into formula ~8! for the second Piola-Kirchhoff
stress tensor and retain in the obtained expression only linear
quadratic terms, we can write the effective constitutive equati
in the form

S
0

mn
e 5 C

~0!

mni jE
0

i j
e 1 C

~1!

mni jklE
0

i j
e E

0

kl
e . (17)

Here C
(0)

mni j and C
(1)

mni jkl are the first-order and the second-ord
elastic moduli, respectively.

Note that the described method may be used for isotropic
trix materials as well as for anisotropic ones. The comparis
material is generally anisotropic.

6 Definitions in the Case When the Shapes of Pore
are Given in the Final State

If pores assume a given shape in the deformed~final! state, it is
appropriate to use another definition of a comparison materia
this case we average the inverse of the deformation gradienF
5C215I2¹u over a representative volume in the deform
state. Let the representative volumeV be extracted in the de
formed porous material, and the loads be applied to the boun
G of this volume in accord with~1!. Let the true stresses and th
inverse of the deformation gradient be averaged over the volu
V in the deformed state~the averaged true stresses in this case
equal to s̃). Then the uniform material is called a compariso
material if the following condition holds: If the true stresses
this material are equal tos̃, then the inverse of the deformatio
gradient for the comparison material is equal to the averaged
verse of the deformation gradient for the porous material.

According to this definition, we get

Ce215
1

V E
V
FdV5

1

V E
V
~ I2¹u!dV5I2

1

V R
G
NudG.

7 Load-Induced Pores
Now we construct effective constitutive equations for the ca

when pores are originated in materials after loading. Such eq
tions may be used to simulate the mechanical behavior of ma
als in which microdefects~submicrocracks! are originated at load-
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ing, @16,17#. There may be diverse approaches to this problem
this paper we consider an accumulation of microdefects as a
crete process such that each stage of this process is asso
with the application of a load. This approach may be verifi
experimentally by the fact that the concentration of submic
cracks in polymeric materials at first increases after the appl
tion of a load, but then reaches a steady-state value within s
time of loading if the load is time-independent, and this stea
state value of concentration depends on the value of the app
load, as shown by Zhurkov and Kuksenko@16# and Zhurkov et al.
@17#. Tamuzh and Kuksenko@18# note that submicrocracks ma
be considered as holes in a homogeneous medium. In other w
the approaches that were developed for the analysis of ma
scopic holes may be extended to submicrocracks, and one
analyze the submicrocracks within the scope of continu
mechanics neglecting the structural inhomogeneity of polym
materials.

Assuming that the accumulation of microdefects is a discr
process, we can analyze this process using the theory of supe
posed finite deformations that was developed by Levin@19,20#.
The basic concepts of this theory are as follows. Let us distingu
N states of a body: initial~undeformed! state; (N22) intermedi-
ate states, for which body goes step by step by successively
plied external effects; final state, to which body goes after
application of all external loads to it in the predetermined ord
By ‘‘application of load’’ we mean application of body forces an
application or removal of load over both the pre-existing bou
aries of regions and the newly formed ones.

Within the scope of this theory, the origination of holes in t
body may be simulated using the scheme, which is propose
Levin @19,20#. Assume large plane static strains and stresses
brought about by external forces in a nonlinear elastic body
was in the initial~unstressed! state. The body passes to the fir
intermediate state. Then a closed surface is imagined in the b
and its contents, bounded by this surface, is removed, and
effect of the removed part of the body on the remainder is
placed by forces, distributed over this closed surface~on the prin-
ciple of releasing from constraints!. It is clear that this transfor-
mation doesn’t change the stress and strain states in the b
Then these forces, changed to the category of external forces
reduced to zero quasistatically. It raises large~at the vicinity of the
originated surface! strains and stresses that are superimposed
the large initial strains and stresses already existing in the b
The body passes to the next state. The shape of the introd
boundary surface is changed. Then this procedure is repeate
the origination of the second hole, etc.

Below, three states of a body are considered: initial, interme
ate, and final. The indices 0, 1, and 2 correspond to these st
respectively.

Consider now two schemes of construction of effective con
tutive equations for previously loaded porous materials.

1 A continuous ~undamaged! body is loaded. Finite initial
strains are brought about in it. The body passes to the interme
state. Then pores~microdefects! are originated in the body by th
scheme which is proposed by Levin@19,20#. It is assumed that the
pores are uniformly distributed over the body. The origination
pores raises additional finite strains that are superimposed on
finite initial strains.

By this, the average stresses do not change. The additiona
ternal loads are not applied to the body. The effective constitu
equations are constructed as a relation between the average
deformation gradient and average stresses caused by loading

2 A continuous body is subjected to initial loading. Then po
are originated in the body. Then additional external loads are
plied to the body. Additional finite strains are brought about in
body due to the origination of pores and the additional loadi
These additional strains are superimposed on the initial ones.
effective constitutive equations are constructed either as a rela
Journal of Applied Mechanics
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between the average additional strains and the average addit
stresses or as a relation between the average total deform
gradient and the average total stresses.

This scheme may be used for simulation of a partial unload
of polymeric materials in which pores are originated after loadi
It is experimentally shown by Tamuzh and Kuksenko@18# that the
concentration of micropores do not decrease significantly a
partial unloading, that is the originated micropores do not clo
This scheme may be also used for examination of cavitation p
nomena~sudden opening of cavities at loading! in rubber-like
materials,@21,22#.

The general approach to the construction of effective const
tive equations is the same for the both cases. Consider this
proach now using the notation of Levin@19,20# and Levin and
Zingerman@23#. Let the initial deformation be affine. LetCe be
the deformation gradient of the comparison material,C0,1, C1,2,
andC0,2 the initial, additional and total deformation gradients
porous material, respectively,u2 the additional displacement vec
tor, s0,1 ands0,2 the initial and the total true stress tensors resp
tively. Let V0 be a representative volume in the initial state, a
let this volume be transformed to the volumesV1 andV2 after the
initial and the total deformation respectively. ByG0 , G1 , andG2
denote the boundaries of volumesV0 , V1 , and V2 respectively.

Let N
i

( i 50,1,2) be the normal toG i .
Let the boundary condition

N
2

•s0,2uG2
5N

2

•s̃uG2
(18)

be given at the boundaryG2 in the deformed state. Heres̃ is a
constant, symmetric tensor, as before.

As in the case, when deformations are not superimposed, it
be shown that if condition~18! holds and the body forces ar
equal to zero, then the averaged true total stresses over the vo
V2 are equal tos̃, i.e.,

s̃5
1

V2
E

V2

s0,2dV2 .

Boundary condition~18! may be written in the coordinates o
the intermediate state as

N
1

•S
1

0,2uG1
5~detC1,2!N

1

•C1,2* 21
•s̃•C1,2

21uG1
. (19)

HereS
1

0,2 is the total~for the final state! stress tensor referring to
the base of the intermediate state,@19#.

Now we shall give the definition of a comparison material f
the case of superimposed deformations. Let the loads be ap
to the boundaryG1 in the intermediate state in accord with~19!.
Let the true stresses in the porous material be averaged ove
volumeV2 in the final state~the averaged true stresses in this ca
are equal tos̃, as noted above!, and the additional deformation
gradient be averaged over the volumeV1 in the intermediate state
Then a uniform material is called a comparison material if t
following condition holds: If the true stresses in this material a
equal tos̃, then the deformation gradient of the comparison m
terial is equal to the initial deformation gradient multiplied on t
averaged additional deformation gradient of the porous mater

In accord with this definition we can write

se5s̃5
1

V2
E

V2

s0,2dV2 , Ce5C0,1•
1

V1
E

V1

C1,2dV1 .

(20)

Taking into account thatC1,25I1¹1u2 and using the diver-
gence theorem, we can write the second Eq.~20! in the form
NOVEMBER 2003, Vol. 70 Õ 813
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Ce5C0,1•
1

V1
E

V1

S I1¹
1

u2
DdV15C0,1•S I1

1

V1
R

G1

N
1

u2dG1D .

(21)

This equation may be written as

Ce5C0,1•C1,2
e , (22)

where

C1,2
e 5I1

1

V1
R

G1

N
1

u2dG1 . (23)

Thus, we formally consider the deformation of a comparison m
terial as a sequence of two stages of deformation assuming
the first stage of deformation coincides with the initial deform
tion of the original material.

Now, using the last definition, we shall consider an approac
the construction of effective constitutive equations for materials
which pores are originated after loading. This approach basic
coincides with the approach that is stated above for material
which pores exist initially. Let the shape of pores be prescribe
the intermediate state. At first, the gradient of initial deformatio
C0,1 is determined from the given initial stressess0,1. Then a
representative volumeV1 is extracted in a body in the intermed
ate state. The solution of the nonlinear problem of elasticity
obtained subject to the boundary condition defined by~19! at the
external boundaryG1 of this volume, and the boundary condition
at the boundaries of pores. In particular, the additional displa
mentsu2 are found. Then the deformation gradientCe of the
comparison material is received from~21!. The Green strain ten

sor E
0

e and the second Piola-Kirchhoff stress tensorS
0

e of the
comparison material are obtained from the equations

E
0

e5
1

2
~Ce

•Ce* 2I !, S
0

e5~detCe!~Ce!* 21
•se

•~Ce!21.

(24)

Then the effective constitutive equations are constructed

relation between the tensorsS
0

e andE
0

e.
If the nonlinear problem of elasticity is solved approximate

then the effective constitutive equations are constructed appr
mately, too. Consider this approximate method in detail for
first scheme~when additional external loads are not applied to
body after the origination of pores!. In this case we can write

s0,15se5s̃.

Let the nonlinear problem of elasticity be solved for the rep
sentative volume with pores using the perturbation technique
to the second order. Then the solution can be represented in
form

u2m
5 u

~0!

mi js i j 1 u
~1!

mi jkls i j
e skl

e . (25)

Substituting the last expression into~23!, we have the expan
sion for C1,2

e

C1,2mn

e 5dmn1 Q
~0!

mni js i j
e 1 Q

~1!

mni jkls i j
e skl

e . (26)

The similar expansion may be received forC0,1:

C0,1mn

e 5dmn1 P
~0!

mni js i j
e 1 P

~1!

mni jkls i j skl
e . (27)

If we substitute~26! and ~27! into ~22! and retain in the ob-
tained expression only linear and quadratic terms, we have

Cmn
e 5dmn1 S

~0!

mni js i j
e 1 S

~1!

mni jkls i j
e skl

e , (28)

where
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S
~0!

mni j5 P
~0!

mni j1 Q
~0!

mni j ,

S
~1!

mni jkl5 P
~1!

mni jkl1 Q
~1!

mni jkl1 P
~0!

mpi jQ
~0!

pnkl .

Note that Eq.~28! has the same structure as Eq.~15!.
Further computations are similar to the ones that are prese

above for materials in which pores exist initially, beginning wi
Eq. ~16!.

8 Numerical Results
Consider now some numerical results. The effective moduli

computed for the two-dimensional case~for plane strain! when the
mechanical properties of the matrix are described by Murnagh
potential,@10,24#,

S
0

5l~E
0

:I !I12GE
0

13C3~E
0

:I !2I

1C4~E
0

2:I !I12C4~E
0

:I !E
0

13C5E
0

2. (29)

The nonlinear problem of elasticity is solved by the perturb
tion technique,@14,23#, up to the second order. By this, the a
sumption of Mori-Tanaka’s scheme,@25#, is used: Instead of
specification of loads at the boundary of the representative a
far-field true stressess i j

` are given. These far-field stresses a
assumed to be equal to the average stresses in the matrix an
determined as

s i j
`5~12p!21s i j

e ,

wheres i j
e are the average stresses in the porous medium, andp is

the porosity of the material in the final state. Note that the l
equation takes place whenever the boundaries of pores
traction-free.

It is known that Mori-Tanaka’s scheme may be used at rela
small porosities. Levin et al.@14# attempted to analyze the appl
cability of this scheme considering representative regions w
some interacting pores. The interactions between pores within
representative region was taken into account during the solu
of the problem of nonlinear elasticity. The computations was p
formed for the isotropic elastic material with uniformly distribute
equal circular holes and showed that the correction for the eff
of interaction between pores within the representative area d
not exceed 3% for the first-order effective moduli and 20% for
second-order effective moduli forp<0.4. Mauge and Kachanov
@4# discovered the same effect analyzing the effective proper
of linear-elastic solids with arbitrarily located microcracks.

In accord with Mori-Tanaka’s scheme, the boundary condit
~1! or its equivalent~3! may be replaced by the condition

s i j u`5s i j
` .

The computations are performed for the case when pores
equal in size and assume a circular shape either in the undefo
state or in the intermediate state~after a preliminary loading!. The
ensemble averaging technique which is developed by Levin e
@14# is used in order to approximately simulate the uniform d
tribution of pores. This averaging permits one to represent
effective constitutive equations in the form

S
0

e5le~E
0

e:I !I12GeE
0

e13C3
e~E

0
e:I !2I1C4

e@~E
0

e!2:I #I

12C6
e~E

0
e:I !E

0
e13C5

e~E
0

e!2, (30)

wherele andGe are the first-order effective elastic moduli, an
Ci

e( i 53, . . . ,6) thesecond-order effective elastic moduli.
The isotropy of the comparison material takes place due t

special ensemble averaging procedure, which is developed
Levin et al. @14#. This procedure includes the averaging of t
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effective moduli C
(0)

mni j , C
(1)

mni jkl in ~17! by all possible orienta-
tions of coordinate axes. If we do not do this additional averag
the comparison material will be generally anisotropic.

It is noted by Levin et al.@13# that one of the moduliC3
e , C4

e ,
C5

e , C6
e may be given arbitrarily in the case of plane strain. In t

present paper the computations are performed under the ass
tion C4

e5C4(12p)2.
Because the solution of the nonlinear problem of elasticity,

tained by the perturbation technique up to the second order,
pends linearly on the material constantsC3 , C4 , and C5 , the
effective moduliCi

e , computed by the scheme considered, a
depend linearly on these constants:

Ci
e5ai1(

j 53

5

bi j Cj ~ i 53,5,6!. (31)

Note that if the nonlinear problem of elasticity will be solve
with regard for higher-order effects, the dependence between
effective moduliCi

e and the matrix moduliCi will not be linear.
The computations are performed as for the case when p

exist in an undeformed~unloaded! material as for the case whe
pores are originated in a previously loaded material. In the
case, it is assumed that the material isn’t loaded additionally a
the origination of pores, i.e., the first scheme of construction
effective constitutive equations for previously loaded porous m

Fig. 3 Effective linear elastic moduli le, Ge referred to the
correspondent matrix moduli versus porosity. lÕGÄ2.

Fig. 4 Coefficients ai versus porosity for lÕGÄ2. The plots for
the case when pores are originated in previously loaded mate-
rials are marked by circles.
Journal of Applied Mechanics
ng,
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terials is used. The computations show that the modulile, Ge,
a3 , and all the coefficientsbi j are the same for these both case
and the coefficientsa5 anda6 are different.

The plots of the effective modulile, Ge, and the coefficientsai
andbi j in ~31! versus porosityp are presented for matrix materia
with l/G52. The ratiosle/l, Ge/G are plotted in Fig. 3. The
coefficientsai are plotted in Fig. 4~in this figure a5* and a6*
denote the coefficientsa5 anda6 , respectively, for the case whe

Fig. 5 Coefficients b 33 , b 55 , and b 64 versus porosity for
lÕGÄ2

Fig. 6 Coefficients b 34 , b 35 , b 53 , b 54 , b 63 , and b 65 versus
porosity for lÕGÄ2

Fig. 7 Effective elastic moduli versus porosity for the porous
organic glass
NOVEMBER 2003, Vol. 70 Õ 815
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pores are originated in previously loaded materials, and the p
for this case are marked by circles!. The coefficientsbi j are plot-
ted in Figs. 5 and 6.

Consider now some results for a specific material. Figur
shows the effective moduli as a function of porosity for the
ganic glass. The material constants are determined by Guz e
@26# and presented in@10#. With the preceding notation,l/G
52.1, C3 /G520.07, C4 /G520.38, C5 /G50.34, whereG
51.8631010 Pa. In Figure 7, the modulusC̃4

e is the result of an
additional averaging:C̃4

e5(C4
e1C6

e)/2. This additional averaging
is performed in order to obtain the effective constitutive equati
in the same form as the Eqs.~29! for Murnaghan’s potential:

S
0

e5le~E
0

e:I !I12GeE
0

e13C3
e~E

0
e:I !2I1C̃4

e@~E
0

e!2:I #I

12C̃4
e~E

0
e:I !E

0
e13C5

e~E
0

e!2. (32)

Finally, let us analyze the ellipticity of the equilibrium equ
tions for the porous organic glass using the results presente
Fig. 7. The verification of Hadamard’s condition is performed
the case of volumetric deformation. By this, we use the appro
that is developed by Zubov and Rudev@27#. The computations
show that the loss of ellipticity takes place in compression at so
value l min of a stretch ratio, and this value depends on poros
This dependence is shown in Fig. 8. In addition, the loss of el
ticity takes place for the undamaged material in tension at
value l max'2.04 and for the porous material at very small poro
ties. Whenp.0.003, Hadamard’s condition is satisfied in tensi
for the unrestricted stretch ratio.

Acknowledgments
This research was supported by the Russian Foundation of

sic Research~Project No. 98-01-00458!, the Russian Ministry of
Education~grant from the Grants Center for Natural Science!,
and the ‘‘Russian Universities’’ program~Project No. 990858!.

Fig. 8 Relation between porosity and the critical stretch ratio
l min at which the loss of ellipticity takes place in compression
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Novel Boundary Integral
Equations for Two-Dimensional
Isotropic Elasticity: An Application
to Evaluation of the In-Boundary
Stress
A new nonsingular system of boundary integral equations (BIEs) of the second kin
two-dimensional isotropic elasticity is deduced following a recently introduced proce
by Wu (J. Appl. Mech.,67, pp. 618–621, 2000) originally applied for anisotropic elastic
ity. The physical interpretation of the new integral kernels appearing in these BIE
studied. An advantageous application of one of these BIEs as a boundary integral r
sentation (BIR) of tangential derivative of boundary displacements on smooth parts
boundary, and subsequently as a BIR of the in-boundary stress, is presented and an
in numerical examples. An equivalent BIR obtained by an integration by parts o
integral including tangential derivative of displacements in the former BIR is prese
and analyzed as well. The resulting integral is only apparently hypersingular, being in
a regular integral on smooth parts of the boundary.
@DOI: 10.1115/1.1630813#
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1 Introduction
The strongly singular character of the integral involving d

placements,ui , in the fundamental boundary integral equati
~BIE! of linear elasticity, i.e., Somigliana displacement identity,
well known, Rizzo@1#. This integral, evaluated in a Cauchy prin
cipal value sense, makes analysis and numerical solution of
BIE more difficult than, for example, analysis and numerical
lution of an analogous BIE in the potential theory, Parı´s and Can˜as
@2#. This strongly singular integral may be regularized by the s
traction of rigid-body displacements~a usual approach in the
boundary element method~BEM!! or by integration by parts,
Ghosh et al.@3#.

A very novel approach to obtain a BIE system of the seco
kind with nonsingular integrals involving unknown elastic va
ables defined on the boundary has been recently introduced by
@4# for the two-dimensional case. Wu’s BIE system, in its origin
form, involves a nonsingular integral with tractions,t i , and a
strongly singular integral with tangential derivative of displac
ments,]sui , in the first BIE and a nonsingular integral with]sui
and a strongly singular integral witht i in the second BIE. Thus
considering the first BIE on the boundary part where displa
ments are prescribed and the second BIE on the boundary
where tractions are prescribed, the final form of the nonsing
BIE system of the second kind is obtained. This system
be applied to solve boundary value problems~BVPs! of linear
elasticity.

The derivation of the nonsingular BIE system of the seco
kind by Wu @4# is based on some basic results of the Stroh f
malism of two-dimensional anisotropic elasticity~Ting @5#!, in
particular on Stroh orthogonality relations for complex matrices

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septe
ber 18, 2002; final revision, July 28, 2003. Associate Editor: R. C. Benson. Dis
sion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Department of Mechanical and Environmental Engineering, University
California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted
four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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eigenvectors,A andB, of the fundamental elasticity matrixN, and
on relations of these matrices with the Barnett-Lothe tensorsH,
L , andS. Taking into account the fact that these relations hold
the basic form used by Wu@4# only for the so-called mathemati
cally nondegenerate anisotropic materials~with simple or semi-
simple matrixN, Ting @5#!, explicit expressions of the integra
kernels presented by Wu@4# hold only for these nondegenera
materials. Consequently, results by Wu@4# cover the case of math
ematically degenerate materials only as a limit case~considering a
variation of elastic stiffnesses! and not in an explicit way.

The first objective of the present study is to complete Wu’s@4#
work by deducing explicit expressions of the integral kern
which are involved in the nonsingular BIE system of the seco
kind for isotropic materials. Note that isotropic materials repres
the most important case of the so-called mathematically dege
ate materials in the framework of the Stroh formalism. Expli
expressions of these integral kernels will be presented in b
complex and real variable formulations.

The second objective of the present work is to study an ap
cation of the advantageous nonsingular character of Wu’s@4# BIE
system, which was not discussed in his original work. This ap
cation is an accurate evaluation of the in-boundary stresssss in a
post-processing procedure applied after a numerical solution
BIE formulation which directly involves as variables bounda
displacementsui and tractionst i , but notsss. An accurate evalu-
ation of the complete stress tensor at the boundary is of cru
importance for engineering decisions in view of the fact that str
critical locations in elastic BVPs typically appear at or near t
boundary, where maximum values of different failure criteria a
usually achieved. The present study is concerned with bound
points situated at locally smooth boundary parts~i.e., excluding
boundary corners! and where the stress tensor is continuous.

The standard procedure to evaluatesss in boundary element
method~BEM! codes, proposed in the very early stages of BE
by Rizzo and Shippy@6# and Cruse and Van Buren@7# and used to
date, starts with the evaluation of the tangential derivative of t
gential displacement,]sus , by differentiation of a boundary ele
ment approximation ofus , giving the in-boundary strain tenso
component,«ss. Then, sss is computed from«ss and from the
boundary normal stress component,tn5snn , applying Hooke’s

-
us-
ing,
of
until
003 by ASME NOVEMBER 2003, Vol. 70 Õ 817
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constitutive law. A possible loss of accuracy due to the numer
differentiation applied and the discontinuities of the in-bound
stress evaluated in this way at boundary element junctions are
main disadvantages of this simple procedure. Several averagin
smoothing techniques have been proposed recently in orde
avoid the above-mentioned discontinuities and also to obtain
sults of a higher accuracy, e.g., Zhao@8# and Mantičet al. @9#,
respectively, for quadratic and linear boundary elements.

Starting from pioneering work of Cruse and Van Buren@7# a
great deal of research has been devoted to boundary integra
resentations~BIRs!, and in particular to the hypersingular BIR
~Guiggiani et al.@10#!, as another way to obtain the in-bounda
stress with a high accuracy. Following the study by Graciani et
@11#, there are situations~e.g., straight boundaries with some pa
ticular boundary conditions! where the hypersingular BIRs ca
provide highly accurate results because in these situations the
only apparently hypersingular, and are actually regular BIRs. N
ertheless, in general, a really hypersingular character of the co
sponding integral kernel implies too restrictive continuity requi
ments on displacement approximations~Krishnasamy et al.@12#!,
which are violated at element junctions in conventional BE
based on Lagrangian shape functions. As a consequence, the
vergence of results by the hypersingular BIRs can be slower
the convergence of displacements and tractions evaluated dir
in BEM analysis, see Graciani et al.@11# for examples of such a
slow convergence at element junctions and element center
potential theory, and Avila et al.@13# for values at element center
in elasticity.

It can be expected that a BIR whose integral kernels do
imply too restrictive continuity requirements, like the hypersing
lar BIRs traditionally used, could provide results of a high acc
racy. In particular, considering the continuity of usual approxim
tions ofui and discontinuity of]sui in BEM, it is required that the
kernel multiplyingui is strongly~or less! singular, or equivalently
the kernel multiplying]sui is weakly singular~or regular!. Obvi-
ously the best results are expected if these kernels are e
bounded, continuous or even smooth at smooth boundary p
Thus, new BIRs with special Green’s functions are required.
and Shepard@14# derived such a BIR ofsss using the Green’s
function defined by an application of a force dipole at the tracti
free boundary of a semiplane. Taking the semiplane bound
tangent to the actual solid boundary at the point ofsss evaluation,
the integral kernel representing tractions vanishes along the
gent line to the actual boundary. For an evaluation point place
a smooth curved boundary~with nonzero curvature!, this traction
kernel is in fact strongly singular.

In the present work two BIRs of]sui are analyzed. The first on
is defined by the second BIE from the BIE system introduced
Wu @4#, with integral densities]sui and t i . The second one, with
integral densitiesui and t i , is obtained from the first one by
integration by parts in the integral involving]sui . In both BIRs
studied the integral kernels multiplying]sui or ui vanish along the
line tangent to the boundary at the evaluation point, and
bounded and smooth along smooth boundary parts. The
boundary stresssss is obtained using]sus , evaluated by means o
these BIRs, andtn . The numerical examples studied show a hi
accuracy of the in-boundary stress obtained in this way wit
quadratic O(h2) pointwise convergence for linear bounda
elements.

2 A Nonsingular Boundary Integral Equation „BIE …

System for Isotropic Elasticity

2.1 Integral Kernels. Consider an isotropic infinite body
subjected to a plane-strain state caused by a line forcF
5(F1 ,F2) and a straight dislocation of Burgers vectorb
5(b1 ,b2) acting along the line parallel to thex3-axis and inter-
secting the planex350 at the source pointy5(y1 ,y2). Displace-
818 Õ Vol. 70, NOVEMBER 2003
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ment and stress function vectors originated by this force and
location at the field pointx5(x1 ,x2) were given by Wu et al.
@15#1 as

u~x!5U~x,y!F1W~x,y!b,

w~x!5WT~x,y!F1V~x,y!b, (1)

with U, V, and W being the imaginary parts of the following
complex matrix functions representing fundamental singular e
tic solutions:

Ũ~x,y!5U* 1 iU52
1

2pG~k11! F ik log zI

1 i
z2 z̄

2z S 1 i

i 21D G ,
Ṽ~x,y!5V* 1 iV5

2G

p~k11! F i log zI1 i
z2 z̄

2z S 1 i

i 21D G ,
W̃~x,y!5W* 1 iW5

1

2p~k11! F log zS ~k11! i ~k21!

2 i ~k21! ~k11!
D

1
z2 z̄

z S 1 i

i 21D G , (2)

wherez5(x12y1)1 i (x22y2), i is the imaginary unit,G is the
shear modulus,k5324n is Kolosoff constant withn as Poisson
ratio, andI is the identity matrix. Note thatU* , V* are bounded
functions, andW* , U, V, and W are weakly singular wheny
approachesx. Observe also thatŨ andṼ are symmetric matrices
their real and imaginary parts thus being symmetric as well. G
eral complex variable expressions ofŨ, Ṽ, andW̃ for degenerate
anisotropic materials can be found in Ting@16#.

The real and imaginary parts ofŨ, Ṽ, andW̃ can be written in
real variable formulation using index notation in the followin
way:

Ũ i j ~x,y!5Ui j* ~x,y!1 iU i j ~x,y!5
1

2pG~k11!
@~kud i j

1« ikr ,kr , j !1 i ~2k log rd i j 1r ,i r , j !#,

Ṽi j ~x,y!5Vi j* ~x,y!1 iVi j ~x,y!5
2G

p~k11!
@~2ud i j 2« ikr ,kr , j !

1 i ~ log rd i j 2r ,i r , j !#,

W̃i j ~x,y!5Wi j* ~x,y!1 iWi j ~x,y!5
1

2p~k11!

3F ~~k11!log rd i j 2~k21!u« i j 22r ,i r , j !1

i ~~k11!ud i j 1~k21!log r« i j 12« ikr ,kr , j !
G ,

(3)

where r5(r 1 ,r 2)5(x12y1 ,x22y2), r 5ur u, r ,i5r i /r , u5argz
is the angle of the radius vectorr with the x1-axis, d i j is the
Kronecker delta symbol, and« i j is the permutation symbol («12

52«2151,«115«2250). Note that expressions ofŨ, Ṽ, andW̃
in ~2! and ~3! differ by some physically non-significant consta
terms, corresponding, for example, in the case of displacemen
rigid-body movements. It can also be verified that the real varia
expression ofWi j in Eq. ~3! coincides, except for a physically
nonsignificant constant term, with the expression ofWi j in Ghosh
et al. @3#, as could be expected.

A relation between singular elastic solutions given by the r
and imaginary parts ofŨ, Ṽ, andW̃, and in particular a physica
interpretation of their real parts, can be easily identified for ani

1There is a misprint in Eq.~17! by Wu et al.@15#: the correct expression ofV
does not include the first minus sign on the right-hand side therein.
Transactions of the ASME
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tropic ~nondegenerate! materials using a basic relation of Stro
formalism between the Barnett-Lothe tensors,H, L , and S, and
the matrices of the eigenvectorsA and B, @4,5#. This relation
implies that

F U* ~x,y! W* ~x,y!

W* ~x,y!T V* ~x,y!
G5ÑF U~x,y! W~x,y!

W~x,y!T V~x,y!
G

5F U~x,y! W~x,y!

W~x,y!T V~x,y!
G ÑT, (4)

where

Ñ5F S H

2L STG and ÑÑ5ÑTÑT52I . (5)

Note that the second equality in Eq.~4! is a simple consequenc
of the first identity and symmetry of 636 matrices of real and
imaginary parts ofŨ, Ṽ, andW̃ on the left and right-hand side o
the first equality in~4!. Using the argument of the continuity o
elastic solutions with respect to a material limit it is obvious th
Eq. ~4! holds for isotropic materials as well. The Barnett-Lot
tensors are defined for isotropic materials,@5#, as

Hi j 5
324n

4G~12n!
d i j , Li j 5

G

12n
d i j , Si j 52

122n

2~12n!
« i j .

(6)

Sources of singularities inU* , V* , andW* can be determined
in view of Eq. ~1!, directly from the second equality in Eq.~4!.
Let q be a real vector. Then, for example,U* (x,y)q represents a
displacement vector atx originated by a line forceF5STq and
a line dislocation of Burgers vectorb5Hq, andV* (x,y)q repre-
sents a stress function vector atx originated by a line force
F52Lq and a line dislocation of Burgers vectorb5Sq.

Consider now a smooth non self-intersecting curveGS,R2. Let
s(x)5(s1 ,s2) and n(x)5(n1 ,n2) respectively denote the un
vectors tangent and normal toGS at a pointxPGS related byni
5« i j sj . The corresponding definitions in complex variable a
sx5s11 is2 , nx5n11 in2 , sx5 inx . Then, tangential derivative
at xPGS of a functionf (r 1 ,r 2)5 f (z,z̄) ~wherez̄ is complex con-
jugate ofz) defined onGS , consideringy fixed, is evaluated as
follows: ]sx

f 5s1]x1
f 1s2]x2

f 5sx]zf 1 s̄x] z̄f .

Tangential derivatives of singular solutionsU, V, W and U* ,
V* and W* will appear in BIEs considered in the next sectio
Explicit expressions of these derivatives in complex variable

]sx
Ũ~x,y!5Û* 1 i Û5

1

2pG~k11!

3Fk
nx

z
I1

nxz̄1n̄xz

2z2 S 1 i

i 21D G ,
]sx

Ṽ~x,y!5V̂* 1 i V̂52
2G

p~k11! Fnx

z
I1

nxz̄1n̄xz

2z2 S 1 i

i 21D G ,
]sx

W̃~x,y!5Ŵ* 1 iŴ5
1

2p~k11! F i
nx

z S ~k11! i ~k21!

2 i ~k21! ~k11!
D

1 i
nxz̄1n̄xz

z2 S 1 i

i 21D G , (7)

where Û* (x,y)5]sx
U* (x,y), Û(x,y)5]sx

U(x,y) and analo-
gously for other singular solutions. Simple expressions of th
singular solutions in real variable formulation can be obtain
either by differentiation of Eq.~3! or directly from Eq.~7! ~for
details of algebraic manipulations see Calzado@17#!:
Journal of Applied Mechanics
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Û i j* ~x,y!5
1

2pG~k11!r
~~k21!r ,md i j 12r ,i r , j r ,m!nm~x!,

V̂i j* ~x,y!52
2G

p~k11!r
2r ,i r , j r ,mnm~x!,

Ŵi j* ~x,y!5
1

2p~k11!r
~2~k11!r ,ld i j « lm2~k21!r ,m« i j

12r , j« im12r ,i« jm24r ,i r , j r ,l« lm!nm~x!, (8)

Û i j ~x,y!5
1

2pG~k11!r
~kr ,ld i j « lm2r , j« im2r ,i« jm

12r ,i r , j r ,l« lm!nm~x!,

V̂i j ~x,y!5
2G

p~k11!r
~2r ,ld i j « lm1r , j« im1r ,i« jm

22r ,i r , j r ,l« lm!nm~x!,

Ŵi j ~x,y!5
1

2p~k11!r
~~k21!~r ,md i j 2r ,id jm1r , jd im!

14r ,i r , j r ,m!nm~x!. (9)

Note that Eq.~4! is valid for tangential derivatives ofU, V, W and
U* , V* andW* as well, which has been checked by Calzado@17#
explicitly for isotropic materials. Recall that tangential derivativ
of Ũ andṼ are symmetric matrices. Considering a Taylor series
a parametrization ofGS about a fixedxPGS , it can be shown that
Re$nx /z% and z̄/z and also equivalentlyr ,mnm /r and r ,kr , j are
smooth and bounded functions ofyPGS . This implies that
Û* (x,y) and V̂* (x,y), apparently singular functions, are in fa
smooth and bounded functions ofyPGS . With reference to the
other matrix functions defined in Eqs.~7!–~9!, off-diagonal ele-
ments of Û(x,y), V̂(x,y), Ŵ* (x,y) and diagonal elements o
Ŵ(x,y) are smooth functions ofyPGS , the rest of their elements
being strongly singular functions ofyPGS .

2.2 Nonsingular Boundary Integral Equations „BIEs….
Consider an elastic body whose section domainV,R2 has a
piecewise smooth Lipschitz boundaryG. Let GS,G denote the
smooth part ofG, i.e., excluding corners, points where a jump
boundary curvature takes place, etc. Following Wu@4# the proce-
dure of deduction of the nonsingular BIE system starts with a p
of strongly singular BIEs introduced by Wu et al.@15#, which can
be written in the following compact matrix form forxPGS :

1

2 S ]su~x!

2t~x! D5p.v.E
G
S Û~x,y! Ŵ~x,y!

Ŵ~x,y!T V̂~x,y!
D S t~y!

2]su~y! DdGy ,

(10)

all the integrals being evaluated in a Cauchy principal value~p.v.!
sense. Multiplying Eq.~10! by Ñ from the left, another pair of
BIEs is obtained, whose form is, in view of Eq.~4!, as follows
~Wu @4#2!:

1

2
ÑS ]su~x!

2t~x! D5p.v.E
G
S Û* ~x,y! Ŵ* ~x,y!

Ŵ* ~x,y!T V̂* ~x,y!
D S t~y!

2]su~y! DdGy .

(11)

Due to the smoothness of integral kernelsÛ* , V̂* and off-
diagonal elements ofŴ* , only the integrals including diagona
elements ofŴ* are in fact evaluated in a Cauchy principal valu
sense.

As has already been discussed, taking advantage of the fac
Û* and V̂* are smooth kernels, these BIEs can be organized

2There is a misprint in Eq.~12! in Wu @4#: The correct form does not include the
first minus sign on the right-hand side there.
NOVEMBER 2003, Vol. 70 Õ 819
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such a way that regular integrals involve unknown elastic v
ables and that strongly singular integrals involve variables defi
by the boundary conditions of an elastic BVP. LetG be partitioned
in two partsGu andG t ~both open inG!, G5ḠuøḠ t ~an overline
denotes the closure of a set!, GuùG t5B, displacements being
prescribed onGu and tractions onG t . Then, when the first equa
tion from ~11! is applied at points placed on the smooth part
Gu , i.e., xPGuùGS ,

1

2
Ht ~x!1E

G
Û* ~x,y!t~y!dGy

5
1

2
S]su~x!1p.v.E

G
Ŵ* ~x,y!]su~y!dGy , (12)

and the second equation from~11! is applied at points placed o
the smooth part ofG t , i.e., xPG tùGS ,

2
1

2
L]su~x!1E

G
V̂* ~x,y!]su~y!dGy

5
1

2
STt~x!1p.v.E

G
Ŵ* ~x,y!Tt~y!dGy , (13)

a nonsingular BIE system of the second kind is obtained, wh
can be used to solve the BVP posed.

After a rearrangement of Eq.~13! and considering thatL is a
diagonal matrix, see Eq.~6!, a BIR of ]su can be obtained as
follows:

1

2
L]su~x!52

1

2
STt~x!2p.v.E

G
Ŵ* ~x,y!Tt~y!dGy

1E
G
V̂* ~x,y!]su~y!dGy . (14)

A principal advantage of this BIR is that errors produced in
differentiation of an approximation ofu substituted into the las
integral on the right-hand side are expected to be smoothene
the smooth and bounded integral kernelV̂* . Actually, tangential
derivative of an approximation ofu is not required to be continu
ous alongG any more.

3 An „Apparently… Hypersingular Boundary Integral
Equation for Isotropic Elasticity

Thinking of evaluatingsss on GS as an objective of the presen
work, another BIE will be deduced in this section starting fro
Eq. ~14!. Consider a fixed pointxPGS . The regular integral on
the right-hand side of Eq.~14! can be evaluated using an integr
tion by parts as

E
G

]V* ~x,y!

]sx
]sy

u~y!dGy52E
G

]2V* ~x,y!

]sy]sx
u~y!dGy . (15)

Note that the above integration by parts is permitted beca
V̂* (x,y) and u~y! are continuous functions ofyPG and also
smooth functions except for a finite number of points onG. Ex-
plicit expressions of the integral kernel in complex and real va
able formulations on the right-hand side of Eq.~15! can be written
as

]2V* ~x,y!

]sy]sx
5VQ * ~x,y!5

2G

p~k11!
ImH nxny

z2 I

1
~nxn̄y1n̄xny!z12nxnyz̄

2z3 S 1 i

i 21D J
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V9 i j* ~x,y!5
4G

p~k11!r 2 $~d ikr , j r ,m1d jkr ,i r ,m1dmkr ,i r , j !

24r ,i r , j r ,kr ,m%« lknl~y!nm~x!. (16)

Recall that this kernel is hypersingular, i.e., proportional tor 22

for yPG, y→xPGS , only apparently because it has been o
tained as a tangential derivative of a smooth functionV̂* (x,y).
Thus,VQ * (x,y) is in fact a smooth function ofyPGS for a fixed
xPGS and it is bounded for allyPG. Observe also that the fol
lowing symmetry relations holdV9 i j* (x,y)5V9 j i* (x,y)5V9 i j* (y,x).

Substituting Eq.~15! into Eq. ~14! the following BIE is ob-
tained forxPGS :

1

2
L]su~x!52

1

2
STt~x!2p.v.E

G
Ŵ* ~x,y!Tt~y!dGy

2E
G
VQ * ~x,y!u~y!dGy . (17)

An additional advantage of BIE in Eq.~17! when applied as a BIR
in a BEM post-processing, in comparison with that in Eq.~14!, is
that a boundary displacement approximation appears directl
an integral density on the right-hand side of the BIR, no differe
tiation of this approximation then being required here. Note t
there is no restrictive continuity requirement on a displacem
approximation used on the right-hand side of BIR~17! in order to
obtain a continuous approximation of]sus over GS on the left-
hand side.

4 Application for the In-Boundary Stress Evaluation
Starting from Hooke’s law an expression of the in-bounda

stresssss in terms of the normal stress to the boundarysnn5tn
and in-boundary strain«ss5]sus is obtained in the following form
for a plane-strain state

sss5
n

12n
tn1

E

12n2 ]sus , (18)

whereE is Young’s modulus.
Although an application of BIRs in Eqs.~14! and~17! to evalu-

ate]sus and subsequentlysss through Eq.~18! is the most advan-
tageous approach on smooth boundary parts where tractionst are
prescribed, these BIRs can successfully be applied on o
smooth boundary parts as well. The accuracy ofsss evaluated in
this way can be expected to be similar to that of direct results
BEM analysis, tractionst and displacementsu.

Two examples are presented to illustrate the performance o
above BIRs. Note that BIRs given in Eqs.~14! and~17! are in fact
equivalent, except for rounding-off errors and errors in integ
tions, if the same approximations of the solution of a BVP onG
are applied on their right-hand sides as integral densities and
tegrations~and also differentiation of the displacement appro
mation in the case of Eq.~14!! are performed over the actua
boundaryG. Thus only results obtained by the BIR given in E
~14! are presented here for the sake of simplicity.

Material properties in both examples are given byE
5200 GPa andn50.25. Uniform meshes of continuous linea
boundary elements~Parı́s and Can˜as @2#! are used for discretiza
tion of both problems. All integrations in the BEM solution a
carried out analytically. Recall that approximations of]sus , ob-
tained by a differentiation of piecewise linear interpolations
displacement nodal values and used in BIR~14!, are piecewise
constant overG.

4.1 Example 1: Simply Supported Beam Under a Constant
Load. Consider a simply supported beam of dimensionsL
3H, L52H, subjected to a constant load of valuep applied at its
top surface, see Fig. 1. An analytic elastic solution of an appro
mation of this problem given in Timoshenko and Goodier@18# is
Transactions of the ASME
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adopted here for this test problem. All boundary conditions
prescribed in tractions. Rigid-body movements are removed b
procedure developed by Bla´zquez et al.@19# applying supports as
shown in Fig. 1. Basic mesh of 12 elements is also shown in
1. A sequence of uniform refinements of this mesh with 36, 1
and 324 elements is used for a convergence analysis.

Nodal values ofsss ~normalized byp) obtained for the first two
meshes on the bottom and right-hand side are compared with
analytic solution in Fig. 2. Analyzing distributions of normalize

Fig. 1 Simply supported beam subjected to a uniform load.
Basic boundary element mesh.
Journal of Applied Mechanics
re
y a

ig.
8,

the
d

errors in sss at nodes for finer meshes shown in Fig. 3, it
possible to observe, first a high convergence rate at each parti
node, and second an increase in errors at nodes approach
corner for each particular mesh. This characteristic increas
errors near corners is possibly related to the observed increa
errors in displacements obtained by the direct BEM solut
~Calzado@17#!. A stable quadratic convergence of normalized
rors of sss evaluated at the center of the bottom side, wher
maximum value ofsss is achieved, can be observed in Fig. 4.

4.2 Example 2: Uniaxial Tension of an Infinite Plate With
a Circular Hole. An infinite plate with a circular hole of a ra
dius R subjected to a uniaxial tension of valuep, see Fig. 5, is
analyzed using a superposition approach~Parı́s and Can˜as @2#!.
Boundary conditions are prescribed in tractions. Basic mesh
eight elements is also shown in Fig. 5. A sequence of unifo
refinements of this mesh with 24, 72, and 216 elements is used
a convergence analysis.

Nodal values of the hoop stresssss5su ~normalized byp)
obtained for the first two meshes on a quarter circle part are c
pared with the analytic solution in Fig. 6. From distributions
normalized errors insu at nodes for finer meshes shown in Fig.
it is possible to observe, as in the previous example, first a h
Fig. 2 In-plane stress evaluated using boundary integral representation „14….
Beam discretization by meshes of 12 and 36 linear elements.

Fig. 3 Normalized errors of the in-plane stress evaluated using boundary integral
representation „14…. Beam discretization by meshes of 36, 108, and 324 linear ele-
ments.
NOVEMBER 2003, Vol. 70 Õ 821
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Fig. 4 Convergence of the normalized error of the in-plane stress evaluated using boundary
integral representation „14…. Beam discretization by meshes of 12, 36, 108, and 324 linear
elements.
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convergence rate at each particular node, and second a mod
increase in errors at nodes approaching stress concentration
for each particular mesh. Nevertheless, when comparing with
sults by other authors for similar discretizations of this proble
e.g., those by Parı´s and Can˜as@2# using the standard BEM proce
dure with linear elements and also those obtained by Wu e

Fig. 5 An infinite plate with a circular hole subjected to
uniaxial tension. Basic boundary element mesh.
NOVEMBER 2003
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re-
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-
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@15# using special BIEs given by Eq.~10! with constant elements
the accuracy obtained by the present approach can be consid
excellent. Recall, however, that integration in BIR~14! is per-
formed over the real circular boundaryG in the present work. A
stable quadratic convergence of normalized errors ofsu evaluated
at points of polar angleu50 deg, 90 deg, can be observed
Fig. 8.

5 Concluding Remarks
Following Wu’s @4# procedure a novel nonsingular BIE syste

of the second kind for isotropic materials has been develo
presenting explicit expressions of its integral kernels in comp
and real variable formulation. The physical interpretation of t
singularity sources of these integral kernels has been elucida
Whereas a complex variable formulation is advantageously
plied in developing analytic integrations over straight bound
elements ~Calzado @17#!, real variable formulation is usually
adopted by BEM programmers in numerical integration pro
dures. Note that an important advantageous feature of this
Fig. 6 Hoop stress evaluated using boundary integral representation „14…. Cir-
cumference discretization by meshes of 8 and 24 linear elements.
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Fig. 7 Normalized errors of the hoop stress evaluated using boundary integral rep-
resentation „14…. Circumference discretization by meshes of 24, 72, and 216 linear
elements.

Fig. 8 Convergence of the normalized error of the hoop stress evaluated using boundary
integral representation „14…. Circumference discretization by meshes of 8, 24, 72, and 216
linear elements.
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system, namely a low conditioning number~associated to its
second-kind character! of the resulting linear system when dis
cretized by a BEM approach, has not been studied here and
require further study.

Two closely related BIRs of tangential derivative of bounda
displacements have been deduced, both with smoothing inte
kernels operating on displacements and their tangential de
tives as integral densities. Thus, no restrictive continuity requ
ments have to be fulfilled by boundary element approximation
these integral densities at element junctions, and consequent
smoothing procedure applied to these densities is required in t
BIRs. Excellent accuracy of the in-boundary stress evaluate
smooth boundary parts, including stress concentration points,
been obtained using these BIRs in test problems.
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The Stress Field Caused by a
Circular Cylindrical Inclusion in a
Transversely Isotropic Elastic
Solid
Exact solutions are presented in closed form for the axisymmetric stress and displac
fields caused by a circular solid cylindrical inclusion with uniform eigenstrain in a tra
versely isotropic elastic solid. This is an extension of a previous paper for an isotr
elastic solid to a transversely isotropic solid. The strain energy is also shown. The m
of Green’s functions is used. The numerical results for stress distributions are comp
with those for an isotropic elastic solid.@DOI: 10.1115/1.1629755#
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1 Introduction
The theory of inclusions has been successfully applied to c

posite materials including fiber, precipitate, and martensite pr
lems. A review of inclusion problems has been given by Mu
@1,2#. A number of results were shown for the stress fields cau
by an ellipsoidal inclusion. A circular cylindrical inclusion prob
lem has recently been solved by Takao et al.@3# and Hasegawa
et al.@4,5# who investigated the circular cylindrical inclusion wit
uniform axial eigenstrain and they obtained a closed-form solu
for stress and displacement fields caused by the inclusion in
infinite elastic solid or in an elastic half-space. Wu and Du@6–8#
gave a solution for the cylindrical inclusion with arbitrary unifor
eigenstrain in an infinite elastic solid or in an elastic half-space
these papers mentioned above, the elastic moduli of the inclu
are assumed to be the same as the matrix. Hasegawa and Yo
@9# have studied an infinite elastic solid with a circular cylindric
inhomogeneity under tension.

This paper shows closed-form solutions for the elastic fi
caused by a circular cylindrical inclusion with uniform axi
eigenstrain in a transversely isotropic infinite solid. The str
energy of the system is also shown.

It is well known,@1# that the stress fields caused by an inclus
can be obtained by using Green’s functions for body force pr
lems. In a previous paper,@10#, the fundamental solutions fo
axisymmetric problems of a transversely isotropic elastic so
have been shown by applying Leknitsky’s stress functio
@11,12#. Therefore, we apply the fundamental solutions for a
symmetric problems as Green’s functions for obtaining the d
placement and stress fields caused by a circular cylindrical in
sion in a transversely isotropic solid.

2 Definition of the Problem and Stress Functions
We consider a circular cylindrical inclusion with length 2b and

radiusc in a transversely isotropic infinite solid as shown in F
1. Cylindrical coordinates (r ,u,z) or (i 51,2,3) are used, and th
axial eigenstrain«z* is given by

«z* 5«0$S~z1b!2S~z2b!%$12S~r 2c!% (1)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Octob
29, 2002; final revision, April 25, 2003. Associate Editor: D. A. Kouris. Discuss
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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and other components of« i j* equal zeroes. HereS( ) is a Heviside
step function and«0 is the magnitude of the eigenstrain. Th
present problem is to determine displacement and stress fi
caused by the eigenstrain of Eq.~1!. We express the elastic modu
of a transversely isotropic solid byCmn and assume that the axi
of elastic symmetry of the solid is coincident with thez-axis of the
cylindrical inclusion.

It is well known, @10–12# that the axisymmetric displacemen
ui(r ,z), (i 51,2,3), due to the axisymmetric body forcesFi(r ,z),
( i 51,2,3), are expressed by

u15c33

]2f1

]z2
1c44

]

]r H 1

r

]

]r
~rf1!J 2~c131c44!

]2f3

]r ]z
,

u25f2 , (2)

u352~c131c44!
]

]z H 1

r

]

]r
~rf1!J 1c11

1

r

]

]r S r
]f3

]r D1c44

]2f3

]z2

wheref i , (i 51,2,3), are stress functions satisfying the equatio

S ¹1
22

1

r 2D S ¹2
22

1

r 2D f152
F1

c11c44
,

S ¹3
22

1

r 2D f252
F2

c66
, (3)

¹1
2¹2

2f352
F3

c11c44

where

¹ i
25

]2

]r 2
1

1

r

]

]r
1ci

2
]2

]z2
, ~ i 51,2,3! (4)

andc3
25c44/c66, andci

2, (i 51,2), are rootsX for the following
algebraic equation:

c11c44X
41~c13

2 12c13c442c11c33!X
21c33c4450. (5)

3 Method of Solution

3.1 Green’s Functions. For problems of inclusion with
eigenstrain, the Kelvin’s solution for a point force has been wid
used,@1#. However, for the present problem, it is convenient
use Green’s functions for axisymmetric body force problems

er
n
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elasticity. The Green’s functions used here are defined as the
lutions for the problem of a transversely isotropic infinite elas
solid subjected to the axisymmetric body forces

Fk5
1

2pr
d~r 2a!d~z2h! (6)

distributed along the circle (r 5a, z5h) as shown in Fig. 2. In
Eq. ~6!, d~ ! is the Dirac delta function andFk , (k51,2,3), are a
radial, a torsional, and an axial force, respectively. We repre
the Green’s functions byui

k(r ,z,a,h) for displacements and
s i j

k (r ,z,a,h) for stresses. Hereui
k denotes the displacement com

Fig. 1 A circular cylindrical inclusion in a transversely isotro-
pic elastic solid

Fig. 2 The body force acting along a circle; „a… a radial force,
„b… an axial force
826 Õ Vol. 70, NOVEMBER 2003
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ponent in thei-direction at a point (r ,z) when a unit ring force in
the k-direction acts along a circle (a,h) located atz5h with ra-
dius a.

It was shown in the previous paper,@10# that the stress func-
tions f1 andf3 for the axisymmetric body forcesF1 andF3 are
expressed by

f i5f is1f ic , ~ i 51,3! (7)

where

Hf ic

f is
J 52

1

pc11c44
E

0

`E
0

` aJn~ar !

~a21c1
2b2!~a21c2

2b2!

3 HFic cosbz
Fis sinbzJ dadb (8)

with

HFic

Fis
J 5E

2`

` E
0

`

rF i~r ,z!Jn~ar !H cosbz
sinbzJ drdz. (9)

In these expressions,Jn(ar ) is a Bessel function of the first kind
of the ordern. Here we taken51 for F1 andn50 for F3 . Note
that F250 andu250 for the present problem.

By Eqs.~6! and ~9!, we have

HFic

Fis
J 5

1

2p
Jn~aa!H cosbh

sinbh J , ~ i 51,3!. (10)

Substituting Eq.~7! into Eq. ~2! yields

ui
k5uic

k 1uis
k , ~ i ,k51,3! (11)

with

H u1c
1

u1s
1 J 5

1

pD E
0

`E
0

`

aJ1~ar !A1HF1c cosbz
F1s sinbzJ dadb,

H u3c
1

u3s
1 J 5

c131c44

pD E
0

`E
0

` a2

b
J0~ar !A3H 2F1c sinbz

F1s cosbz J dadb,

(12)

H u1c
3

u1s
3 J 5

c131c44

pD E
0

`E
0

` a2

b
J1~ar !A3H F3c sinbz

2F3s cosbzJ dadb,

H u3c
3

u3s
3 J 5

1

pD E
0

`E
0

`

aJ0~ar !A2HF3c cosbz
F3s sinbzJ dadb

whereA1 , A2 , andA3 are shown in Eq.~24! and

D5c11c44~c2
22c1

2!. (13)

The superscriptk in Eq. ~11! implies the displacement compone
produced by the body forceFk . Expressions for the stressess i j

k

can be obtained from~11! and the following Hooke’s law:

s r5c11« r1c12«u1c13«z ,

su5c12« r1c11«u1c13«z ,
(14)

sz5c13« r1c13«u1c33«z ,

t rz5c44g rz , tzu5c44gzu , t ru5c66g ru .

3.2 Stresses and Displacements due to Eigenstrains.Us-
ing the Green’s functionsui

k(r ,z,a,h) and s i j
k (r ,z,a,h) shown

above for transversely isotropic solids, the displacement and s
fields caused by an inclusion can be expressed as

H ui

s i j
J 52E

V
H ui

k~r ,z,a,h!

s i j
k ~r ,z,a,h!J f k~a,h!dV2 H 0

s i j*
J (15)

with
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e

b-
f 15
]

]r
~c11« r* 1c12«u* 1c13«z* !1c44

]

]z
g rz* 1~c112c12!

« r* 2«u*

r
,

f 25c66

]

]r
g ru* 1c44

]

]z
gzu* 1

2

r
c66g ru* , (16)

f 35c44S ]

]r
g rz* 1

1

r
g rz* D1

]

]z
$c13~« r* 1«u* !1c33«z* %.

In Eq. ~15!, V is the region of inclusion,dV is a volume element,
s i j* are stresses inV obtained by Eqs.~1! and ~14!, ands i j* 50
outside ofV. We must take the summation fork51,3 in Eq.~15!.

From Eqs.~1! and ~16!, Eq. ~15! becomes

H ui

s i j
J 52E

V
S c13H ui

1

s i j
1 J ]«z*

]a
1c33H ui

3

s i j
3 J ]«z*

]h D dV2 H 0
s i j*

J .

(17)

4 A Circular Cylindrical Inclusion

4.1 Displacements. Here we show the displacementsui
caused by a circular cylindrical inclusion in a transversely isot
pic solid. Substituting Eq.~1! into Eq. ~17! yields

ui52pc«0c13E
2b

b

ui
1~r ,z,c,h!dh12p«0c33E

0

c

a$ui
3~r ,z,a,b!

2ui
3~r ,z,a,2b!%da. (18)

Integrating Eq.~18! with respect toh anda, we get

u15
2c«0

pD E
0

`E
0

` a

b
J1~ac!J1~ar !$c13A12c33~c131c44!A3%

3sinbb cosbzdadb,

u352
2c«0

pD E
0

`E
0

`

J1~ac!J0~ar !H ~c131c44!A3

a2

b2
2c33A2J

3sinbb sinbzdadb, (19)

u250.

Integrating Eq.~19! by using integral formulas@13,14#, we can
obtain

u15
c«0c13c44

4pD1
(
n51

2

~21!nS cn
21

c33

c13
D ~q81n2q82n!, ~b%uzu!

u15
c«0c13

4D H r

c
1

c

r
1S r

c
2

c

r DSGN~c2r !J c44~c2
22c1

2!

1
c«0c13c44

4pD1
(
n51

2

~21!n11S cn
21

c33

c13
D ~q81n1q82n!, ~b^uzu!

(20)

u35
c«0c13

4pD1
(
n51

2

~21!n11H ~c131c44!cn1
c33

c13

c442c11cn
2

cn
J

3~q71n2q72n!,

u250

with
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ro-

q7mn5r S 2G2~xmn!1
c22r 2

cr
Q21/2~xmn!

1
c2r

c1r

1

cr
zmn

2 kmnP~p,kmn!2
pzmn

Acr
$11SGN~c2r !% D ,

q8mn5
p

2Acr
$r 21c21~r 22c2!SGN~c2r !%

1
zmn

2cr
$~c2r !2kmnP~p,kmn!22crQ1/2~xmn!

2~c21r 2!Q21/2~xmn!%, (21)

zmn5uz1~21!mbu/cn , kmn
2 5

4cr

~c1r !21zmn
2

,

p5
4cr

~c1r !2
, xmn5

r 21c21zmn
2 /cn

2

2cr
,

G2~x!5xQ21/2~x!2Q1/2~x!, D15AcrD

whereQn(x) is the second kind Legendre function of the ordern,
SGN(c2r ) is 11, 0, 21 according to positive, zero, or negativ
value for (c2r ), respectively, andP(p,k) is a complete elliptic
integral of the third kind.

4.2 Stresses. Here we show the stressess i j caused by a
circular cylindrical inclusion in a transversely isotropic solid. Su
stituting Eq.~1! into Eq. ~17! yields

s i j 52pc«0c13E
2b

b

s i j
1 ~r ,z,c,h!dh

12p«0c33E
0

c

a$s i j
3 ~r ,z,a,b!2s i j

3 ~r ,z,a,2b!%da2s i j* .

(22)

Integrating Eq.~22! with respect toh anda, we get

s r5
2c«0c13

pD E
0

`E
0

`

J1~ac!
a

br
@J1~ar !~c122c11!A1

1arJ0~ar !$c11A12c13~c131c44!A3%#sinbb cosbzdadb

1
2c«0c33

pD E
0

`E
0

`

J1~ac!F a

br
J1~ar !~c131c44!~c112c12!A3

2J0~ar !H c11~c131c44!
a2

b
A32c13bA2J G

3sinbb cosbzdadb,

su5
2c«0c13

pD E
0

`E
0

`

J1~ac!
a

br
@J1~ar !~c112c12!A1

1arJ0~ar !$c12A12c13~c131c44!A3%#sinbb cosbzdadb

1
2c«0c33

pD E
0

`E
0

`

J1~ac!F a

br
J1~ar !~c131c44!~c122c11!A3

2J0~ar !H c12~c131c44!
a2

b
A32c13bA2J G

3sinbb cosbzdadb, (23)
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sz5
2c«0c13

pD E
0

`E
0

`

J1~ac!J0~ar !
a2

b
$c13A12c33~c131c44!A3%

3sinbb cosbzdadb1
2c«0c33

pD E
0

`E
0

`

J1~ac!J0~ar !

3H c33bA22c13~c131c44!
a2

b
A3J sinbb cosbzdadb,

t rz5
2c«0c13c44

pD E
0

`E
0

`

J1~ac!J1~ar !aH ~c131c44!
a2

b2
A32A1J

3sinbb sinbzdadb1
2c«0c33c44

pD E
0

`E
0

`

aJ1~ac!J1~ar !

3$~c131c44!A32A2%sinbb sinbzdadb.

It holds always thatt ru5tzu50 in the present problem. In Eq
~23!, An , (n51,2,3), represent

A15
c332c44c1

2

a21c1
2b2

2
c332c44c2

2

a21c2
2b2

,

A25
c442c11c1

2

a21c1
2b2

2
c442c11c2

2

a21c2
2b2

, (24)

A35
1

a21c1
2b2

2
1

a21c2
2b2

.

Integrals in Eq.~23! can be performed by using integral formula
@13,14#, as follows:

~1! Stresss r ;
~i! for b<uzu;

s r5
c«0c13

4pD1
(
n51

2

~21!n11S c122c11

r
~c332c44cn

2!~q81n2q82n!

1$c11~c332c44cn
2!2c13~c131c44!%~q31n2q32n! D

1
c«0c33

4pD1
(
n51

2

~21!n11F ~c131c44!~c112c12!

r
~q81n2q82n!

2c1113n~q31n2q32n!G (25)

~ii ! for b>uzu;

s r5
2c«0c13

4pD
B1

c«0c33

4pD1
(
n51

2

~21!nF ~c131c44!~c112c12!

r

3~q81n1q82n!2c1113n~q31n1q32n!G (26)

with
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s,

B5
c122c11

2r
p(

n51

2

~21!nS c44cn
2H r

c
1

c

r
1S r

c
2

c

r DSGN~c2r !J
1

1

pAcr
~c332c44cn

2!~q81n1q82n!D
1

c11p

c
c44~c2

22c1
2!$11SGN~c2r !%

1
1

2Acr
(
n51

2

~21!n$c11~c332c44cn
2!2c13~c131c44!%

3~q31n1q32n! (27)

~2! Stresssu ;
~i! for b<uzu;

su5
c«0c13

4pD1
(
n51

2

~21!n11S c112c12

r
~c332c44cn

2!~q81n2q82n!

1$c12~c332c44cn
2!2c13~c131c44!%~q31n2q32n! D

1
c«0c33

4pD1
(
n51

2

~21!n11F ~c131c44!~c122c11!

r
~q81n2q82n!

2c1213n~q31n2q32n!G (28)

~ii ! for b>uzu;

su5
2c«0c13

4pD
B1

c«0c33

4pD1
(
n51

2

~21!nF ~c131c44!~c122c11!

r

3~q81n1q82n!2c1213n~q31n1q32n!G (29)

with

B5
c112c12

2r
p(

n51

2

~21!nS c44cn
2H r

c
1

c

r
1S r

c
2

c

r DSGN~c2r !J
1

1

pAcr
~c332c44cn

2!~q81n1q82n!D
1

c12p

c
c44~c2

22c1
2!$11SGN~c2r !%

1
1

2Acr
(
n51

2

~21!n$c12~c332c44cn
2!2c13~c131c44!%

3~q31n1q32n! (30)

~3! Stresssz ;
~i! for b<uzu;

sz5
c«0c13

4pD1
(
n51

2

~21!n11$c13~c332c44cn
2!2c33~c131c44!%

3~q31n2q32n!1
c«0c33

4pD1
(
n51

2

~21!n11c1333n~q31n2q32n!

(31)

~ii ! for b>uzu;

sz5
2c«0c13

4pD
B1

c«0c33

4pD1
(
n51

2

~21!n11c1333n~q31n1q32n!

(32)

with
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a

B5
c13p

c
c44~c2

22c1
2!$11SGN~c2r !%

2
1

2Acr
(
n51

2

~21!n$c13~c332c44cn
2!2c33~c131c44!%

3~q31n1q32n! (33)

~4! Stresst rz ;

t rz51
c«0c33c44

2pD1
(
n51

2

~21!n11H c332c44cn
2

cn
1cn~c131c44!J

3$Q1/2~x1n!2Q1/2~x2n!%, (34)

1
c«0c13c44

2pD1
(
n51

2

~21!n11
c131c11cn

2

cn

3$Q1/2~x1n!2Q1/2~x2n!%.

Fig. 3 Distribution of stresses on the plane zÄ0 for magne-
sium and steel

Fig. 4 Distribution of stresses on the plane zÄ0 for cadmium
and steel
Journal of Applied Mechanics
In the above expressions,ci jkln andq3mn represent

ci jkln5ci j ~c131c44!1ckl

c442c11cn
2

cn
2

,

(35)

q3mn5
pAcr

c
$11SGN~c2r !%

2
zmn

c H Q21/2~xmn!1
c2r

c1r
kmnP~p,kmn!J .

5 Strain Energy
The stability of microstructures of materials with inclusions c

be discussed in terms of the Gibbes free energy which is
elastic strain energy when the material is traction-free,@1#. There-
fore, we show the strain energy in the cylindrical inclusion in
transversely isotropic solid. The strain energyW* is expressed by

W* 52
1

2 EV
s i j « i j* dV (36)

wheres i j is the stress caused by the eigenstrain« i j* . From Eqs.
~1! and ~36!, we have

W* 52
«0

2 E
2b

b E
0

c

~sz2c33«0!dV (37)

wheresz is that of Eq.~23!. Integrating Eq.~37! by using integral
formulas,@13,14#, we can obtain

W* 5
c2«0

2

D
c13(

n51

2

~21!nS c13~c332c44cn
2!H b

4
2

cn

3p S 4c2
q9n

2c D J
1c33~c131c44!

cn

3p S 4c2
q9n

2c D D
1

c2«0
2

D
c13(

n51

2

~21!ncnS c13~c131c44!

3 S 4c2
q9n

2c D
1c33~c442c11cn

2!S 4c

3
2

q9n

4c D D1pbc2c33«0
2 (38)

Fig. 5 Variation of stresses along the z-axis for magnesium
and steel
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cn
1
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cn
2 $Q1/2~xn!1Q21/2~xn!%,
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xn511
2b2

c2cn
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6 Discussions and Results
Figures 3–9 show the stress distributions around and in

cylindrical inclusion in the transversely isotropic solids~magne-
sium and cadmium, as examples! and the isotropic solid~steel, as
an example!. The figures are sketched in nondimensional form.
these figures, the broken lines show the results for the isotr
solid ~steel!, which are obtained from the expressions sho

Fig. 6 Variation of stresses along the z-axis for cadmium and
steel

Fig. 7 Effect of the length of inclusion on distributions of
stress sz on the plane zÄ0 for magnesium and steel
830 Õ Vol. 70, NOVEMBER 2003
the

In
pic
n

above for transversely isotropic solids and the expressions
isotropic solids shown in a previous paper,@4#, and both the nu-
merical results agree with each other. From these figures, we
that there are no essential differences between the stress dis
tions for transversely isotropic solids and those for isotropic so

Figures 3, 4 show the stress distributions on the symmetr
plane (z50) and Figs. 5, 6 show the stress distributions along
z-axis (r 50), under the condition ofb/c51.0. In these figures,
the stresssz has the largest value among the stress compone
The largest value for magnesium is larger than that for steel
the value for steel is larger than that of cadmium.

Figures 7, 8 show the distributions of the stresssz on the sym-
metrical plane (z50) for magnesium. Figure 7 shows the influ
ence of slender ratiob/c of a cylindrical inclusion on the stres
distributions. The stress increases asb/c becomes larger and ap
proaches to the upper limit value which appears whenb/c→`.
The stress approaches to uniform distributions according to
increase ofb/c. Figure 8 shows the stress variations due to

Fig. 8 Variation of stress sz for magnesium and steel

Fig. 9 Variation of shear stress t rz for magnesium and steel
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relative positionsz/b under the condition ofb/c51.0. The stress
has the largest value atz/b50 and decreases asz/b becomes
larger.

Figure 9 shows the distributions of the shear stresst rz for mag-
nesium in the case ofb/c51.0. It is observed in the figure tha
there is a stress singularity in the vicinity of the corner po
(r→c, z→b) of the inclusion. It is easily seen from the relation
@15#,

lim
r→c, uzu→b

P~p,kmn!→const.
c1r

c2r
,

(40)

lim
r→c, uzu→b

Q1/2~xmn!→const. log$~r 2c!21zmn
2 %

that the order of stress singularity is log$(r2c)21zmn
2 %. The result

of the logarithmic singularity is the same as that for a cylindri
inclusion,@4#, and a cuboidal inclusion,@16#, in an isotropic solid.

References
@1# Mura, T., 1982,Micromechanics of Defects in Solids, Martinus-Nijhoff, Dor-

drecht, The Netherlands.
@2# Mura, T., 1988, ‘‘Inclusion Problem,’’ Appl. Mech. Rev.,41~1!, pp. 15–20.
@3# Takao, Y., Taya, M., and Chou, T. W., 1981, ‘‘Stress Field Due to a Cylindri

Inclusion With Constant Axial Eigenstrain in an Infinite Elastic Body,’’ ASM
J. Appl. Mech.,48, pp. 853–858.
Journal of Applied Mechanics
t
nt
s,

al

al

@4# Hasegawa, H., Lee, V. G., and Mura, T., 1992, ‘‘The Stress Fields Cause
a Circular Cylindrical Inclusion,’’ ASME J. Appl. Mech.,59, Part 2, pp. s107–
s114.

@5# Hasegawa, H., Lee, V. G., and Mura, T., 1993, ‘‘Hollow Circular Cylindric
Inclusion at the Surface of a Half-Space,’’ ASME J. Appl. Mech.,60, pp.
33–40.

@6# Wu, L. Z., and Du, S. Y., 1995, ‘‘The Elastic Field Caused by a Circu
Cylindrical Inclusion—Part I,’’ ASME J. Appl. Mech.,62, pp. 579–584.

@7# Wu, L. Z., and Du, S. Y., 1995, ‘‘The Elastic Field Caused by a Circu
Cylindrical Inclusion—Part II,’’ ASME J. Appl. Mech.,62, pp. 585–589.

@8# Wu, L. Z., and Du, S. Y., 1996, ‘‘The Elastic Field in a Half-Space With
Circular Cylindrical Inclusion,’’ ASME J. Appl. Mech.,63, pp. 925–932.

@9# Hasegawa, H., and Yoshiie, K., 1996, ‘‘Tension of Elastic Solid With Elas
Circular-Cylindrical Inclusion,’’ JSME Int. J., Ser. A,39~2!, pp. 186–191.

@10# Hasegawa, H., and Ariyoshi, S., 1996, ‘‘Fundamental Solution for Axisymm
ric Problems of Transversely Isotropic Elastic Solid,’’~in Japanese!, Trans.
Jpn. Soc. Mech. Eng., Ser. A,62~596!, pp. 1059–1063.

@11# Eubanks, R. A., and Sternberg, E., 1954, ‘‘On the Axisymmetric Problem
Elasticity Theory for Medium With Transverse Isotropy,’’ J. Ration. Mec
Anal., 3~1!, pp. 89–101.

@12# Ishida, R., 1987, ‘‘Crack Problem in a Transversely Isotropic Medium With
Penny-Shaped Crack Under Transient Thermal Loading,’’ Z. Angew. Ma
Mech.,67~2!, pp. 93–99.

@13# Erdelyi, A., 1954,Tables of Integral Transforms, Vol. 2, McGraw-Hill, New
York.

@14# Eason, G., Noble, B., and Sneddon, I. N., 1955, ‘‘On Certain Integrals
Lipschitz-Hankel Type Involving Products of Bessel Functions,’’ Philos. Tra
R. Soc. London, Ser. A,247~A935!, pp. 529–551.

@15# Byrd, P. F., and Friedman, M. D., 1971,Handbook of Elliptic Integrals for
Engineers and Scientists, 2nd Ed., Springer-Verlag, New York.

@16# Chiu, Y. P., 1977, ‘‘On the Stress Field Due to Initial Strains in a Cubo
Surrounded by an Infinite Elastic Space,’’ ASME J. Appl. Mech.,44, pp.
587–590.
NOVEMBER 2003, Vol. 70 Õ 831



. We
and

rittle
nsid-
se an
ond.
nds of
stiffer
cture
int
well
rack
on is
as a
N. Pugno
e-mail: nicola.pugno@polito.it

A. Carpinteri
e-mail: alberto.carpinteri@polito.it

Department of Structural Engineering,
Politecnico di Torino,

Corso Duca Degli Abruzzi 24
10129 Torino, Italy

Tubular Adhesive Joints Under
Axial Load
In this paper a general study on tubular adhesive joint under axial load is presented
focus our attention on both static and dynamic behavior of the joint, including shear
normal stresses and strains in the adhesive layer, joint optimization, failure load for b
crack propagation, and crack detection based on free vibrations. First, we have co
ered the shear and normal stresses and strains in the adhesive layer to propo
optimization to uniform axial strength (UAS) and to reduce the stress peaks in the b
The stress analysis confirms that the maximum shear stresses are attained at the e
the adhesive and that the peak of maximum shear stress is reached at the end of the
tube and does not tend to zero as the adhesive length approaches infinity. A fra
energy criterion to predict brittle crack propagation for conventional and optimized jo
is presented. The stability of brittle crack propagation and the strength of the joint, as
as the ductile-brittle failure transition, are analyzed. A detection method to predict c
severity, based on joint dynamic behavior, is also proposed. The crack detecti
achieved through the determination of the axial natural frequencies of the joint
function of the crack length, by determining the roots of a determinantal equation.
@DOI: 10.1115/1.1604835#
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1 Introduction
Based on modern synthetic adhesives, light, stiff, and econo

constructions can be fabricated from a variety of materials with
the defects caused by conventional assembly methods, suc
welding, soldering, and riveting. Furthermore, together with m
chanical strength and stiffness, a number of extra benefits c
along free, like sealing action, electrical and thermal insulati
corrosion, and fretting resistance. As a consequence, various k
of adhesive-bonded joints have been used in the manufacturin
light structures. For example, an analysis was carried out
bonded airframe components from an original Comet aircr
which was over 30 years old. Redux phenolic adhesives were
extensively to bond stringer/panel assemblies. By careful rem
of the bonded areas from the stiffener flange/panel it was poss
to obtain lap and wedge cleavage test pieces. The same ge
adhesive product continues to be used in current airframe
struction. It can be seen that strength and durability of the
Comet test pieces are only about 10% lower than new joints,
some of the differences may be attributable to improvement
the new adhesive rather than degradation of the old joints,@1#.

Since the pioneering papers by Goland and Reissner@2#,
Lubkin and Reissner@3#, and more recently by Adams and Pe
piatt @4#, Renton and Vinson@5#, Delale and Erdogan@6#, and
Chen and Cheng@7#, several theoretical, numerical, and expe
mental analysis on tubular bonded joints have been perform
Only recently nontubular structures have been investigated
Pugno et al.@8–10#.

In this paper we propose a special type of tubular joint w
tapered adherends, produced by modifying the joint profile
thereby optimizing the tubular joint for uniform axial streng
~UAS!. As a consequence, the predominant component of the
hesive stress tensor~equivalent to the applied axial load! becomes
constant, and the stress peaks of the other components are d
cally reduced. This result is of considerable practical utility a

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
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makes it possible to produce adhesive bonded joints which
both lighter and stronger under axial load. An analogous opti
zation for uniform torsional strength~UTS! has been presented i
@11#.

The brittle failure load for a tubular adhesive joint under ax
load, as well as a dynamical approach to crack detection are
vestigated. A very general formula has been obtained by mean
the Griffith @12# energy balance and the application of linear ela
tic fracture mechanics~see Carpinteri’s papers@13–17,18#!. It is
supposed that crack propagation at the interface between the
adherends takes place in mode I in the adhesive at the poin
highest stress concentration, deduced by stress analysis. An
ergy balance is formulated for a small growth of the debondi
Changes in the strain energy of the joint and in the poten
energy of the loading device are equated to the characteristic
ergy needed for debonding,@19,20#. As a consequence, a gener
formula to predict the brittle failure load for a tubular adhesi
joint with or without UAS tapered adherends can be obtain
This formula generalizes an analogous formula already prese
in the literature for tubular joint between a perfectly rigid and
elastic nontapered tubes,@19#. The greater sensitivity to brittle
collapse is emphasized for the conventional geometry, if it is co
pared with the UAS optimized profile one. The stability of britt
crack propagation and the size effects on mechanical collapse
havior, as well as the ductile-brittle transition are emphasized

A detection method to predict the crack length, influencing
strength of the joint, based on the joint dynamic behavior, is a
presented. The study of the joint dynamics provides a system
coupled differential equations with partial derivatives. The cra
detection is achieved through the determination of the axial n
ral frequencies of the damaged joint as a function of the cr
length, by determining the roots of the corresponding determin
tal equation. This approach has already been successfully ap
to the study of undamaged bonded joints under torsion,@21#.

Relevant general works on bonded joints and composite m
rials can be founded in@22–28#.

2 Shear Stresses
It is assumed that all three of the materials making up the jo

~tubes and adhesive! are governed by isotropic linear elasticit
The tubular bonded joint, consisting of two tubes perfectly circ
lar and co-axial and the interposed adhesive’s film~of very small

5,
on
art-

nta
after
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thicknessh, axial length 2c, and radiusR!, is considered to be
subject to axial load~Fig. 1!. Under these conditions, the axia
equilibrium along thex-axis permits to obtain the predomina
component of adhesive stress tensor, equivalent to the ap
normal thrust:

t rx~x!52
1

2pR

dN1~x!

dx
, (1)

where N1(x) is the axial load of the outer tube in a genericx
section. As a consequence of the axial symmetry, the other c
ponents of the stress tangential field can be neglected:

t rq~x!'0, txq~x!'0. (2)

The strain componentg rx in the adhesive can be obtained as

g rx~x!5
t rx~x!

Ga
52

1

2pRGa

dN1~x!

dx
, (3)

whereGa is the shear elastic modulus of the adhesive. Obviou
we have

g rq~x!'0, gxq~x!'0. (4)

The axial loadNi(x) in a generic sectionx of the tubei can be
written as

N1~x!5N f~x!, N2~x!5N~12 f ~x!!, (5)

as the sum of the forces absorbed by the two elements mus
equivalent to the applied axial loadN at each cross sectionx.
Satisfying the load boundary conditions implies

f ~x52c!51, f ~x51c!50. (6)

Functionf (x), and thus the load absorbed by the two eleme
at the joint, can be found thanks to the compatibility establish
for the displacements of the two tubes in a given cross secti
These displacements are expressed as follows:

u1~x!5E
2c

x N1~ t !

E1A1
dt1u1

0, (7a)

u2~x!5E
2c

x N2~ t !

E2A2
dt1u2

0, (7b)

whereEi is the Young’s modulus,Ai is the cross-section area, an
ui

0 is the displacement of the initial section (x52c), of the tube
i. Through an appropriate choice of reference system, we
always haveu1

050 ~displacements calculated starting from t
strained configuration of the first tube’s initial section!.

The compatibility equation can be written noting how, after t
joint deformation, the relative displacementDu between two
points of interfaces, internal tube-adhesive, and adhesive-exte
tube, must be the same if we consider the tubes’ relative displ
ment or the shearing adhesive’s strain~with a very small thickness
h!:

Du5u22u15hg rx~x!. (8)

Substituting Eq.~3! into Eq.~8!, the compatibility equation can
be rewritten as

Fig. 1 Tubular adhesive joint subjected to axial load
Journal of Applied Mechanics
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dN1~x!

dx
52K* Du~x!, K* 5

2pRGa

h
, (9)

whereK* is the adhesive stiffness per unit length.
Inserting the displacement expressions~7! in the compatibility

Eq. ~9!, and recalling Eqs.~5! and~6!, gives the following second-
order differential equation inf (x):

d2f ~x!

dx2
2

K* ~E1A11E2A2!

E1A1E2A2
f ~x!52

K*

E2A2
,

boundary conditionsH f ~x52c!51
f ~x5c!50 . (10)

This differential equation, together with the boundary conditio
shown alongside, makes it possible to determine the load sec
by section at the overlap. The solution of Eq.~10! is

f ~x!5C1eax1C2e2ax1b, a5AK* ~E1A11E2A2!

E1A1E2A2
,

b5
E1A1

E1A11E2A2
. (11)

The constantsC1 and C2 can be obtained from the boundar
conditions as

C15
e2ac

e22ac2e2ac
1b

eac2e2ac

e22ac2e2ac
, (12a)

C25
eac

e2ac2e22ac
1b

e2ac2eac

e2ac2e22ac
. (12b)

Comparing the differences between Eqs.~7! with the same ob-
tained by Eq.~9!, makes it possible to determine the constantu2

0,
once the reference system has been established withu1

050:

u2
05

Na

K*
~C2eac2C1e2ac!. (13)

Function f (x), being known~see Eqs.~11!, ~12!, and Fig. 2!,
finally we can obtain the predominant shear stress in the adhe

t rx~x!52
N

2pR

df ~x!

dx
. (14)

The maximum shear stresses are reached at the ends o
adhesive and the higher stress peak appears at the end o
stiffer tube. When the stiffnesses of the two tubes are equal~b51/
2!, the stress peaks become lower and symmetric~Fig. 3!. The
presented stress approach has already been validated numer
for the case of nontubular bonded joints. The discrepancy
stress peak appears lower than 5%,@10#.

Fig. 2 Qualitative diagram „aÄ1, bÄ1Õ3… for dimensionless
axial load transmission f „x …
NOVEMBER 2003, Vol. 70 Õ 833
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This analysis does not include transverse shear deformation
because of this maximum shear stresses occur very near to bu
at the ends of the joints. Obviously, the shearing stresses mu
zero at the ends of the joint because there can be no shear str
on the adhesive free surface, hence no shear stresses in the
sive at the joint end because of equilibrium. For more details
transverse shear deformation see@22#.

3 Normal Stresses
If v i(r ,x)52n iNi /(EiAi)r is the radial displacement of th

tube i (n i is its Poisson’s ratio!, we can obtain the dilations im
posed to the adhesive layer (r >R):

« r~x!5
v1~R,x!2v2~R,x!

h
5

NR

h S n2~12 f ~x!!

E2A2
2

n1f ~x!

E1A1
D ,

(15a)

«u~x!5
DR

R
5

v1~R,x!1v2~R,x!

2R
5

N

2 S n2~ f ~x!21!

E2A2
2

n1f ~x!

E1A1
D ,

(15b)

«x~x!5
]~u1~x!1u2~x!!

2]x
5

N

2 S f ~x!

E1A1
1

~12 f ~x!!

E2A2
D ,

(15c)

and the normal stresses by the constitutive equations for the
hesive,@18#,

sx~x!5
~12na!Ea

~11na!~122na!
«x~x!

1
naEa

~11na!~122na!
~« r~x!1«u~x!!, (16a)

s r~x!5
~12na!Ea

~11na!~122na!
« r~x!

1
naEa

~11na!~122na!
~«x~x!1«u~x!!, (16b)

su~x!5
~12na!Ea

~11na!~122na!
«u~x!

1
naEa

~11na!~122na!
~«x~x!1« r~x!!, (16c)

whereEa , na are the Young modulus and the Poisson’s ratio
the adhesive material.

It is interesting to note that if we consider identical material a
cross-section areas for the two tubes (n5n15n2 , EA5E1A1
5E2A2) we obtain«q52n«x with «x5N/(2EA). This physi-

Fig. 3 Qualitative diagram for the dimensionless tangential
stress Àdf „x …Õdx
834 Õ Vol. 70, NOVEMBER 2003
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cally means that the strain in the adhesive layer along
x-direction is simply imposed by the elongation of the tubes s
posed loaded with a constant force equal to its mean value
these hypothesis the normal stresses~16! assume the form
sx,r ,u(x)'B1D( f (x)21/2) with B, D constants~Fig. 4!. Being
R/h@1 (B/D'0) the stress peaks, at the end of the adhes
layer, become s

max
x,q '7nan/„(11na)(122na)…EaRN/(EhA),

s
max
r '(12na)/nas

max
x,q , i.e., proportional toEaRN/(EhA).

4 Stress Concentration Factor
The main problem related to the stress peaks is connected t

predominant tangential stress field~14!, that in fact cannot be
deleted, being equivalent to the applied axial load. On the o
hand, the normal stress field~16! has a mean value equal to ze
with maximum stresses independent of the functionf, that must
satisfy the boundary conditions~6!. For these reasons we focu
our attention on the tangential stress field~14!.

Considering Eq.~14! it is possible to define a stress concentr
tion factor which indicates the extent to which maximum she
stress departs from the mean. The higher stress peak appears
end of the stiffer tube (x5 c̄):

t
rx

max

5t rx~x5 c̄!5
Na

2pR
~2C1ea c̄1C2e2a c̄!,

c̄5H 2c 0,b,
1

2

c
1

2
<b,1

. (17)

The mean value of the stress is

t
mean
rx

5
1

2c E2c

1c

t rx~x!dx5
N

4pRc
. (18)

Consequently, the stress concentration factor is given by

l5

t
rx

max

t rx
mean

52ac~2C1ea c̄1C2e2a c̄!. (19)

Of importance is the gain parameterl* , i.e., the index of the
gain in maximum stress leveling which can be obtained by
creasing the bond length. In this context, it should be noted tha
the bond length tends to infinity, the maximum stress tends
ymptotically to a minimum nonzero value:

t rx
max
min

5 lim
c→`

t rx
max

5
Nab

2pR
. (20)

Fig. 4 Qualitative diagram „aÄ1, bÄ1Õ3… for the dimensionless
normal stresses „f „x …À1Õ2…
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For example, if we consider identical material and cross-sec
areas for the two tubes, we havet rx

max
min

5AGa /(EARh)N/(2Ap).

The gain parameter can thus be defined as

l* ~ac!5

t rx
max
min

t
rx

max

5
b

~2C1ea c̄1C2e2a c̄!
, (21)

and must be as close to unity as it is compatible with the need
a compact joint. Under this assumption the stress concentra
factor, prudently overestimated, is detailed as follows:

l>2abc for l* >1. (22)

Figure 5 shows that gain parameterl* presents little variation
after a certain value of the nondimensional parameterac ~;3!;
consequently, further increases in bond length are pointless fo
axial strength. Furthermoreb must be equal to 1/2~same stiffness
EA for the two tubes! to have a symmetric stress field. Und
these assumptions the stress concentration factor appears
close to 3, an often-used value in elastic problems. This value
the stress concentration factor is very common for the stress p
in the adhesive layer of tubular and nontubular bonded joi
@10,11#.

5 Optimization for Uniform Axial Strength „UAS…
In order to obtain a unit value for the stress concentration fa

given by Eq.~19! it is possible to modify the joint profile. This is
achieved by chamfering the edges, which are in any case
involved in the tube stress flow induced by the axial load.

The procedure used is a reversal of that employed for a join
known geometry: rather than starting from the geometry in or
to determine the stress field, the procedure starts with the s
field and determines the geometry capable of ensuring it.

In order to make the predominant stress component~1! con-
stant, it must be independent of thex-coordinate. In other words
as shown by relation~14!, the load must be linear along the join
x-axis:

f ~x!5S 1

2
2

x

2cD . (23)

Inserting Eq.~23! in Eq. ~10! yields the following relation, which
defines the geometry of a uniform axial strength~UAS! adhesive
bonded joint:

E2A2~x!

E1A1~x!
5

c1x

c2x
, (24)

Fig. 5 Gain parameter l* „ac …
Journal of Applied Mechanics
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that represents the equation governing the UAS profile. From
~24! we can seen that the cross-section area of the two optim
tubes must go to zero at the end of the adhesive layer.

Though the number of possible shapes which satisfy the r
tions indicated above is infinite, the following additional conditio
must be considered in order to obtain the solution entailing tu
with symmetric stiffness section by section:

E1A1~x!5E2A2~2x!, (25)

that permits to have an identical stiffnessEA for the two tubes out
of the bonded area. As a consequence, we obtain the follow
optimized UAS profiles:

E1A1~x!5
c2x

2c
EA, E2A2~x!5

c1x

2c
EA. (26)

For example, if we consider identical material and cross-sec
areas for the two tubes, supposed with thin thicknesssi , we have
s1(x)'(c2x)/(2c)•s, s2(x)'(c1x)/(2c)•s with s11s25s.
For this particular case the optimization is corresponding to
perfectly linear tapering of the adherends.

In this context, it should be noted that as the bond length te
to infinity, the stress~equal to the mean value expressed by E
~18!! tends asymptotically to a minimum zero value. This is a ve
important behavior of the UAS joint because theoretically, diff
ently from a nontapered joint, the adhesive can withstand ev
axial load simply modifying its length surface. This upper bou
of force, increasing the adhesive length, for nontapered adher
is ~supposing identical material and cross-section areas for
two tubes, and the collapse whent

max
rx 5tf) Nf(c→`)

5A4pRhEA/Gat f , and is infinity for the optimized joint.
The optimization permits to have a constant tangential str

and also a large reduction in the normal stresses. Putting Eq.~23!
into Eq. ~14! we obtain the tangential stress in the UAS joint:

t
rx

UAS

5
N

4pRc
. (27)

Putting Eqs.~23! and ~26! into Eqs.~15!, supposing to simplify
the equationsn5n15n2 , we obtain the dilations in the UAS
joint: « r50, «u52nN/(EA), «x5N/A. Putting them into Eqs.
~16! we obtain the normal stresses in the UAS joint that app
constants along thex-axis:

sx5
12na2nna

~11na!~122na!

EaN

EA
, (28a)

s r5
na2nna

~11na!~122na!

EaN

EA
, (28b)

sq5
na2n1nna

~11na!~122na!

EaN

EA
, (28c)

i.e., proportional toEaN/(EA). For nonoptimized joint the maxi-
mum normal stresses are of the order ofEaRN/(EhA), so that the
optimization has provided a theoretical reduction by a factorR/h
~1,2, or 3 order of magnitude!.

However, it is important to note that adhesive bonded joi
could be susceptible to brittle collapse. In order to take advant
of the UAS joint geometry it is essential that appropriate tech
logical measures be introduced to ensure that joint collapse ca
involve mechanical fracture phenomena.

6 Energy Balance During Crack Propagation
By virtue of the energy balance, the following relationship b

tween the variation in the total potential energy dW and the frac-
ture energyG dS must hold:

GdS1dW50, (29)

where dS represents the incremental fracture surface area.
NOVEMBER 2003, Vol. 70 Õ 835
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Considering an imposed axial load, the variation in the to
potential energy is equal to

dW5dL2Ndu5dS 1

2
NuD2Ndu52dL, (30)

where dL denotes the variation in the elastic strain energy~evalu-
ated by virtue of Clapeyron’s Theorem!, N is the external load,
andu its dual displacement. The strain energy release rate ca
rewritten as

G 52
dW

dS
5

dL

dS
. (31)

Brittle crack propagation really occurs whenG reaches its criti-
cal valueG a , characteristic for the adhesive:

G 5
dL

dS
5G a . (32)

The propagation will be stable, metastable, or unstable depen
on the sign of the second-order derivative of the total poten
energy:

2
d2W

dS2
5

dG

dS
5

d2L

dS2 H ,0, stable

50, metastable

.0, unstable

. (33)

7 Joint Elastic Strain Energy
To solve the problem of the crack propagation it is necessar

evaluate the elastic strain energy of the joint as a function of
crack length~in the overlap zone, during crack propagation
being constant out of the overlap!. The energyL absorbed by the
joint is the sum of three quantities, i.e., the elastic strain ene
absorbed by the two tubular bars~pedex 1,2! and by the adhesive
~pedex 3!:

L5L11L21L3 . (34)

As previously shown, the predominant shearing stress field in
adhesive~equivalent to the applied normal thrust! has its maxi-
mum positive value at the end of the stiffer tubular bar~here
indicated by 1!. The initial separation at the interface between t
two adherends is supposed to take place in this point: the deb
is a crown-crack of lengthDx ~Fig. 6!. The elastic strain energy o
the cracked joint along the overlap can be calculated, noting
the portions of the joint are loaded. Fixing the origin of thex-axis
at the middle of the ligament of length 2c-Dx of the adhesive~see
Fig. 6!, we have

L15E
2c1Dx/2

c2Dx/2 N1
2~x!

2E1A1~x!
dx, (35)

Fig. 6 Adhesive debonding for tubular adhesive joint sub-
jected to axial load
836 Õ Vol. 70, NOVEMBER 2003
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L25E
2c1Dx/2

c2Dx/2 N2
2~x!

2E2A2~x!
dx1E

c2Dx/2

c1Dx/2 N2

2E2A2~x!
dx, (36)

that are integrals of known functions—see Eqs.~5!, ~11!.
The elastic strain energy absorbed by the adhesive of

cracked joint is equal to

L35E
2c1Dx/2

c2Dx/2 H 1

2Ea
@sx

2~x!1s r
2~x!1sq

2 ~x!#2
na

Ea
@sx~x!s r~x!

1sx~x!sq~x!1sq~x!s r~x!#1
t rx

2 ~x!

2Ga
J 2pRhdx, (37)

that is an integral of known functions—see Eqs.~16!. Applying
Eq. ~31!, we can obtain the strain energy release rateG , where
dS52pRd(Dx). Equation~32! represents the condition of brittle
crack propagation. Equation~33! shows whether the fracture
propagation is stable, metastable or unstable.

8 Strength and Stability Under Crack Propagation
If we suppose that the heighth of the adhesive layer tends t

zero~and as a consequenceL3→0), the functionsf i will assume
the physical meaning of coefficients of distribution:

f i~x!5
EiAi~x!

E1A1~x!1E2A2~x!
; 2c,x,c. (38)

In the case of constant high profiles, functions~38! are constant
along x(xÞ6c) and, putting them into Eqs.~35! and ~36!, we
obtain the joint elastic strain energy (L5L11L2). From Eq.~32!
we obtain the strength of the joint, i.e., the critical value for t
axial load corresponding to the crack propagation:

NC5A4pRG a

E2A2

E1A1
~E1A11E2A2!,

E2A2

E1A1
,1. (39)

Applying Eq. ~33!, or observing thatNC is not a function of the
crack length, we can deduce that the propagation will be m
stable:

dNC

d~Dx!
50⇒metastable. (40)

Equation~39! represents an extension of the critical conditi
presented, and experimentally verified for the particular case
E1A1→`, @19#. In addition, the presented approach to study
strength of the joint against brittle crack propagation has alre
been experimentally validated for the case of nontubular join
@20#.

For uniform axial strength joint, connecting tubular bars w
identical stiffnessEA, the adherends must be tapered with t
profiles of Eq.~26!. These profiles are the best from a tension
point of view. In this case, Eqs.~35! and ~36! must be rewritten
taking into account the symmetrical propagation by the len
Dx/2 of the crack at the end of the two tubular bars:

L15E
2c1Dx/2

c2Dx/2 N1
2~x!

2E1A1~x!
dx1E

2c

2c1Dx/2 N2

2E1A1~x!
dx5L2

5E
2c1Dx/2

c2Dx/2 N2
2~x!

2E2A2~x!
dx1E

c2Dx/2

c N2

2E2A2~x!
dx. (41)

Equation~39! becomes

NC5A4pRG a

4c2Dx

Dx
EA ~UAS joint!. (42)

Applying Eq. ~33!, or observing that for UAS joint an increase i
the crack length causes a reduction in the load of brittle failu
we can deduce that the propagation will be unstable:
Transactions of the ASME
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dNC

d~Dx!
,0⇒unstable~UAS joint). (43)

Summarizing, for conventional joints the load of brittle failu
is independent of the crack length and the propagation will
metastable, when the load reaches its critical value of Eq.~39!. On
the other hand, for UAS joints an increasing of the crack len
causes a reduction in the load of brittle failure and the propaga
will be unstable, when the load reaches its critical value of
~42!. In this case, for vanishing pre-existing defects in the ad
sive layer (Dx→0), the critical value of Eq.~42! tends to infinity.
This simply means that the joint will collapse due to a differe
mechanism~we will discuss this transition in the following sec
tion!. As a consequence, the UAS joint, good bonded, is stron
than the conventional one against brittle collapse. In addition,
interesting to note that tubular joints are ‘‘shape-resistant’’~the
strength is different from zero also without adhesive! with respect
to shear and flexure but not with respect to thrust and torque.
these reasons, axial load and torsional moment are more cr
than shear and flexure for this kind of joints. Furthermore,
e

o

a

h
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UAS and UTS,@11#, ~i.e., uniform torsional strength! the optimi-
zations coincide for thin tubes. This means that optimized t
tubes present a global optimization design.

9 Ductile-Brittle Transition
The effective critical load is provided by the lower between t

load of brittle crack propagation~39! or ~42! and the load of
ductile collapse. If we assume that the latter is achieved when
maximum shearing stress in the ligament of the adhesive la
equals its ultimate stresstu , and thatc is not too short (ac>3, in
the hypothesis of Eq.~22!!, we obtain the following ultimate load
of ductile collapse for conventional and optimized joint:

NU5A2pRh

Ga

E2A2

E1A1
~E1A11E2A2!tu ,

E2A2

E1A1
,1, (44)

NU52pR~2c2Dx!tu ~UAS joint!. (45)

Comparing the critical values of the loads of brittle—see E
~39!, ~42!—and ductile collapse—see Eqs.~44!, ~45!—the brittle-
ness numbers of the joint may be defined,@13,14,20#:
NC

NU
5ms; 5 m5A2; s5

AG aGa

Ahtu

;

m5A1

p

4c/Dx21

~2c/Dx21!2

A

Dx2
; s5

AG aE

ARtu

~UAS joint!.

. (46)
lar
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Considering different sizes of self-similar joints the introduc
parameterm is a constant. The brittleness numbers shows how the
brittle collapse tends to occur with a low fracture energy, a l
elastic modulus, a high ultimate stress and/or a large struct
size. It is not the individual values of the parameters that
responsible for the nature of the collapse mechanism, but ra
only their functions. By Eqs.~39!, ~42!, and ~45!, ~46!, we can
predict the strength of conventional and UAS joints.

10 Crack Detection by Axial Natural Frequencies
The crack lengthDx is a priori unknown. In this section we

present a theoretical approach to evaluate this parameter as a
tion of the axial natural frequencies of the cracked joint. It can
used as a detection method to predict crack severity. The a
natural frequencies can be experimentally obtained from conv
tional nondestructive tests of axial vibration.

The equation of motion of the overlap in a dynamic regim
@21#, can be written introducing the inertia of the tubular bar in t
joint equilibrium Eq.~9!:

]N1~x,t !

]x
2r1~x!A1~x!

]2u1~x,t !

]t2
1K* ~x!~u2~x,t !2u1~x,t !!

50, 1↔2, (47)

wherer i is the mass density~andui the displacement! of the ith
tube. Furthermore,

N1~x,t !5E1~x!A1~x!
]u1~x,t !

]x
, 1↔2. (48)

Putting Eq.~48! into Eq. ~47!, we obtain the dynamic equations

]

]x S E1~x!A1~x!
]u1~x,t !

]x D2r1~x!A1~x!
]2u1~x,t !

]t2

1K* ~x!~u2~x,t !2u1~x,t !!50, 1↔2. (49)
d
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To obtain a closed-form solution, we have to consider tubu
bars of identical materials and cross-section areas. In these
pothesis, Eq.~49! becomes

EA
]2u1~x,t !

]2x
2rA

]2u1~x,t !

]t2
1K* ~x!~u2~x,t !2u1~x,t !!

50, 1↔2. (50)

If we considerr→0 in Eq. ~50!, it reduces to the static equilib
rium of the joint. On the other hand, ifK* →0 we obtain the
conventional dynamic equilibrium equation for a tubular bar.

In order to derive the equations, and due to the different fi
equations ruling the axial vibrations in and outside the bond
region, it is necessary to divide both tubular bars in different s
tions. As a consequence, Sections 1 and 2 of the first tubular
define the region out of~the corresponding dynamic equilibrium i
imposed by Eq.~50! in which we putK* 50) and inside~Eq. ~50!
with K* Þ0) the bonding. For the second tubular bar, Section
and 4 define the region in~Eq. ~50! with K* Þ0 and 1→2! and
outside~Eq. ~50! with K* 50 and 1→2! the bonding, respectively
Section 5 is the cracked region for the first tubular bar~Eq. ~50!
with K* 50). See Fig. 7.

For all these cases, Eq.~50! can be written in the following
unified manner~by sum and subtraction of the two equations f
which K* Þ0):

]2w~x,t !

]t2
2j

]2w~x,t !

]x2
1zw~x,t !50, (51)

wherej5E/r and

w~x,t !5u1~x,t ! z50, (52)

w~x,t !5u2~x,t !2u3~x,t ! z5
2K*

rA
, (53)

w~x,t !5u2~x,t !1u3~x,t ! z50, (54)
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w~x,t !5u4~x,t ! z50, (55)

w~x,t !5u5~x,t ! z50, (56)

where, to simplify the notation, we have indicated withui the
displacement in the mentionedith section.

By applying the separation of variables, the solution of Eq.~50!
can be written as superposition of solutions of the form

w~x,t !5c~x!f~ t !, (57)

so that Eq.~50! becomes

1

f~ t !

d2f~ t !

dt2
5

j

c~x!

d2c~x!

dx2
2z52v2, (58)

where the natural circular frequencyv is a constant. We have
therefore,

f~ t !5sin~vt1q!, (59)

c~x!5A sin~lx!1B cos~lx!, (60)

with

l25
v22z

j
. (61)

By introducing Eqs.~59! and ~60! into Eqs. ~52!–~56!, it is
possible to determine the corresponding expression forui(x,t)
5ui(x)sin(vt1q):

u1~x!5A1 sin~lx!1B1 cos~lx!, (62a)

u2~x!5
1

2
@A2 sin~ l̄x!1B2 cos~ l̄x!1A3 sin~lx!1B3 cos~lx!#,

(62b)

u3~x!5
1

2
@2A2 sin~ l̄x!2B2 cos~ l̄x!1A3 sin~lx!

1B3 cos~lx!#, (62c)

Fig. 7 Regions 1–5 of the cracked tubular bonded joint gov-
erned by different axial dynamic equations. Coupled regions
„by the adhesive … are 2–3.
838 Õ Vol. 70, NOVEMBER 2003
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u4~x!5A4 sin~lx!1B4 cos~lx!, (62d)

u5~x!5A5 sin~lx!1B5 cos~lx!, (62e)

where

l25
r

E
v2, l̄

2
5

r

E
v22

2K*

EA
. (63)

If v→0, we obtain the static solution. If 2L is the overall length
of the joint, the boundary conditions at the left and right end
(8[d/dx):

u1~2L !5u18~2L !50, (64)

for free ends, or

u4~L !5u48~L !50, (65)

for clamped ends.
The remaining boundary conditions impose the continuity

the axial displacement and of its derivative, i.e., of the axial lo
~Fig. 7!:

u1~2~c2Dx/2!!5u2~2~c2Dx/2!!, (66a)

u18~2~c2Dx/2!!5u28~2~c2Dx/2!!, (66b)

u28~c2Dx/2!5u58~c2Dx/2!, (66c)

u2~c2Dx/2!5u5~c2Dx/2!, (66d)

u58~c1Dx/2!50, (66e)

u38~2~c2Dx/2!!50, (66f)

u3~c2Dx/2!5u4~c2Dx/2!, (66g)

u38~c2Dx/2!5u48~c2Dx/2!. (66h)

Equations~64! and ~65! and ~66e! can be rewritten taking into
account Eqs.~62! as

A152tan~lL1nlp/2!B15C1B1 , (67a)

A45tan~lL2nrp/2!B45C4B4 , (67b)

A55tan~l~c1Dx/2!!B55C5B5 , (67c)

wherenl andnr refer to the left and right end, respectively, an
they are equal to 0 or 1 if the corresponding end is whether fre
clamped. The entire system of algebraic boundary conditions
be rewritten taking into account Eqs.~62! as

@M ~vn~Dx!!#$X%5$0%, (68)

where
@M #53
S̄ S 2~C1C1S! 2C̄ 2C 0 0

2C̄* 2C 2~S2C1C! 2S̄* 2S 0 0

C̄* C 0 2S̄* 2S 0 2~S2CC5!

2S̄ S 0 2C̄ C 22~C1C4S! 0

2C̄* C 0 S̄* 2S 2~S2C4C! 0

2C̄* C 0 2S̄* S 0 0

S̄ S 0 C̄ C 0 22~C1SC5!

4 , (69)
Transactions of the ASME



,

c

i

l

m

l

p

e
e
b

e

t
r

e

ts,’’

for

ded

ints

ly

ap

ni-

int

ion:

ion:
l.

i-

and

y,’’

gth
an-

J.

ol-

ts

in
en-

en-
ics,

ge-

on
n

ed

he
’’ J.

sive
-

a

and

S̄5sin~ l̄~c2Dx/2!!, S̄* 5l* sin~ l̄~c2Dx/2!!,

C̄5cos~ l̄~c2Dx/2!!, C̄* 5l* cos~ l̄~c2Dx/2!!, (70)

S5sin~l~c2Dx/2!!, C5cos~l~c2Dx/2!!,

with l* 5l̄/l. Furthermore,

$X%T5@A2A3B1B2B3B4B5#. (71)

In order to obtain a nonzero solution, it is necessary to find
eingvaluesvn(Dx) so that

det@M ~vn~Dx!!#50. (72)

The eigenvaluesvn(Dx) are the axial natural circular frequencie
of the bonded joint with a crack of lengthDx, with corresponding
eigenvectors~or modeshapes! given by$Xn(Dx)%:

@M ~vn~Dx!!#$Xn~Dx!%5$0%. (73)

The numerical solution of Eq.~72! provides, in a very simple way
the crack length as a function of the natural frequencies, con
ering a joint of given material and geometry. Some numeri
examples of solution of determinantal equation like Eq.~73!—for
undamaged joint under torsion—can be found in@21#. If Dx→0,
we obtain the dynamic behavior of the undamaged bonded jo

From the displacement~62! we can obtain the predominan
stress field in the vibrating adhesive:

t rx~x,t !5
K* Du~x,t !

2pR
. (74)

The remaining components of the stress field can be obta
substituting the static load with the dynamic one of Eq.~48! in the
static adhesive stresses of Eqs.~16!.

Conclusions
The optimal profile for uniform axial strength, even if pure

theoretical, could give useful guidelines to designers of tubu
bonded joints under axial load. This optimal shape would per
both reduced weight and increased strength. The constant she
stress field in the bond would enable the adhesive to withst
large axial loads by simply modifying the adhesive length. A
the normal stresses are strongly reduced by optimization. On
other hand, the developed fracture energy criterion permits to
dict the critical load due to brittle crack propagation and the s
bility of the process. UAS and UTS profiles~uniform axial and
uniform torsional strength!, optimizing the joint from a stress
point of view, coincide for thin tubes. In addition, the propos
approach shows that the optimized profile implies also a decr
in the brittleness of the joint. This is a relevant result for a glo
optimization design.

The axial natural frequencies of the cracked joint have b
evaluated by determining the roots of a determinantal equat
The latter has been written by deriving the equation of motion
the cracked joint in axial vibrations and by imposing the rela
boundary conditions. This approach permits to evaluate the c
length as a function of the~experimental! axial natural frequen-
cies.
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Higher-Order Beam Theories for
Mode II Fracture of Unidirectional
Composites
Mathematical models, for the stress analyses of unidirectional end notch flexure an
notch cantilever specimens using classical beam theory, first, second, and third-
shear deformation beam theories, have been developed to determine the interla
fracture toughness of unidirectional composites in mode II. In the present study, a
priate matching conditions, in terms of generalized displacements and stress resu
have been derived and applied at the crack tip by enforcing the displacement continu
the crack tip in conjunction with the variational equation. Strain energy release rate
been calculated using compliance approach. The compliance and strain energy re
rate obtained from present formulations have been compared with the existing exper
tal, analytical, and finite element results and found that results from third-order sh
deformation beam theory are in close agreement with the existing experimental and
element results.@DOI: 10.1115/1.1607357#
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1 Introduction
The most common problem in laminated composite structu

is the delamination along the resin rich ply interfaces. In gene
a delamination will be subjected to crack driving forces result
from a combination of mode I~opening or peeling!, mode II~slid-
ing or shear!, or mode III~antiplane shear!. Here, we consider the
analysis of the mode II interlaminar fracture specimens nam
end notch flexure~ENF! specimen and end notch cantilev
~ENC! specimen~also called the end-loaded split~ELS! laminate!
shown in Figs. 1~a! and 2~a!, respectively. ENF and ENC spec
mens are assumed to be made up of unidirectional laminated c
posites. Laminated composite structures generally contain br
matrix and thus they have poor resistance to delamination gro
Laminated composites containing delaminations behave in a
ear elastic manner and thus they can be treated using linear e
fracture mechanics to derive the strain energy release
~SERR!, @1#. A critical value of SERR known as interlaminar frac
ture toughness~IFT! is being widely used to characterize the o
set and delamination growth in laminated composite structu
@2#.

The state of art in the subject of interlaminar fracture toughn
of laminated composites was reviewed by Carlsson and Gille
@3# and Sela and Ishai@4#. The former covered the detailed tec
nical aspects of analytical, numerical, and experimental meth
to analyze ENF specimen for the mode II IFT. Since the pres
work is related to the analysis of mode II specimens using a
lytical methods, literature pertinent predominantly to analyti
methods has been covered here.

Initially, Barrett and Foschi@5# utilized ENF specimen to char
acterize the mode II interlaminar fracture of cracked wood bea
Later, Russell and Street@6# used this specimen, by considerin
Euler-Bernoulli beam theory, to characterize mode II critical str
energy release rates of advanced composites. Carlsson et a@7#

1Formerly Research Student, Civil Engineering Department, Indian Institute
Science, Bangalore 560 012, India.

2To whom correspondence should be addressed.
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MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Apr. 1
2002; final revision, Mar. 24, 2003. Associate Editor: R. C. Benson. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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gave compliance and SERR expressions based on Timosh
beam theory in the uncracked region and an approximate elast
solution in the cracked region for ENF specimen. Further, Ca
son et al.@8# presented an analysis of ENF specimen for the ch
acterization of mode II IFT using first-order plate theory und
cylindrical bending and shear stress singularity at the crack ti

Whitney et al.@9# and Whitney@10# analyzed the homogeneou
orthotropic ENF specimen using first-order beam theory a
modified version of Whitney and Sun@11# laminated plate theory
under cylindrical bending, respectively. In the former, a singu
shear stress function which decays to classical beam theory
also considered in the section ahead of the crack. Whitney@12#
analyzed ENF and ENC specimens for mode II interlaminar fr
ture using a higher order beam theory. The theory is based
second-order displacements in the thickness coordinate and i
rived in conjunction with Reissner’s@13# variational principle
which allows the direct development of constitutive relatio
without the need for shear correction factors.

Williams @1# gave a general method for calculating the ener
release rateG, using conventional beam theory, from the loc
values of bending moments and loads in a cracked laminate.
ther, Williams @14# extended his work to study the shortening
the bending arms due to large displacements during crack gro
Hashemi et al.@15,16# described a detailed study of the metho
analysing the experimental data obtained from fracture mecha
tests using DCB, ELS, and ENF. Wang and Williams@17# modi-
fied the compliance and SERR expressions, which are base
classical beam theory, by introducing a correction factor to corr
the crack length for mode II fracture toughness tests~ENF and
ELS!.

Analysis of ENF specimen was carried out by Chatterjee@18#
using exact stress analysis based on two-dimensional formula
under plane stress or plane strain and approximate analysis b
on ‘‘beam type’’ or ‘‘plane strain version of laminated plat
theory’’ which appears to be first-order plate theory. Zhou and
@19# derived SERR expression for ENF specimen based on
moshenko beam theory by taking asymmetric flexure of the sp
men into account and further they improved SERR expression
considering the deformation at the crack tip. Corleto and Hog
@20# presented an anlysis based on a new modified beam th
for ENF specimen which considers the solution of a beam o
generalized elastic foundation and Timoshenko beam theor
incorporate the effect of crack-tip deformation and transve
shear deformation, respectively. This approach showed that S
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2,
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idi-
is only affected by crack-tip deformations and is independen
transverse shear deformations. Davidson et al.@21# presented the
deflections and energy release rates of ENF specimens by u
one-dimensional models~‘‘generalized plane stress or plan
strain’’! of classical and shear deformable laminated plate the
and three-dimensional finite element analysis. Recently, Ding
Kortschot@22# developed a solution for the ENF specimen usin
modified classical beam theory, in which the effect of crack-
deformation is analyzed by assuming that a region of cer
length close to the crack tip rests on an elastic shear sp
foundation.

From the above literature review, it can be observed that c
sical, first, and second-order beam and/or plate theories were
to analyze unidirectional ENF and ENC or ELS specimens. To
authors’ knowledge, analysis of unidirectional ENF and EN
specimens, using third-order shear deformation beam theory,
not yet been explored. It will be seen later that as the order of
theory increases, present study results converge towards th
perimental and finite element results. However, the problem

Fig. 1 ENF specimen and its stress analysis model

Fig. 2 ENC specimen and its stress analysis model
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matching conditions at the crack tip becomes more involved
order to apply the third-order beam theory to analyze ENF a
ENC specimens, stress analysis models proposed by Whitney@12#
~based on second-order beam theory! have been found to be suit
able to extend further, but with modifications to the stress anal
models. The modifications are mainly due to the incorporation
the variationally derived matching conditions at the crack tip
ENF and ENC specimens. Hence, in the present study, mathem
cal models or stress analysis models for the analyses of unid
tional ENF and ENC specimens, using classical beam the
~CBT! and first~FOBT!, second~SOBT!, and third~TOBT! order
shear deformation beam theories, have been developed to d
mine the mode II interlaminar fracture toughness of composi
In these mathematical models, appropriate matching condition
terms of generalized displacements and stress resultants,
been derived and applied at the crack tip by enforcing the
placement continuity at the crack tip in conjunction with the var
tional equation. This method of applying variationally derive
matching conditions at the crack tip becomes the key feature
present stress analysis models of ENF and ENC specimens
makes the present stress analysis models different from the a
able stress analysis models in the literature. It may be furt
noted that this may be the first time that the third-order sh
deformation beam theory is being used to analyze ENF and E
specimens.

The compliance and SERR, obtained from the present st
have been compared with the existing experimental, analyti
and finite element results in the literature. The contribution
shear deformation~based on the theories FOBT, SOBT, and
particular TOBT!, in compliance, SERR and interlaminar she
stress at the crack tip and its distribution ahead of the crack
has been examined and its importance has been highlighted.
ther, the significance of variationally derived matching conditio
at the crack tip has been clearly brought out. The influence
crack length, ratio of Young’s modulus to shear modulus~shear
deformation! and span-to-depth~thickness! ratio of the ENF and
ENC specimens on the compliance, SERR and interlaminar s
stress distribution ahead of the crack tip have been studie
detail. Certain informative and useful conclusions have be
drawn from the comparative and parametric studies.

2 Higher-Order Shear Deformation Beam Theories
The displacement field for unidirectional laminated compos

beam, according to third~TOBT!, second~SOBT!, first ~FOBT!
order shear deformation, and classical~CBT! beam theories, can
be written in an unified form using the tracers ‘‘a1’’ and ‘‘ a2’’ as

u~x,z!5u0~x!1zcx~x!1a1z2fx~x!1a2z3jx~x!;
(1)

w~x,z!5w0~x!

The tracera1 takes the value ‘‘unity’’ for TOBT and SOBT and
‘‘zero’’ for FOBT and CBT. The tracera2 takes the value ‘‘unity’’
for TOBT and ‘‘zero’’ for SOBT, FOBT, and CBT. Further, i
should be noted that the terms, equations, and relations, assoc
with the tracersa1 anda2 , exist only if the tracer is ‘‘unity’’ and
do not exist if the tracer is ‘‘zero.’’ For classical beam theo
~CBT!, cx52dw0 /dx in Eq. ~1! and in subsequent derivations

Strain displacement relations corresponding to Eq.~1! are

exx5
du0

dx
1z

dcx

dx
1a1z2

dfx

dx
1a2z3

djx

dx
;

(2)

gxz5S dw0

dx
1cxD1a12zfx1a23z2jx .

The stress-strain relations for each orthotropic layer of un
rectional laminated composite beam are

sxx5Ē11exx ; txz5G13gxz . (3)
NOVEMBER 2003, Vol. 70 Õ 841



n

e

o

s

y

i

s
d

e

tion
hear
ns
In Eqs.~3!, Ē115E11 for plane-stress-type constitutive relatio
and Ē115E11/(12n12n21) for plane-strain-type constitutive rela
tion. E11 is the Young’s modulus of elasticity in the fiber directio
G13 is the shear modulus, andn12 andn21 are the Poisson’s ratios

The strain energy of the unidirectional laminated compos
beam, having width ‘‘b’’ and thickness ‘‘h,’’ is

U5
1

2
bE

x
E

2h/2

h/2

~sxxexx1txzgxz!dzdx. (4)

The work done by the external surface forces and edge forc

W5bE
x
$~ t̄xzu1s̄zzw!at z5h/22~ t̄xzu1s̄zzw!at z52h/2%dx

1FbE
2h/2

h/2

~ s̄xxu1 t̄xzw!dzG
at x5xe

. (5)

wherexe represents any beam end at which boundary conditi
are to be specified.

The total potential energy is

P5U2W. (6)

According to the principle of minimum potential energy, fir
variation of total potential energy is zero and can be written a

dP5dU2dW50. (7)

By substituting Eq.~4! and Eq. ~5! in Eq. ~7! along with the
displacement field~Eq. ~1!!, the variation of total potential energ
can be written as

dP5bE
x
E

2h/2

h/2

~sxxdexx1txzdgxz!dzdx2bE
x
~q0xzdu0

1q1xzdcx1a1q2xzdfx1a2q3xzdjx1pzzdw0!dx

2FbE
2h/2

h/2

$s̄xx~du01zdcx1a1z2dfx1a2z3djx!

1 t̄xzdw0%dzG
at x5xe

50 (8)

in which

q0xz5H t̄xzS at z5
h

2D2 t̄xzS at z5
2h

2 D J ,

pzz5H s̄zzS at z5
h

2D2s̄zzS at z5
2h

2 D J ,

q1xz5H h

2
t̄xzS at z5

h

2D1
h

2
t̄xzS at z5

2h

2 D J ,

q2xz5H h2

4
t̄xzS at z5

h

2D2
h2

4
t̄xzS at z5

2h

2 D J ,

and

q3xz5H h3

8
t̄xzS at z5

h

2D1
h3

8
t̄xzS at z5

2h

2 D J .

Substituting Eqs.~3!, ~2!, and~1! in Eq. ~8! and carrying out the
integration through the beam thickness results in the follow
variational equation:
842 Õ Vol. 70, NOVEMBER 2003
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2E
x
H S dNxx

dx
1bq0xzD du01S dMxx

dx
2Qxz1bq1xzD dcx

1a1S dSxx

dx
22Rxz1bq2xzD dfx1a2S dPxx

dx
23Txz

1bq3xzD djx1S dQxz

dx
1bqzzD dw0J dx1@~Nxx2N̄xx!du0

1~Mxx2M̄ xx!dcx1a1~Sxx2S̄xx!dfx1a2~Pxx2 P̄xx!djx

1~Qxz2Q̄xz!dw0# at x5xe

50 (9)

in which Nxx , Mxx , Sxx , Pxx , Qxz , Rxz , Txz are stress resultant
and N̄xx , M̄ xx , S̄xx , P̄xx , Q̄xz are the external edge forces an
have the following definitions:

@Nxx ,Mxx ,Sxx ,Pxx#5bE
2h/2

h/2

sxx@1,z,z2,z3#dz (10)

@Qxz ,Rxz ,Txz#5bE
2h/2

h/2

txz@1,z,z2#dz (11)

@N̄xx ,M̄ xx ,S̄xx ,P̄xx ,Q̄xz#5bE
2h/2

h/2

@s̄xx@1,z,z2,z3#,t̄xz#dz.

(12)

From Eqs.~10!, ~11!, ~3!, ~2!, and ~1!, the stress resultants ar
related to displacements as given as follows:

In-plane stress resultants:

Nxx5Ē11bhS du0

dx
1a1

h2

12

dfx

dx D ;

Mxx5
Ē11bh3

12 S dcx

dx
1a2

3h2

20

djx

dx D ;
(13)

Sxx5a1

Ē11bh3

12 S du0

dx
1

3h2

20

dfx

dx D ;

Pxx5a2

Ē11bh5

80 S dcx

dx
1

5h2

28

djx

dx D
Interlaminar shear stress resultants:

Qxz5G13bhH S dw0

dx
1cxD1a2

h2

4
jxJ ;

Rxz5a1G13b
h3

6
fx ;

(14)

Txz5a2G13b
h3

12 H S dw0

dx
1cxD1

9h2

20
jxJ

We now introduce four independent shear correction factorsk1 ,
k2 , k3 , andk4 , which will be determined later, into Eqs.~14! to
account for the difference between the shear stress distribu
over the thickness from constitutive equations and the exact s
stress distribution over the thickness from equilibrium equatio
and hence Eqs.~14! are rewritten as

Qxz5G13bhH k1S dw0

dx
1cxD1a2k4

h2

4
jxJ ;

Rxz5a1k2G13b
h3

6
fx ; (15)

Txz5a2G13b
h3

12 H k4S dw0

dx
1cxD1k3

9h2

20
jxJ .
Transactions of the ASME
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Present interest is to get the equilibrium equations for the be
subjected to surface traction ‘‘q’’ ~shear! at the bottom surface
For this purpose, we need to sett̄xz(at z52h/2)5q, t̄xz(at z
5h/2)50 and s̄zz(at z56h/2)50 in Eqs.~5! and ~8!. Conse-
quently, we get q0xz52q, q1xz5qh/2, q2xz52qh2/4, q3xz

5qh3/8 andpzz50 and these substitutions are to be made in
~9!. In the variational Eq.~9!, the variationsdu0 , dcx , dfx ,
djx , anddw0 are completely arbitrary. Thus Eq.~9! can vanish as
required only if the coefficients of the variations of each van
individually as the generalized displacements are independen
each other. From the vanishing of the coefficients of the variati
du0 , dw0 , dcx , dfx , anddjx under the integral sign of varia
tional Eq. ~9!, we can obtain the following five equilibrium
equations:

dNxx

dx
2bq50;

dQxz

dx
50;

dMxx

dx
2Qxz1

bh

2
q50;

(16)

a1S dSxx

dx
22Rxz2

bh2

4
qD50; a2S dPxx

dx
23Txz1

bh3

8
qD50

along with the boundary conditionsNxx ~or u0), Mxx ~or cx),
a1Sxx ~or a1fx), a2Pxx ~or a2jx) andQxz ~or w0) that are need
to be specified at the beam ends.

2.1 Exact Interlaminar Shear Stress Resultant Expres-
sions. For unidirectional laminated composite beam subjected
surface traction ‘‘q’’ ~shear! at the bottom surface, Reissner
variational principle,@13#, can be written in the following form as
given by Whitney@12#

E
x
E

z
F S ]u

]x
2

sxx

E11
D dsxx1S ]w

]x
1

]u

]z
2

txz

G13
D dtxz2S ]sxx

]x

1
]txz

]z D du2
]txz

]x
dwGdzdx2E

x
~txz~x,2h/2!2q!dudx

1E
z
~sxx~ x̄,z!2s̄xx!dudz1E

z
~txz~ x̄,z!2 t̄xz!dwdz

1E
z
sxx~ x̂,z!dudz1E

z
txz~ x̂,z!dwdz50. (17)

In the above equation,x̄ denotes the beam end~s! on which one
or both of the stressess̄xx or t̄xz are prescribed andx̂ denotes the
beam end~s! on which one or both of the displacementsu andw
are prescribed. Vanishing of terms inside the double integ
which are multiplied by stress variations yield the stress resul
expressions, while vanishing of terms multiplied by displacem
variations yield the equilibrium equations.

From Eqs.~3!, ~2!, and ~13!, the distribution of normal stres
sxx over the beam thickness can be written as

TOBT:

sxx5
3

4bh F3220S z

hD 2GNxx1
15

bh2

z

h F5228S z

hD 2GMxx

2
15

bh3 F1212S z

hD 2GSxx2
140

bh4

z

h F3220S z

hD 2GPxx

(18)

SOBT:

sxx5
3

4bh F3220S z

hD 2GNxx1
12

bh2

z

h
Mxx2

15

bh3 F1212S z

hD 2GSxx

(19)
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FOBT:

sxx5
1

bh
Nxx1

12

bh2

z

h
Mxx . (20)

From classical theory of two-dimensional elasticity

]sxx

]x
1

]txz

]z
50. (21)

By substituting Eqs.~18!, ~19!, and ~20! in Eq. ~21!, respec-
tively, for TOBT, SOBT, and FOBT and then integrating w.r.t.z
and using the relations given by Eqs.~16!, the exact interlaminar
shear stress distribution through the beam thickness can be wr
as

TOBT:

txz5
15

16bh F3240S z

hD 2

1112S z

hD 4GQxz1
30

bh2

z

h F124S z

hD 2GRxz

2
105

4bh3 F1224S z

hD 2

180S z

hD 4GTxz1F3124S z

hD2120S z

hD 2

2160S z

hD 3

1560S z

hD 4G q

16
(22)

SOBT:

txz5
3

2bh F124S z

hD 2GQxz1
30

bh2

z

h F124S z

hD 2GRxz

2F126S z

hD212S z

hD 2

140S z

hD 3G q

4
(23)

FOBT:

txz5
3

2bh F124S z

hD 2GQxz2F114S z

hD212S z

hD 2G q

4
. (24)

Interlaminar shear stress distribution expressions given by E
~22!, ~23!, and ~24! satisfy the shear-free condition at the top
the beam and applied shear traction ‘‘q’’ condition at the bottom
of the beam.

TOBT:
For TOBT, substituting Eqs.~1!, ~18!, and ~22! into Eq. ~17!,

and then integrating w.r.t.z, we obtain the required stress resulta
expressions, equilibrium equations, and boundary conditions.
in-plane stress resultants and equilibrium equations along w
boundary conditions obtained are exactly similar to Eqs.~13! and
~16!, respectively. Further, the exact interlaminar shear stress
sultants obtained from Eq.~17! are as follows:

Qxz5G13bhH 14

15 S dw0

dx
1cxD1

4

5 S h2

4 D jxJ 1
bhq

30
;

Rxz5
7

10
G13

bh3

6
fx2

bh2q

40
; (25)

Txz5G13

bh3

12 H 4

5 S dw0

dx
1cxD1

2

3 S 9h2

20 D jxJ 1
bh3q

120
.

It is the usual procedure to satisfy shear-free boundary condi
at the top and bottom of the beam to determine the shear co
tion factors and hence by comparing Eq.~25! ~havingq50) with
Eq. ~15!, we get the shear correction factors for TOBT ask1
514/15,k257/10,k352/3 andk454/5.

Following similar steps as above, we can get the exact in
laminar shear stress resultant expressions for SOBT and FO
and the corresponding shear correction factors as given belo
NOVEMBER 2003, Vol. 70 Õ 843
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SOBT:

Qxz5G13bh
5

6 S dw0

dx
1cxD1

bhq

12
;

Rxz5
7

10
G13

bh3

6
fx2

bh2q

40
(26)

andk155/6, k257/10.

FOBT:

Qxz5G13bh
5

6 S dw0

dx
1cxD1

bhq

12
(27)

andk155/6.

3 Mathematical Modeling of End Notch Flexure
„ENF… and End Notch Cantilever „ENC… Stress Analysis
Models

The unidirectional ENF and ENC specimens considered for
analysis have been shown in Figs. 1~a! and 2~a!. The respective
stress analysis models have been shown in Figs. 1~b! and 2~b! and
these are similar to the stress analysis models proposed by W
ney @12#. However, present stress analysis models differ fr
Whitney @12# at the stage of application of variationally derive
matching conditions at the crack tip which will be explained lat
The stress analysis models consider only upper halves~above
delamination plane! of ENF and ENC specimens because of t
fact that delamination is at midplane and lamination schem
symmetric about the midplane of ENF and ENC specimens. F
ther, ENF stress analysis model has cracked@2a<x<0# and
uncracked@0<x<(2L2a)# regions. The regions@2a<x<0#,
@0<x<(L2a)# and@(L2a)<x<(2L2a)# have been idealised
as three different beams 1, 2, and 3, respectively, with imagin
cuts at the crack tip and at the point of load application. Simila
ENC stress analysis model has cracked@2a<x<0# and un-
cracked@0<x<(L2a)# regions idealized as beams 1 and 2,
spectively. In the uncracked region, at the bottom of the str
analysis models~i.e., at the midplane of the actual ENF and EN
specimens!, surface traction ‘‘q’’ ~shear! exists and axial displace
ment ‘‘u’’ is zero. Further, it has been assumed that the dela
nated faces slide over each other freely which means that
frictional effects between the delaminated faces have been
glected. It may be noted that Carlsson et al.@7# showed that for
reasonable values of frictional coefficients andE11/G13, the error
in SERR induced by neglecting friction is only 2–5%.

3.1 Governing Differential Equations for Cracked and
Uncracked Regions. Equilibrium Eqs.~16! can form a set of
governing differential equations for uncracked region, as th
equations have been derived for the laminated composite b
with applied surface tration and can simulate the uncracked
gion. Further, in the case of cracked region, governing differen
equations can be obtained again from Eqs.~16! by puttingq50
~i.e., delaminated faces slide freely over each other!. Next, Eqs.
~13! form as corresponding inplane stress resultants for b
cracked and uncracked regions. However, in the case of interl
nar shear stress resultants, the following three choices ca
considered.
Interlaminar shear stress resultants:

TOBT-Exact, SOBT-Exact, and FOBT-Exact. The interlaminar
shear stress resultants based on TOBT, SOBT, and FOBT~Eqs.
~25!, ~26!, and ~27!! simulate the uncracked region of ENF an
ENC specimens~Figs. 1~b! and 2~b!! exactly as these stress re
sultants have been obtained from the exact interlaminar s
stress distributions which satisfy shear free condition at the
and applied shear traction condition at the bottom of the be
This choice has been named as TOBT-E/SOBT-E/FOBT-E ba
on the beam theory under consideration. The exact shear s
844 Õ Vol. 70, NOVEMBER 2003
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resultants~Eqs. ~25!, ~26!, and ~27!! for uncracked region base
on TOBT-E, SOBT-E, and FOBT-E can be written in an unifi
form as

Qxz5G13bhH k1S dw0

dx
1cxD1a2k4S h2

4 D jxJ 1 f qbhq;

Rxz5a1S k2G13

bh3

6
fx2 f rbh2qD ;

(28)

Txz5a2FG13

bh3

12 H k4S dw0

dx
1cxD1k3S 9h2

20 D jxJ 1 f tbh3qG .
In the above Eqs.~28!, k1514/15, k257/10, k352/3, and k4
54/5 for TOBT-E, k155/6 and k257/10 for SOBT-E andk1
55/6 for FOBT-E. Further,f q51/30, f r51/40, andf t51/120 for
TOBT-E, f q51/12 and f r51/40 for SOBT-E andf q51/12 for
FOBT-E. Interlaminar shear stress resultant expressions
cracked region can be obtained by substitutingq50 in the Eqs.
~28!.

Further, it is possible to consider two more choices of interlam
nar shear stress resultant expressions for cracked and uncra
regions and they are as follows:

Choice-1~TOBT-1, SOBT-1, FOBT-1!. For both cracked and
uncracked regions, interlaminar shear stress resultants give
Eqs.~14! or Eqs.~15! with k15k25k35k451 can be considered
This choice has been named as TOBT-1/SOBT-1/FOBT-1 ba
on the beam theory under consideration.

Choice-2~TOBT-2, SOBT-2, FOBT-2!. For both cracked and
uncracked regions, interlaminar shear stress resultants give
Eqs. ~15! can be considered withk1514/15, k257/10, k352/3,
andk454/5 in the case of TOBT and this choice has been nam
as TOBT-2. Similarly, for SOBT-2,k155/6 andk257/10 and for
FOBT-2,k155/6.

Here, it may appear that TOBT-E and TOBT-2 use same sh
correction factors, but they differ with each other w.r.t. she
stress resultant expressions in the uncracked region whereqÞ0
and they coincide with each other in the cracked region wherq
50. Similar explanation is valid for SOBT-E and SOBT-2 an
also for FOBT-E and FOBT-2.

3.1.1 Cracked Region [2a<x<0]—Beam 1 (Figs. 1(b) and
2(b)). The governing differential equations for cracked region
terms of generalized displacements can be obtained by using
stress resultant expressions~Eqs. ~13! and ~28! ~with q50) or
~15!! in the Eqs.~16! ~with q50) and they are

Ē11bhS d2u0

dx2
1a1

h2

12

d2fx

dx2 D 50

G13bhH k1S d2w0

dx2
1

dcx

dx D 1a2k4

h2

4

djx

dx J 50

Ē11bh3

12 S d2cx

dx2
1a2

3h2

20

d2jx

dx2 D 2G13bhH k1S dw0

dx
1cxD

1a2k4

h2

4
jxJ 50 (29)

a1H Ē11bh3

12 S d2u0

dx2
1

3h2

20

d2fx

dx2 D 2k2G13

bh3

3
fxJ 50

a2F Ē11bh5

80 H d2cx

dx2
1

5h2

28

d2jx

dx2 J 2
G13bh3

4 H k4S dw0

dx
1cxD

1k3

9h2

jxJ G50.

20
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3.1.2 Uncracked Regions [0<x<(L2a)] and [(L2a)<x<(2L
2a)]—Beams 2 and 3 (Figs. 1(b) and 2(b)).In the uncracked
regions@0<x<(L2a)# and@(L2a)<x<(2L2a)#, qÞ0. Fur-
ther, axial displacement alongz52h/2 has been assumed to b
zero (z52h/2 is the bottom surface of the stress analysis mod!.
This can be written as

u~@z52h/2!50. (30)

By using the first part of Eqs.~1! in Eq. ~30!, u0 can be ex-
pressed in terms ofcx , fx , andjx as

u05
h

2
cx2a1

h2

4
fx1a2

h3

8
jx (31)

and now the surface traction ‘‘q’’ is the unknown. Consequently
by using Eq.~31! in Eqs.~13!, the in-plane stress resultant expre
sions ofNxx andSxx will be modified as

Nxx5
Ē11bh2

2 S dcx

dx
2a1

h

3

dfx

dx
1a2

h2

4

djx

dx D ;

Sxx5a1

Ē11bh4

24 S dcx

dx
2

h

5

dfx

dx
1a2

h2

4

djx

dx D . (32)

By using the two modified in-plane stress resultant express
of Nxx , Sxx ~Eqs.~32!!, stress resultant expressions ofMxx , Pxx
~second and fourth parts of Eqs.~13!! and interlaminar shea
stress resultant expressions ofQxz , Rxz , Txz , ~Eqs.~28!! in Eqs.
~16!, we get the following governing differential equations
terms of generalized displacements and surface traction ‘‘q’’ for
‘‘each’’ uncracked region separately~beam 2 and beam 3!:

Ē11bh2

2 S d2cx

dx2
2a1

h

3

d2fx

dx2
1a2

h2

4

d2jx

dx2 D 2bq50

G13bhH k1S d2w0

dx2
1

dcx

dx D 1a2k4

h2

4

djx

dx J 1 f q

dq

dx
bh50

Ē11bh3

12 S d2cx

dx2
1a2

3h2

20

d2jx

dx2 D 2G13bhH k1S dw0

dx
1cxD

1a2k4

h2

4
jxJ 1S 1

2
2 f qDqbh50 (33)

a1F Ē11bh4

24 S d2cx

dx2
2

h

5

d2fx

dx2
1a2

h2

4

d2jx

dx2 D 2k2G13

bh3

3
fx

1S 2 f r2
1

4Dqbh2G50

a2F Ē11bh5

80 S d2cx

dx2
1

5h2

28

d2jx

dx2 D 2G13

bh3

4 H k4S dw0

dx
1cxD

1k3

9h2

20
jxJ 1S 1

8
23 f tDqbh3G50.

The solution of Eqs.~29! and ~33!, for cracked and uncracke
regions, can be easily obtained. The details are omitted here
the sake of brevity and available elsewhere,@23#. However, it may
be worth mentioning here that in the process of writing solution
Eqs.~29! and~33!, one will come across with second and fourt
order differential equations whose auxiliary equations can h
real roots or complex roots or combination of real and comp
roots. In the present work, for the material properties conside
roots are found to be real, distinct, and nonzero and hence solu
has been written for this case only. In the case of the ENF sp
men, there will be 26~101818! ~ten constants for cracked regio
and eight constants for each uncracked region!, 20 ~81616!, 14
Journal of Applied Mechanics
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~61414!, and 14~61414! unknown constants for TOBT, SOBT
FOBT, and CBT, respectively. Similarly, in the case of ENC spe
men, there will be 18~1018!, 14 ~816!, 10 ~614!, and 10~614!
unknown constants for TOBT, SOBT, FOBT, and CBT, resp
tively. These unknown constants can be determined from the
propriate boundary and matching conditions which will be deriv
in the next section. Once the unknown constants are determi
corresponding displacements, strains, stresses, and stress r
ants can be easily obtained. It should be noted that the pre
solutions of ENF and ENC specimen are perfectly compati
with deformations that occur in the lower halves of the ENF a
ENC specimens~Whitney @12#!. In other words, solutions can b
obtained to the lower halves of the ENF and ENC specim
which will produce the same distribution of shear stress in
uncracked region as the present solutions. Since axial displ
ment ‘‘u’’ is zero along the centerline of the ENF and ENC spe
mens in uncracked region and the vertical displacement ‘‘w’’ does
not vary over the depth, complete compatibility of the upper a
lower halves of the ENF and ENC specimens will be assured

4 Boundary and Matching Conditions
In this section, appropriate boundary and matching conditi

will be derived. Special attention is necessary for continuity co
ditions at the crack tip. In the present study, appropriate match
conditions, in terms of generalized displacements and stress
sultants, have been derived that are to be applied at the crac
and at the point of load application by enforcing displacem
continuity conditions at the crack tip and at the point of lo
application in conjunction with variational equation.

The total potential energy, for the stress analysis models of E
and ENC specimens, is

P5P~1!1P~2!1P~3! (34)

where, P (1), P (2), and P (3) are the potential energies of th
beams 1, 2, and 3, respectively. Further, it may be noted thatP (3)

does not exist for ENC specimen in the above and subseq
equations.

For equilibrium, the first variation of total potential energy
ENF and ENC stress analysis models is zero and can be writte

dP5dP~1!1dP~2!1dP~3!50. (35)

For simplification, Eq.~35! can be split as

dP5dPeq
~1!1dPbt

~1!1dPeq
~2!1dPbt

~2!1dPeq
~3!1dPbt

~3!50
(36)

where, the subscripts ‘‘eq’’ and ‘‘ bt’’ represent equilibrium equa-
tions and boundary terms of the potential energy, respectively

Based on TOBT, SOBT, FOBT, and CBT, variational Eq.~36!
can be expressed as

dPeq
~1!1@~Nxx

~1!2N̄xx
~1!!du0

~1!1~Mxx
~1!2M̄ xx

~1!!dcx
~1!1a1~Sxx

~1!

2S̄xx
~1!!dfx

~1!1a2~Pxx
~1!2 P̄xx

~1!!djx
~1!1~Qxz

~1!

2Q̄xz
~1!!dw0

~1!#@x52a
@x50 1dPeq

~2!1@~Nxx
~2!2N̄xx

~2!!du0
~2!1~Mxx

~2!

2M̄ xx
~2!dcx

~2!1a1~Sxx
~2!2S̄xx

~2!!dfx
~2!1a2~Pxx

~2!2 P̄xx
~2!!djx

~2!

1~Qxz
~2!2Q̄xz

~2!!dw0
~2!#@x50

@x5~L2a!1dPeq
~3!1@~Nxx

~3!

2N̄xx
~3!!du0

~3!1~Mxx
~3!2M̄ xx

~3!!dcx
~3!1a1~Sxx

~3!2S̄xx
~3!!dfx

~3!

1a2~Pxx
~3!2 P̄xx

~3!!djx
~3!1~Qxz

~3!2Q̄xz
~3!!dw0

~3!#@x5~L2a!
@x5~2L2a!50.

(37)

Since ENF and ENC specimens are loaded only at the ce
and free end, respectively, externally appliedQ̄xz exist only at the
point of load application in the variational Eq.~37!. Further, it
may be noted thatQ̄xz ~at places other than point of load applic
NOVEMBER 2003, Vol. 70 Õ 845
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tion!, N̄xx , M̄ xx , S̄xx and P̄xx do not exist or zero in the varia
tional Eq.~37!. Hence, variational Eq.~37! can be rewritten as

dPeq
~1!1dPeq

~2!1dPeq
~3!1@Nxx

~1!du0
~1!1Mxx

~1!dcx
~1!1a1Sxx

~1!dfx
~1!

1a2Pxx
~1!djx

~1!1Qxz
~1!dw0

~1!#@x502@Nxx
~1!du0

~1!1Mxx
~1!dcx

~1!

1a1Sxx
~1!dfx

~1!1a2Pxx
~1!djx

~1!1~Qxz
~1!2Q̄xz

~1!!dw0
~1!#@x52a

1@Nxx
~2!du0

~2!1Mxx
~2!dcx

~2!1a1Sxx
~2!dfx

~2!1a2Pxx
~2!djx

~2!

1~Qxz
~2!2Q̄xz

~2!!dw0
~2!#@x5~L2a!2@Nxx

~2!du0
~2!1Mxx

~2!dcx
~2!

1a1Sxx
~2!dfx

~2!1a2Pxx
~2!djx

~2!1Qxz
~2!dw0

~2!#@x501@Nxx
~3!du0

~3!

1Mxx
~3!dcx

~3!1a1Sxx
~3!dfx

~3!1a2Pxx
~3!djx

~3!

1Qxz
~3!dw0

~3!#@x5~2L2a!2@Nxx
~3!du0

~3!1Mxx
~3!dcx

~3!

1a1Sxx
~3!dfx

~3!1a2Pxx
~3!djx

~3!1~Qxz
~3!

2Q̄xz
~3!!dw0

~3!#@x5~L2a!50. (38)

In order to combine beam 1 with beam 2~at the crack tip! and
beam 2 with beam 3~at the point of load application only for ENF
specimen!, the following displacement continuity conditions ov
the depth~thickness! of the ENF and ENC stress analysis mode
have to be applied at the junctions of the above beams.

Displacement continuity conditions:
At the crack tip(x50):

u0
~1!1zcx

~1!1a1z2fx
~1!1a2z3jx

~1!5u0
~2!1zcx

~2!1a1z2fx
~2!

1a2z3jx
~2! ; w0

~1!5w0
~2! . (39)

At the point of load application@x5(L2a)#: ~only for ENF
specimen!:

u0
~2!1zcx

~2!1a1z2fx
~2!1a2z3jx

~2!5u0
~3!1zcx

~3!1a1z2fx
~3!

1a2z3jx
~3! ; w0

~2!5w0
~3! . (40)

In Eqs. ~39! and ~40!, u0
(2)5(h/2cx

(2)2a1h2/4fx
(2)1a2h3/8jx

(2))
andu0

(3)5(h/2cx
(3)2a1h2/4fx

(3)1a2h3/8jx
(3)).

From Eqs.~39! and ~40!, continuity conditions for generalized
displacements can be written by equating the coefficients of
terms. This results in the following continuity conditions in term
of generalized displacements that are required to maintain the
placement continuity over the depth of the stress analysis mo
at the crack tip and at the point of load application~only for ENF
specimen!.

At the Crack Tip(x50):

u0
~1!5u0

~2!5S h

2
cx

~2!2a1

h2

4
fx

~2!1a2

h3

8
jx

~2!D ;
(41)

cx
~1!5cx

~2! ; a1fx
~1!5a1fx

~2! ; a2jx
~1!5a2jx

~2! ;

w0
~1!5w0

~2! .

At the Point of Load Application@x5(L2a)#: ~only for ENF
specimen!:

cx
~2!5cx

~3! ; a1fx
~2!5a1fx

~3! ; a2jx
~2!5a2jx

~3! ;

w0
~2!5w0

~3! . (42)

Substitution of generalized displacement continuity conditio
~Eqs.~41! and ~42!! in the variational Eq.~38! gives
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dPeq
~1!1dPeq

~2!1dPeq
~3!2@Nxx

~1!du0
~1!1Mxx

~1!dcx
~1!1a1Sxx

~1!dfx
~1!

1a2Pxx
~1!djx

~1!1~Qxz
~1!2Q̄xz

~1!!dw0
~1!#@x52a

1F S S Mxx
~1!1

h

2
Nxx

~1!D2S Mxx
~2!1

h

2
Nxx

~2!D D dcx
~2!

1a1S S Sxx
~1!2

h2

4
Nxx

~1!D2S Sxx
~2!2

h2

4
Nxx

~2!D D dfx
~2!

1a2S S Pxx
~1!1

h3

8
Nxx

~1!D2S Pxx
~2!1

h3

8
Nxx

~2!D D djx
~2!

1~~Qxz
~1!2Qx

~2!!!dw0
~2!G

@x50

1F S S Mxx
~2!1

h

2
Nxx

~2!D2S Mxx
~3!1

h

2
Nxx

~3!D D dcx
~2!

1a1S S Sxx
~2!2

h2

4
Nxx

~2!D2S Sxx
~3!2

h2

4
Nxx

~3!D D dfx
~2!

1a2S S Pxx
~2!1

h3

8
Nxx

~2!D2S Pxx
~3!1

h3

8
Nxx

~3!D D djx
~2!

1~~Qxz
~2!2Qxz

~3!!2~Q̄xz
~2!2Q̄xz

~3!!!dw0
~2!G

@x5~L2a!

1F S S Mxx
~3!1

h

2
Nxx

~3!D D dcx
~3!1a1S S Sxx

~3!2
h2

4
Nxx

~3!D D dfx
~3!

1a2S S Pxx
~3!1

h3

8
Nxx

~3!D D djx
~3!1Qxz

~3!dw0
~3!G

@x5~2L2a!

50.

(43)

In the above equation, terms related to beam 3~terms with super-
script ~3!! do not exist for ENC specimen.

4.1 Boundary and Matching Conditions for ENF and ENC
Specimens. From the variational Eq.~43! and displacement
continuity conditions~Eqs. ~41! and ~42!! at the crack tip and at
the point of load application, the following boundary and matc
ing conditions, which are variationally consistent~as they are ob-
tained from the variational equation!, can be written for ENF and
ENC specimens.

4.1.1 ENF Specimen.Left Simple Support(x52a):

w0
~1!50; Nxx

~1!50; Mxx
~1!50; a1Sxx

~1!50; a2Pxx
~1!50.

(44)

At the Crack Tip(x50):

u0
~1!5u0

~2!5S h

2
cx

~2!2a1

h2

4
fx

~2!1a2

h3

8
jx

~2!D ;

cx
~1!5cx

~2! ; a1fx
~1!5a1fx

~2! ; a2jx
~1!5a2jx

~2! ;

w0
~1!5w0

~2! ;
(45)

S Mxx
~1!1

h

2
Nxx

~1!D5S Mxx
~2!1

h

2
Nxx

~2!D ; a1S Sxx
~1!2

h2

4
Nxx

~1!D
5a1S Sxx

~2!2
h2

4
Nxx

~2!D ;

a2S Pxx
~1!1

h3

8
Nxx

~1!D5a2S Pxx
~2!1

h3

8
Nxx

~2!D ; Qxz
~1!5Qxz

~2! .

At the Point of Load Application@x5(L2a)#:

cx
~2!5cx

~3! ; a1fx
~2!5a1fx

~3! ; a2jx
~2!5a2jx

~3! ;
Transactions of the ASME
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w0
~2!5w0

~3! ;

S Mxx
~2!1

h

2
Nxx

~2!D5S Mxx
~3!1

h

2
Nxx

~3!D ; a1S Sxx
~2!2

h2

4
Nxx

~2!D
5a1S Sxx

~3!2
h2

4
Nxx

~3!D ; (46)

a2S Pxx
~2!1

h3

8
Nxx

~2!D5a2S Pxx
~3!1

h3

8
Nxx

~3!D ; Qxz
~2!2Qxz

~3!5Q̄xz
~2!

2Q̄xz
~3!52P/2.

Right Simple Support@x5(2L2a)#:

w0
~3!50; S Mxx

~3!1
h

2
Nxx

~3!D50; a1S Sxx
~3!2

h2

4
Nxx

~3!D50;

a2S Pxx
~3!1

h3

8
Nxx

~3!D50. (47)

4.1.2 ENC Specimen.Free End(x52a):

Nxx
~1!50; Mxx

~1!50; a1Sxx
~1!50; a2Pxx

~1!50;

Qxz
~1!5Q̄xz

~1!5P/2. (48)

At the Crack Tip(x50):

u0
~1!5u0

~2!5S h

2
cx

~2!2a1

h2

4
fx

~2!1a2

h3

8
jx

~2!D ;

cx
~1!5cx

~2! ; a1fx
~1!5a1fx

~2! ; a2jx
~1!5a2jx

~2! ;

w0
~1!5w0

~2! ;
(49)

S Mxx
~1!1

h

2
Nxx

~1!D5S Mxx
~2!1

h

2
Nxx

~2!D ;

a1S Sxx
~1!2

h2

4
Nxx

~1!D5a1S Sxx
~2!2

h2

4
Nxx

~2!D ;

a2S Pxx
~1!1

h3

8
Nxx

~1!D5a2S Pxx
~2!1

h3

8
Nxx

~2!D ; Qxz
~1!5Qxz

~2! .

Clamped Support@x5(L2a)#:

w0
~2!50; cx

~2!50; a1fx
~2!50; a2jx

~2!50. (50)

Boundary and matching conditions for classical beam the
can be obtained by substitutingcx52dw0 /dx in the above equa-
tions. From the Eqs.~44!–~50!, it can be observed that TOBT
SOBT, FOBT, and CBT have 26, 20, 14, and 14 boundary
matching conditions, respectively, for ENF specimen. Similarly
the case of ENC specimen, TOBT, SOBT, FOBT, and CBT h
18, 14, 10, and 10 boundary and matching conditions respectiv

5 Determination of Compliance and Strain Energy
Release Rate

The compliance ‘‘C’’ can be obtained from the following
relation:

C5
d

P
(51)

in which ‘‘d’’ is the deflection under the load.
The strain energy release rate~SERR! and the compliance are

related by the following formula:

GII5
P2

2b

dC

da
. (52)

In the present study, (dC/da) has not been determined explic
itly as it is tedious, particularly in the case of beam theories SO
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and TOBT. And hence, the derivative (dC/da) has been evaluated
using thefinite difference method~by adopting thecentral finite
difference approximation!. Then the compliance derivative can b
written as

S dC

daD
n

5
Cn112Cn21

2D
(53)

in which (dC/da)n is the compliance derivative at delaminatio
length an , Cn11 is the compliance when delamination length
an11 , Cn21 is the compliance when delamination length isan21
and D is the spacing between two successive delamina
lengths.

Hence, we can obtain SERR from the following expression

GII5
P2

2b S Cn112Cn21

2D D . (54)

In the case of CBT, the following compliance and SERR e
pressions can be derived/obtained for ENF and ENC specim
which are similar to those available in the literature,@12#:

CCBT5
c1L313a3

c2Ē11bh3
; GII

CBT5
9a2P2

2c2Ē11b
2h3

; q5
23P

4c3bh
(55)

where c152 (ENF), 1 ~ENC!, c258 (ENF), 2 ~ENC!, and c3
52 (ENF), 21 ~ENC!.

It may be worth mentioning here that FORTRAN program
have been written for all the required mathematical steps to a
lyze unidirectional ENF and ENC specimens using the theo
TOBT, SOBT, FOBT, and CBT.

6 Results and Discussion

6.1 Comparison With Earlier Research. First, in order to
validate present formulation, the compliance and the SERR,
tained from the present stress analysis models of unidirectio
ENF and ENC specimens considering various theories C
FOBT, SOBT, and TOBT, have been compared with the availa
results,@7,10,12,17,18,22,24,25#, in the literature.

Table 1 Comparison of compliance and SERR values obtained
from the present work with the experimental results of Sela
et al. †25‡ for unidirectional ENF specimen

Material Properties: Graphite/Epoxy
E115140 GPa,E22510 GPa,G1356 GPa andn1350.34
Geometrical Properties:
L5half-span550.8 mm,b5width525.4 mm
h5half-thickness51.524 mm, 2h53.048 mm,
~No. of laminae524, lamina thickness50.127 mm!
a5crack length525.4 mm
Loading:Pc567.3 kg5660.213 N

Model/Theory Compliance~mm/N! SERR-GIIc (J/m2)

Sela et al.@25# 0.00316 527

Present Work

Pl. e† Pl. s‡ Pl. e† Pl. s‡

CBT 0.00307 0.003092 490.6896 494.7750
FOBT-E 0.003126 0.003152 491.3822 495.467
FOBT-1 0.003121 0.003147 490.6896 494.775
FOBT-2 0.003132 0.003158 490.6896 494.775
SOBT-E 0.003167 0.003193 512.2981 516.470
SOBT-1 0.003159 0.003185 509.2989 513.460
SOBT-2 0.003180 0.003205 512.9724 517.149
TOBT-E 0.003182 0.003208 524.1528 528.3746
TOBT-1 0.003177 0.003203 520.7998 525.0084
TOBT-2 0.003195 0.003221 527.4948 531.7303

†Pl. e: plane-strain-type analysis.
‡Pl. s: plane-stress-type analysis.
NOVEMBER 2003, Vol. 70 Õ 847



Table 2 Comparison of normalized SERR values obtained from the present work with the existing results for ENF specimen

Normalized Strain Energy Release RatesGII /GII
CBT

Geometry: span52L576.2 mm (3 in), depth52h53.39979 mm(0.13385 in), and breadth5b525.4 mm (1 in)
Material: E115115.1425 GPa (16.73103 ksi), E335E2259.6527 GPa (1.43103 ksi), G1354.4816 GPa (0.653103 ksi), andn1350.3
Loading:P54.44822 N (1 lbf)

a/L
Salpekar

et al. @24#†
Chatterjee

@18#
Ding and

Kortschot@22#
Whitney

@12#
Whitney

@10#
Carlsson
et al. @7#

0.2 1.305 1.315 1.298 1.388 1.448 1.256
0.3 1.205 1.247 1.298 1.114
0.4 1.142 1.152 1.16 1.181 1.360 1.064
0.5 1.121 1.143 1.171 1.041
0.6 1.090 1.100 1.108 1.118 1.133 1.028
0.7 1.085 1.101 1.121 1.021
0.8 1.064 1.074 1.082 1.088 1.104 1.016
0.9 1.050 1.066 1.073 1.079 1.071 1.013

FOBT-2 FOBT-E SOBT-2 SOBT-E TOBT-2 TOBT-E
Present Work—Plane Strain

0.2 1.0 1.0215 1.1828 1.1894 1.3079 1.2808
0.3 1.0 1.0095 1.1202 1.1210 1.2007 1.1828
0.4 1.0 1.0054 1.0895 1.0888 1.1488 1.1354
0.5 1.0 1.0034 1.0713 1.0701 1.1182 1.1075
0.6 1.0 1.0024 1.0592 1.0578 1.0979 1.0891
0.7 1.0 1.0018 1.0503 1.0491 1.0830 1.0759
0.8 1.0 1.0013 1.0423 1.0419 1.0696 1.0648
0.9 1.0 1.0010 1.0275 1.0310 1.0484 1.0496

Present Work—Plane Stress

0.2 1.0 1.0213 1.1821 1.1886 1.3066 1.2797
0.3 1.0 1.0095 1.1197 1.1205 1.1999 1.1821
0.4 1.0 1.0053 1.0891 1.0884 1.1482 1.1349
0.5 1.0 1.0034 1.0710 1.0698 1.1177 1.1071
0.6 1.0 1.0024 1.0589 1.0576 1.0975 1.0888
0.7 1.0 1.0017 1.0501 1.0489 1.0827 1.0756
0.8 1.0 1.0013 1.0421 1.0418 1.0693 1.0646
0.9 1.0 1.0010 1.0275 1.0310 1.0483 1.0495

†SERR values obtained from virtual crack closure technique~VCCT! and two-dimensional plane-strain finite element analysis
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Compliance and SERR values, obtained from present w
have been compared with the experimentally obtained complia
and SERR values of Sela et al.@25# for ENF specimen made up o
graphite/epoxy material without any tough adhesive layers
presented in Table 1. By closely examining the Table 1, the
lowing observations can be made. In general, as the order o
theory increases compliance and SERR values are convergin
the Sela et al.@25# results and hence it can be concluded that
performance of present formulation of the stress analysis mo
is good. Among all the beam theories considered, SERR va
obtained from TOBT are in good agreement with the SERR val
of Sela et al.@25#. Hence, it can be said that higher-order she
deformation theories are important to be considered for SE
calculation. Further, it can be observed that there is no differe
between the SERR values of CBT and FOBT-1,2. This indica
that transverse shear deformation up to first order~FOBT-1,2! has
no influence on SERR values~but not in the case of FOBT-E!. A
similar observation was pointed out by Corleto and Hogan@20#.

In Table 2, normalized SERR values from the shear deform
tion theories considered~SERR values of shear deformation bea
theories have been normalized with SERR values from CBT! have
been compared with those from earlier research works. From
table, it can observed that TOBT-2,E theories are in good ag
ment with those of Salpekar et al.@24#, Chatterjee@18#, and Ding
and Kortschot@22#. Further, the following points can be observe
and discussed from Table 2. Whitney@12# presented the result
based on second-order beam theory in which it appears, to
authors knowledge, that while applying the matching or continu
conditions at the crack tip, contribution from stress resultantSxx is
left out. This approach gives the SERR values which are on
higher side when compared to Salpekar et al.@24#. SOBT-1,2,E of
present work are also based on second order beam theories s
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to the earlier ones in the literature except that the matching
continuity conditions are applied appropriately which incorpora
the contribution of stress resultantSxx into the matching or conti-
nuity conditions. Because of this change in the matching con
tions, SERR values from SOBT are much lower than those
Salpekar et al.@24#. It can also be seen that SERR values fro
TOBT ~with proper matching conditions at the crack tip! are close
to the finite element analysis results of Salpekar et al.@24#. This
indicates that as the order of the shear deformation incre
SERR values from the shear deformation beam theories~with
proper matching conditions at the crack tip! converge towards the
SERR values obtained from finite element analysis. This obse
tion highlights the fact that it is equally important to apply prop
matching or continuity conditions at the crack tip for more reliab
and accurate analysis apart from considering higher-order~second
and third! shear deformation effects to obtain compliance a
SERR.

Present work results have also been compared with thos
Wang and Williams@17# for ENF and ENC specimens in Tables
and 4 respectively. Once again it can be observed that, amon
the theories, compliance and SERR obtained from third or
beam theory~TOBT-E! are in better agreement with those fro
Wang and Williams@17#.

6.2 Comparison Between Plane Stress and Plane Strain
Analyses. In order to clarify the point that whether plane stre
or plane strain condition~constitutive equation! to be considered
for the analysis, a parametric study has been carried out by v
ing the valuesE11/E22 for fixed a/L, L/h, E11, G13, n13, and
load ~P! values and the results have been presented for both c
pliance and SERR in Table 5. It can be seen clearly from this ta
that asE11/E22 increases the difference between plane stress
Transactions of the ASME



Table 3 Comparison of compliance and SERR values obtained from present work with Wang and Williams †17‡ results for ENF
specimen

Material: S1156.831023 (GPa)21, S22512831023 (GPa)21, S66536231023 (GPa)21, andn1250.3
Geometry:L550 mm, b51.0 mm, andh51.5 mm. Loading:P51.0 N.

a (mm)
Wang and Williams

@17#

Present Work—Plane Stress

CBT FOBT-E SOBT-E TOBT-E
Compliance~mm/N!

10 0.068876 0.063719 0.066931 0.067663 0.067637
20 0.075197 0.069007 0.072265 0.073545 0.073823
30 0.091374 0.083363 0.086666 0.088856 0.089646
40 0.121900 0.111319 0.114667 0.118123 0.119627

SERR3103 (N/mm)

FEM
Semi-

Empirical

10 0.151 0.151 0.113 0.116 0.134 0.144
20 0.551 0.526 0.453 0.456 0.492 0.513
30 1.182 1.128 1.020 1.022 1.077 1.108
40 2.025 1.957 1.813 1.816 1.887 1.927

Effect of shear deformation (E11 /G13) on SERR: a520 mm

E11 /G13

26.62 0.527 0.508 0.453 0.455 0.480 0.495
53.24 0.551 0.526 0.453 0.456 0.492 0.513

106.47 0.587 0.552 0.453 0.458 0.510 0.538
212.94 0.637 0.592 0.453 0.462 0.536 0.575
735.29 0.783 0.719 0.453 0.485 0.614 0.682

Note: S1151/E11 , S2251/E22 , S6651/G12 , andG135G12
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plane strain conditions reduces and becomes less than 5%
E11/E22>2 and 1% forE11/E22>10. Hence, one can conside
either plane stress or plane strain condition for the analysis w
E11/E22 is sufficiently large.

6.3 Influence of Crack Length „aÕL Ratio…. From Tables
3 and 4, it can be observed that compliance and SERR increa
crack length increases.

The material, geometrical properties, and load have been ta
from Salpekar et al.@24# to present the results in Figs. 3 to 5. Th
length (2L), breadth~b!, and depth (2h) of the ENF specimen are
76.2 mm~3.0 in!, 25.4 mm~1 in!, and 3.39979 mm~0.13385 in!,
respectively. The material properties areE115115.1425
GPa (16.73103 ksi), E225E3359.6527 GPa (1.43103 ksi), G13

54.4816 GPa (0.653103 ksi), and n1350.3. Loading is P
54.44822 N (1 lbf).

Figure 3 shows the influence of crack length on the normali
SERR values obtained from various shear deformation theo
The SERR values of TOBT-E, SOBT-E, and FOBT-E approa
those of CBT as the crack length increases.

Figure 4 shows the normalized shear stress distribution ah
of the crack tip obtained from various beam theories for a giv
crack length (a/L50.5). It can be observed that TOBT-E an
SOBT-E give high peak shear stress at the crack tip which de
exponentially to that of CBT as distance increases from the cr
tip. It can also be observed that shear stress given by FOBT-
constant ahead of the crack tip and is equal to that of CBT
implies that first-order shear deformation does not affect the s
stress distribution ahead of the crack tip. Also it can be noted
peak shear stress values of TOBT-E are greater than thos
SOBT-E.

Figure 5 gives the influence of crack length ‘‘a/L ’’ on the nor-
malized shear stress distribution ahead of the crack tip
TOBT-E. It can be observed from this figure that as crack len
increases peak shear stress increases and for all crack length
shear stress distribution decays exponentially.

6.4 Influence of Shear Deformation „E11 ÕG13 Ratio….
Tables 3 and 4 show the performance of FOBT-E, SOBT-E,
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TOBT-E for higherE11/G13 ratios. TOBT-E shows good agree
ment with the results of Wang and Williams@17# when compared
to SOBT-E and FOBT-E as theE11/G13 ratio increases. This
proves the fact that third~higher! order shear deformation beam
theories are necessary whenE11/G13 ratios are higher. Further, i
can be seen that asE11/G13 ratio increases SERR increases for
given crack length.

The material, geometrical properties and load have been ta
from Gillespie et al.@26# to present the results shown in Figs.
and 7. The material properties areE115126.1 GPa, E33

59.7 GPa, andn1350.3. The geometrical properties are Leng
(2L)5101.6 mm and breadth (b)525.4 mm. The loading isP
5100 N.

Figure 6 shows the normalized shear stress distribution ah
of the crack tip based on TOBT-E for variousE11/G13 ratios and
for a given crack length (a/L50.5). From this figure, it can be
seen that test specimens with lowerE11/G13 ratio will have high
peak shear stress where as test specimens with higherE11/G13

ratio will have low peak shear stress. Further, it can also be
served that in the case of test specimens with lowerE11/G13 ratio,
TOBT-E decays to CBT more steeply when compared to the
specimens with higherE11/G13 ratio. In other words, for higher
order shear deformation theories, shear stress decays more st
in the case of test specimens with lowerE11/G13 ratios while the
decay of shear stress is gradual in the case of test specimens
higherE11/G13 ratios.

6.5 Influence of Thickness or Depth of the Specimen„L Õh
Ratio…. Influence of thickness on SERR has been shown in
Table 6. It can be observed from this table that asL/h ratio in-
creases SERR increase for the given crack length. Normal
shear stress distribution ahead of the crack tip, based on TOB
has been shown in the Fig. 7 for variousL/h ratios and for a given
crack length (a/L50.5). It can be observed from Fig. 7 that a
NOVEMBER 2003, Vol. 70 Õ 849



Table 4 Comparison of Compliance and SERR values obtained from present work with Wang and Williams †17‡ results for ENC
specimen

Material: S1156.831023 (GPa)21, S22512831023 (GPa)21, S66536231023 (GPa)21, andn1250.3
Geometry:L560 mm, b51.0 mm, andh51.0 mmP51.0 N

a (mm)
Wang and Williams

@17#

Present Work—Plane Stress

CBT FOBT-E SOBT-E TOBT-E
Compliance~mm/N!

2 0.9215 0.7345 0.7459 0.7480 0.7476
5 0.9234 0.7357 0.7472 0.7496 0.7494

10 0.9347 0.7446 0.7563 0.7599 0.7604
20 1.0160 0.8160 0.8280 0.8365 0.8397
30 1.2260 1.0098 1.0220 1.0388 1.0466
40 1.6280 1.3872 1.3997 1.4279 1.4422
50 2.2820 2.0094 2.0222 2.0650 2.0878
55 2.7220 2.4314 2.4443 2.4955 2.5229

SERR3102 (N/mm)

FEM
J-Integral

Semi-
empirical

2 0.0134 0.014 0.0061 0.0075 0.0107 0.0123
5 0.054 0.056 0.038 0.040 0.048 0.052

10 0.183 0.186 0.153 0.154 0.171 0.180
20 0.672 0.677 0.612 0.613 0.646 0.665
30 1.466 1.474 1.377 1.378 1.427 1.455
40 2.567 2.577 2.448 2.449 2.515 2.552
50 3.972 3.987 3.825 3.826 3.908 3.954
55 4.752 4.806 4.628 4.630 4.708 4.747

Effect of shear deformation (E11 /G13) on SERR: a520 mm

E11 /G13

2.94 0.647 0.634 0.612 0.612 0.620 0.624
26.62 0.661 0.662 0.612 0.6127 0.636 0.649
53.24 0.672 0.677 0.612 0.6134 0.646 0.665

106.47 0.697 0.700 0.612 0.615 0.661 0.687
212.94 0.727 0.735 0.612 0.617 0.683 0.720
735.29 0.877 0.842 0.612 0.631 0.754 0.820

Note: S1151/E11 , S2251/E22 , S6651/G12 , andG135G12
o
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at the
L/h increases peak shear stress at the crack tip increases. In
words it can be said that shallow~thin! test specimens will have
higher peak shear stresses at the crack tip when compare
deeper~thick! test specimens. It can also be observed that
shear stress distribution of TOBT-E converges to CBT m
sharply for test specimen with higher~shallow test specimen! L/h
ratio when compared to specimen with small~deeper test speci
men! L/h ratio.

Table 5 Comparison between plane-stress-type „Pl. s… and
plane-strain „Pl. e…-type analyses for various E11 ÕE22 values
„ENF specimen …

Theory: TOBT-E
Geometrical properties:a/L50.5, L/h522.4
Material properties:E115115.1425 GPa (16.73103 ksi),
G1354.4816 GPa (0.653103 ksi) andn1350.3

E11 /E22

Compliance3105 (mm/N) SERR3106 (N/mm)

Pl. s Pl. e % diff† Pl. s Pl. e 2% diff

1 123.1337 112.7151 9.24 12.2529 11.2038 9.36
2 123.1337 117.9256 4.42 12.2529 11.7287 4.47
3 123.1337 119.6614 2.90 12.2529 11.9035 2.94
4 123.1337 120.5299 2.16 12.2529 11.9909 2.19
5 123.1337 121.0501 1.72 12.2529 12.0433 1.74

10 123.1337 122.0916 0.85 12.2529 12.1481 0.86
15 123.1337 122.4388 0.57 12.2529 12.1831 0.57
20 123.1337 122.6124 0.43 12.2529 12.2005 0.43
25 123.1337 122.7169 0.34 12.2529 12.2110 0.34

†%diff5~Pl. e2Pl. s/Pl. e!3100
850 Õ Vol. 70, NOVEMBER 2003
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7 Conclusions
Mathematical models, for the stress analyses of unidirectio

ENF and ENC specimens using CBT, FOBT, SOBT, and TOB
have been developed to determine the interlaminar fracture to
ness of unidirectional composites in mode II. In the present stu
appropriate matching conditions, in terms of generalized displa
ments and stress resultants, have been derived and applied

Fig. 3 Influence of crack length on normalized SERR for vari-
ous shear deformation beam theories
Transactions of the ASME
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crack tip by enforcing the displacement continuity at the crack
in conjunction with variational equation. SERR has been cal
lated using compliance approach. The compliance and SERR
tained from present formulations have been compared with
existing experimental, analytical, and finite element results
found that TOBT is in close agreement with the experimental
finite element results. It has been proved that it is very import
to apply proper matching or continuity conditions at the crack
for more reliable and accurate analysis of ENF and ENC sp
mens apart from considering higher-order~second and third! shear
deformation effects to obtain accurate compliance and SERR

One can use either plane strain or plane-stress-type cond
~constitutive equation! for the analysis of unidirectional ENF an
ENC specimens whenE11/E22 ratio is sufficiently large. Compli-
ance and SERR increase as crack length increases. The S
values from TOBT-1,2,E, SOBT-1,2,E, and FOBT-E theories
proach SERR values from CBT as the crack length increase
the case of TOBT and SOBT, peak shear stress at the crac
increases as crack length increases and decays exponentia

Fig. 4 Normalized interlaminar shear stress distribution ahead
of the crack tip based on various shear deformation beam theo-
ries

Fig. 5 Influence of various crack lengths on the normalized
interlaminar shear stress distribution ahead of the crack tip
Journal of Applied Mechanics
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CBT as distance increases from the crack tip. For a given cr
length, asE11/G13 ratio increases SERR increases.E11/G13 ratio
~shear deformation! will not affect the SERR of FOBT-1,2 theo
ries and the SERR is similar to that of CBT. Test specimens w
small E11/G13 ratio will have high peak shear stress at the cra
tip where as test specimens with largerE11/G13 ratio will have
low peak shear stress at the crack tip. For a given crack length
L/h ratio increases SERR increases. Shallow~thin! test specimens
will have high peak shear stress at the crack tip when compare
deeper~thick! test specimens.

Fig. 7 Normalized interlaminar shear stress distribution ahead
of the crack tip for various L Õh values

Table 6 Influence of L Õh ratio on the SERR based on classical
and shear deformation beam theories „ENF specimen …

Present Work—Plane Strain

a/L50.5, E11 /G13518.3

L/h CBT FOBT-E SOBT-E TOBT-E

Strain Energy Release Rate3104 (N/mm)

10 3.3791 3.4206 3.8457 4.0792
15 11.4044 11.4667 12.4256 12.9616
20 27.0327 27.1157 28.8182 29.7767
25 52.7982 52.9020 55.5593 57.0617
30 91.2353 91.3599 95.1838 97.3516

Fig. 6 Normalized interlaminar shear stress distribution ahead
of the crack tip for various E11 ÕG13 values
NOVEMBER 2003, Vol. 70 Õ 851
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Fiber-Reinforced Membrane
Models of McKibben Actuators
A McKibben actuator consists of an internally pressurized elastic cylindrical tube cov
by a shell braided with two families of inextensible fibers woven at equal and opp
angles to the longitudinal axis. Increasing internal pressure causes the actuator to ex
radially and, due to the fiber constraint, contract longitudinally. This contraction provi
a large force that can be used for robotic actuation. Based on large deformation m
brane theory, the actuator is modeled as a fiber-reinforced cylinder with applied in
pressure and axial load. Given the initial shape, material parameters, axial load,
pressure, the analytical model predicts the deformed actuator shape, fiber angle, and
and membrane stresses. The analytical results show that for a long and thin actuat
deformed fiber angle approaches 54°448 at infinite pressure. The actuator elongates a
contracts for actuators with initial angles above and below 54°448 degrees, respectively
For short and thick actuators with initial angles relatively close to 0 deg or 90 d
however, a fiber angle boundary layer extends to the middle of the actuator, lim
possible extension or contraction. The calculated longitudinal strain and radius cha
match experimental results to within 5%.@DOI: 10.1115/1.1630812#
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1 Introduction
A McKibben actuator consists of a cylindrical flexible tube su

rounded by a braided shell. Pressurization of the tube cause
shell to expand radially and contract longitudinally. Large for
capacity~approximately 30 N for a 12.7 mm muscle at 60 PS!
and high percent strain~approximately 20–30%! make these at-
tractive actuators for many applications,@1#, including robotics,
@2#, and mobility enhancement,@3,4#. In addition, McKibben ac-
tuators are simple to manufacture, compact, and have a
power-to-weight ratio,@5#.

Biologists have found crossed fiber arrays in animals as div
as squids,@6#, and worms,@7#. They observe that if the fiber angl
~relative to the longitudinal axis! is small, the structures contrac
when pressurized~e.g., lizard tongues!, @8#. At an angle of
cos(1/))554°448, the hoop and longitudinal stresses balan
and increasing volume tensions the fibers without causing ei
contraction or elongation. This angle also provides the maxim
enclosed volume for a given fiber length and produces the st
gest structure. Hence, 54°448 is often used for fiber-reinforced
pressure vessels and hosepipes,@9#. For wind angles above
54°448 ~e.g., starfish tube feet,@10#!, the structure elongates unde
pressure.

A number of researchers have developed simple and/or em
cal models of McKibben actuators. Chou and Hannaford@11# use
energy conservation to find the tension as a function of pres
and actuator length without considering the detailed geome
structure. Based on virtual work theory, Tondu and Lopez@2#
extend the static modeling of@11# to dynamic contraction includ-
ing friction between the fibers.

Using a continuum mechanics approach, one may model
actuator as a thin elastic membrane with continuously distribu
inextensible fiber reinforcement undergoing finite deformati
Adkins and Rivlin @12# and Green and Adkins@13# formulate
finite deformation theory for thin membranes and solve some

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Augu
20, 2002; final revision, April 28, 2003. Associate Editor: M.-J. Pindera. Discuss
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
Copyright © 2Journal of Applied Mechanics
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ally symmetric problems. McDonald@14# provides a more recen
treatment of the finite deformation of elastic membranes. Ky
niefs and Spencer@15# obtain an exact solution for initially cylin-
drical elastic membranes with axisymmetric deformation wh
the elastic material has a Mooney strain-energy function. Ya
and Feng@16# provide numerical solutions to inflation of a fla
membrane, longitudinal stretching of a tube, and flattening o
hemispherical cap. Matsikoudi-Iliopoulou and Lianis@17# found
analytical solutions for axisymmetric deformation of membran
including torsion.

Kydoniefs @18# investigates axisymmetric deformations of a
initially cylindrical membrane reinforced by two families of inex
tensible fibers with fixed fiber angles. In@19#, Kydoniefs extends
his previous work to include fiber angles that vary with deform
tion. Matsikoudi-Iliopoulou@20# combines fiber@21# and mem-
brane@17# solutions to obtain the solution of a pressurized cyl
drical membrane reinforced with one family of inextensible fibe

This paper combines the theory of Kydoniefs@18# and
Matsikoudi-Iliopoulou@20# to generate and solve the static equ
tions for initially cylindrical elastic membranes with two famil
fiber reinforcement under inner pressure and axial load. The
tuator shape and fiber and membrane stresses are calculate
compared with experimental results.

2 Governing Equations

2.1 Coordinate System. Figure 1 shows a McKibben actua
tor modeled by two families of inextensible fibers reinforcing
elastic, isotropic, and incompressible membrane with uniform
deformed thickness 2h0 . The fibers form constant angles6a with
the generators of the undeformed cylinder. Under the applied
ner pressureP and axial forceF, the polar coordinates~R, Q, h! of
the undeformed configuration (C0) become~r, u, z! in the de-
formed configuration~C!. The meridional arc length ofC is j and
the angle between the tangent toC and thez-axis iss ~see Fig. 2!.
The structure is axisymmetric, so

r 5r ~j!, (1)

z5z~j!, (2)

u5Q. (3)

st
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Fig. 1 McKibben actuator model
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2.2 Inextensible Fiber Constraint. Let ds0 and ds be the
elements of length in the undeformed and deformed state, res
tively, anda be the angle formed byds0 with a generator in the
undeformed state. From geometry,

S ds

ds0
D 2

5l1
2 cos2 a1l2

2 sin2 a, (4)

where

l15
dj

dh
, (5)

l25
r

R
. (6)

The strain invariants are

I 15l1
21l2

21l3
2, (7)

I 25
1

l1
2 1

1

l2
2 1

1

l3
2 , (8)

where the stretch ratiol351/l1l2 due to the incompressibility
assumption@13#. In the fiber directions,a5a and, due to the
inextensibility assumption,ds5ds0 . Substituting into Eq.~4! re-
sults in

15l1
2 cos2 a1l2

2 sin2 a. (9)

To determine the deformed fiber angleb, we use geometry and
inextensibility to obtain

ds5
dj

cosb
5ds05

dh

cosa
, (10)

so

Fig. 2 Coordinate system definition
VEMBER 2003
pec-
cosb5l1 cosa. (11)

2.3 Stress Tensor. Kydoniefs @21# and Matsikoudi-
Iliopoulou and Lianis@17# found the stress tensor solutions for th
inextensible fibers and the axisymmetric membrane deformat
respectively. The stress tensor solution for McKibben actuator
the sum of the fiber and membrane stresses. We assume the m
brane has a Mooney strain-energy functionW(I 1 ,I 2)5C@(I 1
23)1G(I 223)#, where C and G are material parameters. W
assume that the fibers are embedded in the cylinder, forming
orthotropic material wherel1 andl2 are the stretches of embed
ded meridional and azimuthal material curves, respectively. T
components of the Cauchy normal stress resultant are

n15
2tl2 sin2 a

l1
1

l2

l1
S 12

1

l1
2l2

4D 1
Gl2

l1
S l1

22
1

l2
4D , (12)

n25
2tl1 cos2 a

l2
1

1

l1l2
S l1

22
1

l1
2l2

2D 1
G

l1l2
S l1

2l2
22

1

l1
2D ,

(13)

n350, (14)

Fig. 3 Experimental setup
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wheren1 andn2 are the circumferential and axial stresses, resp
tively, n3 is the shear stress, andt5T/2CD is the nondimensiona
fiber tension withT andD the fiber tension and spacing, respe
tively. Although the fiber spacingD is used to nondimensionaliz
the fiber tension, the fibers are assumed to be continuously
tributed in the membrane.

2.4 Equilibrium Equations. The equilibrium equations for
a membrane undergoing large deformation are

d~l2n2!

dl2
5n1 , (15)

n1 coss

l2
1n2

d~coss!

dl2
5p, (16)

where the nondimensional pressurep5PR/2C, @20#.
Substitution of Eqs.~12!–~14! into Eq. ~15! produces

Fig. 4 Actuator shape „GÄ0.0,aÄ30 deg, l 0Ä5.0…: unde-
formed „thick solid …, fÄ0.0 and pÄ3.2 „thin solid … and experi-
mental „* …, fÄ5.0 and pÄ6.327054 „dash-dotted …, and fÄ5.0 and
pÄ0.9538596 „dotted …

Fig. 5 Strain versus pressure „aÄ30 deg, fÄ0.0,l 0Ä5.0…: solid
„GÄ0.0…, dashed „GÄ0.20…, dash-dotted „GÄ0.35…, and aster-
isk „Experiment …. Circled point is shown in Fig. 4.
Journal of Applied Mechanics
ec-

c-

dis-

A
dt

dl2
1Bt1D50, (17)

where

A~l2!52u1/2 cosa, (18)

B~l2!52
4l2 cosa sin2 a

u1/2 , (19)

D~l2!5

S 3u cos4 a1Gu3l2
42l2

4u223l2
2 cos4 a

13l2
2 cos6 a2Gu2l2

61Gu2l2
2 cos2 a

23Gl2
4 cos4 a13Gl2

4 cos6 a1Gu2 cos2 a
D

l2
3u5/2 cosa

,

(20)

u512l2
2 sin2 a. (21)

Fig. 6 Midpoint radius enlargement versus pressure „ l 0Ä5,G
Ä0.0,aÄ30 deg …: fÄ0.0 „solid …, fÄ1.0 „dashed …, fÄ2.0 „dotted …,
fÄ5.0 „dash-dotted …, and experiment with fÄ0.54 „* …. Circled
point is shown in Fig. 4.

Fig. 7 Fiber angle distribution „GÄ0.0,aÄ30 deg, fÄ0.0…:
solid „ l 0Ä5.0,pÄ3.2…, dotted „ l 0Ä5.0,pÄ17.7…, dash-dotted „ l 0
Ä2.0,pÄ3.5…, and dashed „ l 0Ä2.0,pÄ18.5…
NOVEMBER 2003, Vol. 70 Õ 855
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Equation~17! is a nonlinear ordinary differential equation wit
the independent variablel2 and dependent variablet(l2). Equa-
tion ~17! can be solved analytically, but in most cases the exp
sion fort(l2) is very complicated. For the following fiber angle
however, the expressions are relatively simple. Ata530 deg,
856 Õ Vol. 70, NOVEMBER 2003
es-
,

t~l2!5

S 8Gl2
62Gl2

8116l2
424l2

6216Gl2
4127

124Gl2
2112G248C30l2

2112C30l2
4 D

3l2
2~l2

224!2 , (22)

at a545 deg,
t~l2!5
24Gl2

629Gl2
8116l2

4212l2
6216Gl2

41314G216C45l2
2112C45l2

4

l2
2~3l2

224!2 , (23)

at a5cos(1/))554°448,

t~l2!5
36Gl2

6212Gl2
8227Gl2

4127l2
4218l2

619G13Gl2
219236C54l2

2124C54l2
4

4l2
2~2l2

223!2 , (24)

and ata560 deg,

t~l2!5
4Gl2

62Gl2
814l2

422l2
624Gl2

41312G12Gl2
228C60l2

214C60l2
4

2l2
2~l2

222!2 , (25)
i-
o

-

t

Fig. 8 Fiber n 1 „solid …, membrane n 1 „dashed …, fiber n 2 „dot-
ted …, and membrane n 2 „dash-dotted … stress distributions „G
Ä0.0,aÄ30 deg, fÄ0.0,l 0Ä5.0,pÄ3.2…
whereC30, C45, C54, andC60 are integration constants. Subst
tution of l2(0) into Eqs.~22!–~25! relates integration constants t
t(l2(0)).

2.5 Boundary Conditions. Using symmetry and force bal
ance conditions, the boundary conditions atj5L andj50 are

l2~L !51, (26)

n2~0!5
pl2~0!

2
1

f

l2~0!
, (27)

s~0!50, (28)

wheref 5F/4pCR. Equation~26! establishes the integration limi
l2(L). From Eq.~16!, we have

d~l2n2 coss!

dl2
5pl2 . (29)

Integrating the above equation and using Eq.~27! to determine the
integration constant,
Fig. 9 „a… Strain versus pressure, „b… midpoint radius enlargement versus pressure „ l 0Ä2.0,G
Ä0.0,fÄ0.0…: aÄ10.0° „dashed …, aÄ20.0 deg „dotted …, aÄ30.0 deg „dash-dotted …, and aÄ40.0 deg
„solid …
Transactions of the ASME
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coss5
pl2

2n2
1

f

l2n2
. (30)

Using Eq.~28!,

p5
2n2~0!

l2~0!
2

2 f

l2
2~0!

. (31)

From the geometrical shape of the cylindrical membrane,
know

l 05
L0

R
52E

l2~0!

1 dl2

l1 sins
, (32)

z~l2!5
Z~l2!

R
52E

l2~0!

l2

cotsdl2 . (33)

Unfortunately, the integrands in Eqs.~32! and~33! are singular at
l25l2(0) (s50.0). The Fortran IMSL library function QDAGS
is used to integrate the singular functions.

Fig. 10 Strain versus pressure „GÄ0.0,aÄ30 deg, fÄ0.0…: l 0
Ä1.0 „dashed …, l 0Ä2.0 „dotted …, l 0Ä3.0 „dash-dotted …, and l 0
Ä5.0 „solid …

Fig. 11 Strain versus pressure „ l 0Ä5,GÄ0.0,aÄ30 deg …: f
Ä0.0 „solid …, fÄ1.0 „dashed …, fÄ2.0 „dotted …, and fÄ5.0 „dash-
dotted …
Journal of Applied Mechanics
we

2.6 Numerical Method. The solution procedure starts wit
a given deformed midpoint radiusl2(0) and a trial value of
t(l2(0)). Equation~17! is integrated to obtaint(l2). Stressn2 is
calculated from Eq.~13! andl1 from the constraint Eq.~9!. The
corresponding pressurep is determined from Eq.~31! and substi-
tuted into Eq.~30! to solve fors. Finally, the initial lengthl 0 is
integrated from Eq.~32!. The trialt(l2(0)) is adjusted according
to the difference between the desired and calculatedl 0 .

3 Numerical and Experimental Results

3.1 Experimental Setup. Figure 3 shows the experimenta
setup used to validate the theoretical model. The McKibben
tuator is mounted between a pivoting rod load and the top sup
plate. Proportional flow control valves~PFCVs! inlet/exhaust air
to/from the actuator. Pressurization of the actuator causes
shorten and rotate the rod. A 4000 counts per revolution enco
senses the rod rotation angle. A digital camera photographs
deformed shape of the actuator. The experimental parameter

Fig. 12 Strain versus pressure „ l 0Ä2.0,GÄ0.0…: dashed „a
Ä20.0 deg, fÄ1.0…, dotted „aÄ20.0 deg, fÄ5.0…, dash-dotted
„aÄ40.0 deg, fÄ1.0…, and solid „aÄ40.0 deg, fÄ5.0…

Fig. 13 Locked „bÄ54°448… strain DL * „solid … and midpoint
radius enlargement DR* „dotted … versus initial fiber angle a.
Numerical results for large p : DL „* … and DR „s….
NOVEMBER 2003, Vol. 70 Õ 857
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Fig. 14 „a… Strain versus pressure; „b… midpoint radius enlargement versus pressure „GÄ0.0,f
Ä0.0…: aÄ60 deg, l 0Ä1.0 „solid …, and aÄ75 deg, l 0Ä0.5 „dash-dotted …
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L050.0397 m, R50.0079 m, C5509.33 N/m2,

P510– 60 psi,

l 055.0, p50.5– 3.2, a530 deg, G50.0, f 50.
(34)

3.2 Experimental Validation of Theoretical Model. Fig-
ure 4 compares the theoretical~solid! and experimental~* ! actua-
tor shape forp53.2. The theoretically predicted change in leng
(z(L)53.87) and maximum radius (r (0)51.51) agree within 3%
and 2% to the experiment, respectively. Figure 5 shows se
experimental data points ofDL5 l 02z/ l 0 versusp compared with
theoretical data forG50, 0.2, and 0.35. The experimental da
best matches theG50.35 curve with a maximum error of 5%
However, if we assumeG50 the error increases by 10%. Figure
compares the experimentally measuredDR5l2(0)21 with the-
oretical data for different axial loads. The experimental d
agrees to within 10% with the theoretical curve forf 50.0. Thus,
within the limits of experimental accuracy, the proposed the
accurately predicts the experimental performance of a McKib
actuator. The remaining figures explore the interesting physics
hind McKibben actuators and predict the effects of parameters
inputs on the actuator response.

3.3 Mechanics of Pressurization. Figure 5 shows the
McKibben actuator contracting with increasing internal press
ization. Fora530 deg, the maximumDL approaches 30%. Simi
larly, the maximum radius change in Fig. 6 approaches 60%. T
saturation effect can be explained by Fig. 7 showing the deform
fiber angle distributionb(z). At relatively low pressurization (p
53.2) there is a broad boundary layer where the fiber angle
creases from the boundary conditiona530 deg tob549 deg at
z50. At high pressurization (p517.7), the boundary laye
shrinks andb saturates below the lock angle of 54°448. Thus,DR
andDL saturate as boundary layer shrinkage requires higher p
surization to obtain smaller incremental dimension changes.

Figure 8 shows the circumferential (n1) and axial (n2) stress
distributions for the fibers and membrane. The circumferential
axial fiber stresses are at least 2.5 and 10.0 times larger tha
corresponding membrane stresses, respectively. This shows
the membrane primarily acts to apply the pressure loading to
fiber network. The response to pressurization is primarily g
erned by the fiber equilibrium conditions. This also explains w
the membrane properties~e.g.,G! have little effect on the pressur
ization response. The fibers and membrane are constraine
move together~i.e., no relative motion! and this causes the axia
, NOVEMBER 2003
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membrane stress to be slightly negative over much of the len
In practice, the fibers can slide on the membrane, potentially
lieving these compressive stresses.

3.4 Parameter and Loading Effects. Figure 9 shows the
effect of initial fiber angle~a! on the pressurization response. Th
maximum DL and DR increase with decreasing fiber angle. A
low pressurization (p,0.9), however, thea530 deg case outper
forms thea510 deg anda520 deg cases. Thus, the selection
initial fiber angle depends on the maximum pressure availabl
possible due to stress constraints.

Figure 10 shows that the initial length of the actuator grea
affects the achievable strain. Anl 051 actuator has only one hal
of theDL of an l 055 actuator. This can be explained using Fig.
The boundary layer thickness does not scale proportional to
tuator length. Thus the maximum deformed fiber angle is sma
for the same applied pressure and the resultingDL is smaller.

Figure 11 shows that applied loads increase the actuator le
~decreaseDL). The actuator shape changes with applied loadi
In Fig. 4 the applied load reduces the diameter and eventu
necks down the actuator for sufficiently largef relative to the
applied pressure. Figure 12 shows that actuators with small in
fiber angles can support higher loads. In both loading cases sh
( f 51.0 andf 55.0) thea520 degDL is much greater than the
a540 degDL.

3.5 Locked Solutions. If we neglect boundary and mem
brane effects and assume the fibers are locked ats50, we obtain
the locked solutionb554°448. From Eqs.~30! and ~16! with s
50 and the locking conditiond(coss)/dl250, we obtain

n2* 5
pl2*

2
5

n1*

2
, (35)

where~ !* indicates a locked solution. Substitution of Eqs.~12!,
~13!, and~11! into Eq. ~35! yields

2 cos2 b* 512cos2 b* , (36)

or b* 5cos21(1/))554°448. From Eq.~11!, we obtain

l1* 5
cosb*

cosa
. (37)

Substitution of Eq.~37! into the inextensibility Eq.~4! produces
Transactions of the ASME
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l2* 5A12cos2 b*

sin2 a
5

sinb*

sina
. (38)

Figure 13 shows the locked strainDL* 512l1* and radius
DR* 5l2* 21 versusa, respectively. The locked solutions agre
fairly well with the numerical solutions for largep. The agreement
improves for long actuators with fiber angles near 54°448. The
differences observed for short actuators and/or large or small
angles are due to boundary effects. The fiber angle distribu
~See Fig. 7! does not converge to a uniform distribution wi
sharp changes ins at the boundaries. Instead, the equilibriu
shape converges to a smooth boundary layer with increasing p
sure. Thus, the locking angle is only obtained~if at all! in the
middle of the actuator. For short actuators or small/large fi
angles, the boundary layer occupies a large percentage of th
tuator length, reducing the maximum strain and radius.

3.6 Extending Actuator Solutions. McKibben actuators
with initial fiber angles greater than 54°448 extend when pressur
ized. Although these are typically not used due to buckling pr
lems, the theory predicts the strain and maximum radius ve
pressure in Fig. 14. Larger initial fiber angle results in larger
tension. The radius contracts as the actuator extends.

4 Conclusions
A large deformation membrane model with two families of i

extensible fibers accurately predicts the static response
McKibben actuators. The results show that the fiber stresses d
nate the membrane stresses. Hence, the initial fiber angle is
most important parameter governing the actuator response.
small and large initial fiber angles the actuator contacts and
tends, respectively. Ata554°448, the actuator maintains its ini
tial shape under pressurization. The maximum contract
extension can be estimated from the locked solution Eq.~37! for
long actuators witha near 54°448. For short actuators with large
small a, however, the boundary layer includes a significant p
centage of the actuator length and the maximum strain and ra
decrease.
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Dynamic Characteristics of Elastic
Bonding in Composite Laminates:
A Free Vibration Study
In conventional analyses of composite laminates, the assumption of perfect bond
adjoining layers is well accepted, although this is an oversimplification of the reality.
possible that the bond strength may be less than that of the laminae. Thus, the st
weak bonding is an interesting focus area. In this study, an elastic bonding model b
on three-dimensional theory of elasticity in a layerwise framework is used to study
posite laminates. The differential quadrature (DQ) discretization is used to analyze
layerwise model. The present model enables the simulation of actual bonding stress
in laminated structures. The interfacial characteristics of transverse stress continui
well as the kinematic continuity conditions are satisfied through the inclusion of
elastic bonding layer. The present model is employed to investigate the free vibrati
thick rectangular cross-ply laminates of different boundary conditions and lamina
schemes.@DOI: 10.1115/1.1604838#
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1 Introduction

1.1 Background. Composite materials in the form of lam
nates have been utilized in a broad range of engineering s
tures, including space, underwater, and aircraft structures, e
tronic and medical components, and high-end sporting equipm
to name a few. In laminated composite structures, layers of dif
ent materials~or orientation! are bonded together to form a lam
nate, and the resulting laminate is, in general, anisotropic.
anisotropic nature of composite laminates is responsible for c
plex and coupled modes of mechanical response. This in
leads to difficulties in the analysis of laminated structures, es
cially when interlaminar stresses have to be determi
accurately.

Laminated composite plate and shell structures are often
lyzed using two-dimensional plate and shell theories. The class
plate theory~CPT! is based on the assumption of infinite tran
verse rigidity in the transverse direction, and therefore it overp
dicts the buckling loads and vibration frequencies and under
dicts the deflections, see Reddy@1#. The first-order and third-orde
plate theories, which include the effect of transverse shear de
mation, provide a crude remedy to this situation. All tw
dimensional plate theories are based on the assumption of pe
bonding between layers, and the laminate is treated as if it is
equivalent single-layer plate. These equivalent single-layer th
ries ~ESLT! directly evolved from plate theories used for singl
layer theories, and they still leave a lot to be desired in terms

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July
2002; final revision, Feb. 5, 2003. Associate Editor: D. A. Siginer. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering, University of California–Santa B
bara, Santa Barbara, CA 93106-5070, and will be accepted until four mo
after final publication of the paper itself in the ASME JOURNAL OF APPLIED
MECHANICS.
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refining the accuracy of solution for the distribution of stress co
ponents at the ply level. Noting the restrictions of the tradition
plate and shell theories, Reddy@1–3# proposed and advanced
layerwise theory that is based on independent displacement fi
for each material layer; the theory allows a possibility for acco
modating the interlaminar kinematic characteristics~i.e., continu-
ity and discontinuity of proper stresses and strains! of the lami-
nate. The layerwise theory is a special form of three-dimensio
theory in which the variation of the field variables in the tran
verse~or thickness! direction is approximated using a desired d
gree of polynomials. This has also been further investigated
Soldatos and Watson@4,5#, Soldatos and Liu@6#, and Messina and
Soldatos@7#. Srinivas and Rao@8# adopted the three-dimensiona
theory of elasticity in the study of vibration of laminated recta
gular plates and results were presented only for simply-suppo
square sandwich laminates, and these are widely cited as be
mark solutions. Three-dimensional solutions were also obtai
for other boundary conditions, see Savoia and Reddy@9#, and Teo
and Liew@10#. A full three-dimensional theory is computationall
too expensive to be efficient for most practical structures.

As stated earlier, in the two-dimensional analysis~using equiva-
lent single-layer plate and shell theories! of laminated composite
structures, the interface between layers is always assumed t
perfectly bonded, i.e., the displacements on the interface
single valued. Since the ply interface is mainly dominated by
low shear modulus matrix material, with possible additional d
fective bonding occurring during manufacturing or its service li
the interface may not be perfect. It has been recognized, se
and Liu @11#, that low shear moduli of polymer matrix materia
have significant effects on the transverse shear deformation,
consequently the interfacial stress and deformation can stro
affect the service behavior of laminates. In order to accura
predict the performance of composite laminates, it is necessa
account for the bonding layer in an appropriate way, i.e., the tra
verse shear effect and the continuity requirements of both
placements and interlaminar stresses on the interface. One o
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the
nt of
ar-
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Fig. 1 Laminated plate structure with an elastic adhesive bonding layer
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pioneering works in the study of imperfectly bonded interfaces
composite structures was by Newmark et al.@12#, who developed
a linear shear slip in the layer interface by means of the Eu
Bernoulli beam theory. Toledano and Murakami@13# developed a
laminate theory that accounts for both transverse shear effect
interlaminar shear stress continuity to study interlaminar effe
Elasticity studies of sandwich beams with imperfect bonding w
also presented by Rao and Ghosh@14# and Fazio et al.@15#.

There are three types of weak bond models: a shear model
slip between layers; normal separation model with an open
between layers; and general weak bond that combines bot
these models. The main feature of weakly bonded layers is
inclusion of a certain displacement jump, see Lu and Liu@11#, Liu
et al. @16#, and Soldatos and Shu@17#, at an interface, and con
necting it with the interlaminar stress through an appropriate c
stitutive relation. Due to the high interlaminar stresses and w
bonding between composite layers, delamination can occur a
ply interface, which in turn reduces the integrity of structu
causing severe structural degradation. Recent works, such as
of Willians and Addessio@18#, Willians @19#, and Shu and Solda
tos @20#, extended the concept of shear slip in weakly bond
laminates towards modeling general delamination.

1.2 Rigid, Weak, and Elastic Bonding. Two laminae may
be bonded together in two different ways: glue bonding a
warm-pressed bonding. In both, a new layer is formed betw
the original layers. The rigid bonding model prohibits transve
strain while imposing the continuity of transverse stress
whereas the weak bonding model, and also the present el
bonding model, tolerates shear slip and transverse opening a
the lamina interface. Although usually extremely thin, the ex
tence of a bonding layer causes the rigid bonding model to y
incorrect stress distributions along the lamina interface
through the thickness as well. The weak bonding model is a s
plified model that relaxes the rigidity in the rigid bonding mod
The rigid bonding models is obtained when the stiffness of
weak bonding model tends to infinity. However, the weak bond
model excludes the effect of in-plane deformation of the bond
layer on the global behavior as well as the stress distribu
through thickness.

In this paper, the authors present an elastic bonding mo
analogous to that developed in Liew et al.@21# for the bending
problem. In this model, an elastic material layer acts as the ph
cal bonding entity between two laminae. This model will ame
some of the drawbacks of existing weak and rigid models. In
present work, details of this model, which is based on a layerw
framework and utilizes differential quadrature discretization, w
be presented for free-vibration analysis of thick laminated cro
ply composite plates.

1.3 Differential Quadrature „DQ… Method. Circumvent-
ing the difficulties of often very complex mathematical derivati
l of Applied Mechanics
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in analytical approaches, numerical methods, supported by
matic advances in computational speed and storage capab
provide almost the only effective tools for the solution of comp
cated engineering problems. The finite element method~FEM! is a
very popular numerical method for the analysis of a variety
engineering problems. Without the simplifications of a ESLT
laminate can still be modeled with three-dimensional eleme
through standard FEM, but an excessively refined in-plane m
would be required because the thickness of an individual lam
to a large extent, dictates the aspect ratio of the elements,
resulting in adversely high computational requirements. To t
advantage of the full potential of composite materials, accur
tools of analysis and design methodologies of general applica
ity are crucial. There is therefore a real incentive to develop m
powerful modeling tools for composite materials in engineer
applications. The differential quadrature~DQ! method is one such
prospective numerical alternative originated by Bellman@22# to
solve linear and nonlinear differential equations. The basic ide
the DQ method is that the partial derivative of a function w
respect to a variable at a given discrete point can be approxim
as a weighted linear sum of the function values at all discr
points in the domain of that variable. Details of the interpolatio
and the various grid point distribution schemes can be found
Liew et al. @23# and will not be repeated here.

Since its introduction, the DQ method has been widely appl
to various mechanics problems such as bending, vibration
buckling of beams, columns, and plates. The successful im
mentation of this method have been widely reported in a num
of publications; see Bert et al.@24#, Jang et al.@25#, Farsa et al.
@26#, Han and Liew@27#, and Liu and Liew@28#. For a review of
the developments and applications of the DQ method in com
tational mechanics one may consult the article by Bert a
Malik @29#.

2 Interface Modeling of Elastic Bonding

2.1 Physical Model of Elastic Bonding. Consider a rectan-
gular laminate composed ofNL layers,hi being the thickness of
the ith lamina, as depicted in Fig. 1. For two adjacent lamin
bonded together, the material entity in the interfacial region of
laminae is considered independently as an isotropic or anisotr
layer of finite thickness. It will be termed as the natural lay
Since such a layer will consist of the matrix material with ra
domly mixed fibers, this layer may be reasonably regarded
isotropic.

With its bonding characteristics, the natural layer is assume
be rigidly bonded to the neighboring laminae, and the continu
conditions of transverse stresses are enforced along the inter
between the natural layer and the neighboring laminae. It mus
emphasized, however, that the existence of a distinct thin mat
region connecting two adjacent laminae presents new challen
NOVEMBER 2003, Vol. 70 Õ 861
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Both the rigid and existing weak bonding models are oversim
fied to that of a three-dimensional linear spring linking two ma
rial points initially on opposite sides of the interface via consti
tive relations describing the displacement jumps a
corresponding stresses. The present elastic bonding model
incorporates the natural layer, integrating it into the govern
equations, thus sharply distinguishing from previously exist
models, not only in concept, but also in physical meaning. F
thermore, the concept of elastic bonding allows detailed anal
of the bonding effect through examining the mechanical para
etersE, n, r, andh of the bonding layer.

2.2 Theory of Elastic Bonding Model. To establish a the-
oretical basis for elastic bonding, three-dimensional theory
elasticity is integrated within the framework of the layerwi
theory. We first define the displacements in thex, y and
z-directions,Ui , Vi andWi , of the ith layer as

Ui5ui~x,y,z!, Vi5v i~x,y,z!, Wi5wi~x,y,z!

i 51,2,3, . . .NL . (1)

The strains in theith layer are

«x
~ i !5

]Ui

]x
, «y

~ i !5
]Vi

]y
, «z

~ i !5
]Wi

]z
(2)

gxy
~ i !5

]Ui

]y
1

]Vi

]x
, gyz

~ i !5
]Vi

]z
1

]Wi

]y
, gzx

~ i !5
]Wi

]x
1

]Ui

]z
.

The constitutive relations are

$sx ,sy ,sz ,tyz ,tzx ,txy%
T5@Ci j #•$«x ,«y ,«z ,gyz ,gzx ,gxy%

T

(3)

where sx , sy , sz are normal stresses,tyz , tzx , txy are shear
stresses, andCi j ( i , j 51,2, . . . ,6)denote the stiffness coefficients
The equations of motion for each lamina and bonding layer a

]sx

]x
1

]txv

]y
1

]txz

]z
5r

]2u

]t2
,

]sy

]y
1

]txy

]x
1

]tyz

]z
5r

]2v

]t2
,

(4)

]sz

]z
1

]txz

]x
1

]tyz

]y
5r

]2w

]t2
.

Herer denotes the mass density of the layer. Equation~4! can be
written in terms of the lamina displacement field.

It is important to note that the bonding layer is so thin that it
deemed unnecessary to establish the true displacements, stra
stress distributions within it. However, to reflect the dynamic
fect of bonding layer on the overall response of the lamina
structure, three sets of grid points within the bonding layer, t
surface sets and one set in the middle of the layer thickness
used. At the two surface sets, continuity conditions of transve
stresses are enforced, and equations of dynamic equilibrium,
~4!, are satisfied at the midpoint set.

For simply-supported laminate the boundary conditions
given by

w5sx5txy50, at the edges ofx5constant
(5)

w5sy5txy50, at the edges ofy5constant

and clamped edge conditions are

u5v5w50, at the edges ofx,y5constant (6)

with the surface conditions written as

sz5txz5tyz50, at bottom and top of laminate. (7

Obviously, the interfacial characteristics of rigid bonding, i.
continuity and discontinuity of displacements, strains and stres
are no longer valid, and the corresponding constraints are tr
ferred through the material bonding layer based on the ela
862 Õ Vol. 70, NOVEMBER 2003
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bonding model~see Fig. 1~b!!. At the interface between the lowe
lamina and the bonding layer, the continuity conditions are

H sz
~ i !

tzx
~ i !

tzy
~ i !
J

top

5H sz
~BL!

tzx
~BL!

tzy
~BL!

J
bottom

i 51,2, . . . ,NL21 (8)

and at the interface between the bonding layer and the up
lamina, the conditions are

H sz
~BL!

tzx
~BL!

tzy
~BL!

J
top

5H sz
~ i 11!

tzx
~ i 11!

tzy
~ i 11!

J
bottom

i 52, . . . ,NL21,NL (9)

where the superscripts,i or i 11, indicate the layer numbers, an
BL refers to the bonding layer.

All the governing equations can be expressed by the derivat
of displacements through the DQ methodology, and satisfied
merically. It should be noted that the kinematic equations, Eq.~2!,
constitutive relations, Eq.~3!, equations of motion, Eq.~4!, and
interlaminar continuity conditions, Eqs.~8! and ~9!, are all three-
dimensional in nature. These equations are based on the theo
elasticity, and not on plate theories. Thus the numerical res
obtained from this model are numerical analogs of exact thr
dimensional solutions. The DQ method is a~element-free! nu-
merical method that provides the flexibility of arranging the g
points ~not elements! in the domain of interest.

Substituting Eq.~2! into Eq. ~3!, and assuming orthotropic ma
terial behavior, we obtain

sx5C11

]u

]x
1C12

]v
]y

1C13

]w

]z
,

sy5C21

]u

]x
1C22

]v
]y

1C23

]w

]z

sz5C31

]u

]x
1C32

]v
]y

1C33

]w

]z
(10)

tyz5C44S ]v
]z

1
]w

]y D , tzx5C55S ]w

]x
1

]u

]zD ,

txy5C66S ]u

]y
1

]v
]xD .

The following nondimensionalization is used:

X5
x

a
Y5

y

b
Zi5

z

hi
(11)

Ū5
u

a
V̄5

v
b

W̄5
w

H

whereZi is the thickness coordinate of theith layer anda andb
are the length and width of the laminate, respectively. Further

H5( hi1~NL21!•h
(12)

b

a
5Bp ,

hi

a
5Di ,

H

hi
5Hi .

The three normalized equilibrium equations for theith lamina
( i 51,2, . . . ,NL) interior have been given in Liew et al.@23# ex-
cept that the right-hand sides of the current dynamic equations
now, respectively,

r•b2
]2Ū

]t2
, r•a2

]2V̄

]t2
and r•a2

•Hi

]2W̄

]t2
. (13)
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The support conditions in Eqs.~5! and~6! can also be normal-
ized. For simply-supported edge conditions, we have

W̄50, C11

]Ū

]X
1C12

]V̄

]Y
1C13

]W̄

]Zi
50,

C66S 1

Bp

]Ū

]Y
1Bp

]V̄

]X D 50 at the edgex5constant
(14a)

W̄50, C21

]Ū

]X
1C22

]V̄

]Y
1C23

]W̄

]Zi
50,

C66S 1

Bp

]Ū

]Y
1Bp

]V̄

]X D 50 at the edgey5constant

and for clamped edge conditions, we have

Ū5V̄5W̄50 at the edgesx,y5constant. (14b)

The normalized DQ equilibrium equations at a lamina inter
grid point or bonding layer middle point have been given in Lie
et al. @23# except that the right-hand sides of the current dynam
equations are now, respectively,

r•b2Ū ,tt
~ i !~Xk ,Ym ,Zr ,t !, r•a2V̄,tt

~ i !~Xk ,Ym ,Zr ,t !,

and r•a2
•HiW̄,tt

~ i !~Xk ,Ym ,Zr ,t !. (15)

Similarly, the normalized simply-supported edge conditions
given by

W̄~ i !~X1 or XNx
,Yg ,Zf !50 i 51,2, . . . ,NL ;

g51,2, . . . ,Ny ; f 51,2, . . . ,Nzi ,

C11
$ i %(

j 51

Nx

AX1 j
@1# Ū ~ i !~Xj ,Yg ,Zf !1C12

$ i %(
m51

Ny

AYgm
@1# V̄~ i !~X1 ,Ym ,Zf !

1C13
$ i %Hi(

q51

Nzi

AZ f q
@1# W̄~ i !~X1 ,Yg ,Zq!50

or

C11
$ i %(

j 51

Nx

AXNxj
@1# Ū ~ i !~Xj ,Yg ,Zf !1C12

$ i %(
m51

Ny

AYgm
@1# V̄~ i !~XK ,Ym ,Zf !

1C13
$ i %Hi(

q51

Nzi

AZ f q
@1# W̄~ i !~XK ,Yg ,Zq!50,

C66
$ i %FBp(

j 51

Nx

AX1 j
@1# V̄~ i !~Xj ,Yg ,Zf !

1
1

Bp
(
m51

Ny

AYgm
@1# Ū ~ i !~X1 ,Ym ,Zf !G50

or

C66
$ i %FBp(

j 51

Nx

AXNxj
@1# V̄~ i !~Xj ,Yg ,Zf !

1
1

Bp
(
m51

Ny

AYgm
@1# Ū ~ i !~XK ,Ym ,Zf !G50

at the edges ofx5constant

W̄~ i !~Xj ,Y1 or YNy
,Zf !50 i 51,2, . . . ,NL ;

j 51,2, . . . ,Nx ; f 51,2, . . . ,Nzi ,
Journal of Applied Mechanics
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C21
$ i %(

k51

Nx

AX jk
@1# Ū ~ i !~Xk ,Y1 ,Zf !1C22

$ i %(
m51

Ny

AY1m
@1# V̄~ i !~Xj ,Ym ,Zf !

1C23
$ i %Hi(

q51

Nzi

AZ f q
@1# W̄~ i !~Xj ,Y1 ,Zq!50

or

C21
$ i %(

k51

Nx

AX jk
@1# Ū ~ i !~Xk ,YM ,Zf !1C22

$ i %(
m51

Ny

AYNym
@1# V̄~ i !~Xj ,Ym ,Zf !

1C23
$ i %Hi(

q51

Nzi

AZ f q
@1# W̄~ i !~Xj ,YM ,Zq!50,

C66
$ i %FBp(

k51

Nx

AX jk
@1# V̄~ i !~Xk ,Y1 ,Zf !

1
1

Bp
(
m51

Ny

AY1m
@1# Ū ~ i !~Xj ,Ym ,Zf !G50

or

C66
$ i %FBp(

k51

Nx

AX jk
@1# V̄~ i !~Xk ,YM ,Zf !

1
1

Bp
(
m51

Ny

AYNym
@1# Ū ~ i !~Xj ,Ym ,Zf !G50

at the edges ofy5constant. (16a)

The normalized clamped edge conditions take the form

Ū ~ i !~X1 or XNx
,Yg ,Zf !

5V̄~ i !~X1 or XNx
,Yg ,Zf !5W̄~ i !~X1 or XNx

,Yg ,Zf !50

i 51,2, . . . ,NL ; g51,2, . . . ,Ny ,

f 51,2, . . . ,Nzi at the edges of constantx
(16b)

Ū ~ i !~Xj ,Y1 or YNy
,Zf !

5V̄~ i !~Xj ,Y1 or YNy
,Zf !5W̄~ i !~Xj ,Y1 or YNy

,Zf !50

i 51,2, . . . ,NL ; g51,2, . . . ,Ny ,

f 51,2, . . . ,Nzi at the edges of constanty.

The normalized surface conditions at interior grid poin
(Xk ,Ym,0) and (Xk ,Ym ,H) for the bottom of the bottom laye
and the top of the top layer, have been given in Liew et al.@23#
and will not be repeated here.

The normalized interlaminar continuity conditions at interi
grid point (Xk ,Ym ,Hi

T), whereHi
T is the thickness coordinate a

the interface between the lower lamina and bonding layer, are

C31
$ i %(

j 51

Nx

AXk j
@1# Ū ~ i !~Xj ,Ym ,Hi

T!1C32
$ i %(

g51

Ny

AYmg
@1# V̄~ i !~Xk ,Yg ,Hi

T!

1C33
$ i %Hi(

f 51

Nzi

AZNzif
@1# W̄~ i !~Xk ,Ym ,Zf !

5
E

~11n!•~122n! H ~12n!
H

h (
f 51

3

AZ1 f
@1# W̄~Xk ,Ym ,Zf !

1n•F(
j 51

Nx

AXk j
@1# Ū ~ i !~Xj ,Ym ,Hi

T!

1(
g51

Ny

AYmg
@1# V̄~ i !~Xk ,Yg ,Hi

T!G J
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C55
$ i %FHiDi (

j 52

Nx21

AXk j
@1# W̄~ i !~Xj ,Ym ,Hi

T!

1
1

Di
(
f 51

Nzi

AZNzif
@1# Ū ~ i !~Xk ,Ym ,Zf !G

5G•FHiDi (
j 52

Ny21

AXk j
@1# W̄~ i !~Xj ,Ym ,Hi

T!

1
a

h (
f 51

3

AZ1 f
@1# Ū~Xk ,Ym ,Zf !G (17)

C44
$ i %FHi

Di

Bp
(
g52

Ny21

AYmg
@1# W̄~ i !~Xk ,Yg ,Hi

T!

1
Bp

Di
(
f 51

Nzi

AZNzif
@1# V̄~ i !~Xk ,Ym ,Zf !G

5G•FHi

Di

Bp
(
g52

Ny21

AYmg
@1# W̄~ i !~Xk ,Yg ,Hi

T!

1
b

h (
f 51

3

AZ1 f
@1# V̄~Xk ,Ym ,Zf !G

and at (Xk ,Ym ,Hi 11
B ) whereHi 11

B is the thickness coordinate a
the interface between bonding layer and the upper lamina

E

~11n!•~122n! H ~12n!
H

h (
f 51

3

AZ3 f
@1# W̄~Xk ,Ym ,Zf !

1n•F(
j 51

Nx

AXk j
@1# Ū ~ i 11!~Xj ,Ym ,Hi 11

B !

1(
g51

Ny

AYmg
@1# V̄~ i 11!~Xk ,Yg ,Hi 11

B !G J
5C31

~ i 11!(
j 51

Nx

AXk j
@1# Ū ~ i 11!~Xj ,Ym ,Hi 11

B !

1C32
$ i 11%(

g51

Ny

AYmg
@1# V̄~ i 11!~Xk ,Yg ,Hi 11

B !

1C33
$ i 11%Hi 11 (

f 51

Nzi11

AZ1 f
@1# W̄~ i 11!~Xk ,Ym ,Zf !

(18)

G•FHi 11Di 11 (
j 52

Nx21

AXk j
@1# W̄~ i 11!~Xj ,Ym ,Hi 11

B !

1
a

h (
f 51

3

AZ3 f
@1# Ū~Xk ,Ym ,Zf !G

5C55
$ i 11%FHi 11Di 11 (

j 52

Nx21

AXk j
@1# W̄~ i 11!~Xj ,Ym ,Hi 11

B !

1
1

Di 11
(
f 51

Nzi11

AZ1 f
@1# Ū ~ i 11!~Xk ,Ym ,Zf !G
864 Õ Vol. 70, NOVEMBER 2003
t

G•FHi 11

Di 11

Bp
(
g52

Ny21

AYmg
@1# W̄~ i 11!~Xk ,Yg ,Hi 11

B !

1
b

h (
f 51

3

AZ3 f
@1# V̄~Xk ,Ym ,Zf !G

5C44
~ i 11!FHi 11

Di 11

Bp
(
g52

Ny21

AYmg
@1# W̄~ i 11!~Xk ,Yg ,Hi 11

B !

1
Bp

Di 11
(
f 51

Nzi11

AZ1 f
@1# V̄~ i 11!~Xk ,Ym ,Zf !G .

HereG denotes the shear modulus of bonding layer.
In the next section, several examples of the free vibration

thick laminates with different edge conditions are presented
demonstrate the accuracy and efficiency of the present model
computational methodology.

3 Results and Discussion
In the first example, we consider the vibration three-ply~0°/

90°/0°! simply-supported square sandwich plates, see Srinivas
Rao @8#. The moduli, and the properties of the surface layers
listed in Table 1. The thickness of the top and bottom plies
taken to be one tenth of the total thickness of the laminate; and
side-to-thickness ratio is taken to be 10. The through-thickn
mesh consists of three grid points that describe the transverse
in the top and bottom plies, and five grid points are correspo
ingly used for the core layer. A convergence study is carried
with respect to the in-plane grid point distribution. From the r
sults shown in Table 2, it is observed that the convergence is r
and stable. The converged results were obtained with a 939 grid
point distribution. Further, in Table 2, comparison is made b
tween the frequency results obtained from the present th
dimensional elastic bonding model and the rigid bonding mode
Srinivas and Rao@8#, where analytical solutions were presente
Note that ‘‘DQR’’ refers to results based on the rigid bondin
model~without in-plane flexibilities!, but using the present layer
wise theory with DQ implementation. The results in Table 2 a
noticeably different from those of Srinivas and Rao@8#, stemming
from the modeling of elastic bonding layers. It appears that You
modulusE of bonding layer has the dominant effect on the fr
quencies. Further, the thicknessh of the bonding layer has slightly
more significant influence as compared to the Poisson’s ratin,
especially whenE is relatively larger. An important observatio
here is that stable results can be obtained within a rather flex
and broad combination of values of the material parameters.

In the second example, the free vibration of two-ply~0°/90°!
and three-ply~0°/90°/0°! square laminates with various thickne
ratios is considered, see Bhimaraddi and Stevens@30#. The mate-
rial properties are listed in Table 1. The fundamental frequenc

Table 1 Material properties used in the examples

Example 1
Ey /Ex50.543103 Ez /Ex50.530172
Exy /Ex50.23319 Exz /Ex50.010776 Eyz /Ex50.098276
Gxy /Ex50.262931 Gxz /Ex50.159914 Gyz /Ex50.26681
Example 2
Ex555.8979 Ey513.7293 Ez513.7293
nxy50.277 nzx50.068 nyz50.400
Gxy55.5898 Gxz55.5898 Gyz54.9033
Examples 3 and 4
E1 /E2520, 40 E25E3
G125G1350.6E2 G2350.5E2
n125n1350.25 n2350.49
Transactions of the ASME
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Journal of Appl
Table 2 Comparison of fundamental frequency „normalized by ArH2ÕE2x… of simply-supported
square sandwich laminates, †0°Õ90°Õ0°‡ „material properties are given in Table 1; E1x is the
modulus of surface layers and E2x is the modulus of the second layer …

E1x /E2x E h n 535 ~grid! 737 ~grid!
939
~grid!

11311
~grid!

1 0.1 1023 0.03 0.043421 0.045008 0.045294 0.045366
0.3 0.043437 0.045018 0.045301 0.045371

531024 0.03 0.043363 0.044952 0.045240 0.045312
0.3 0.043371 0.044957 0.045243 0.045315

1 1023 0.03 0.044268 0.045913 0.046208 0.046281
0.3 0.044485 0.046090 0.046373 0.046443

531024 0.03 0.043789 0.045407 0.045700 0.045773
0.3 0.043899 0.045496 0.045764 0.045855

Srinivas and Rao@8# 0.047419

$DQR% 0.047338
5 0.1 1023 0.03 0.071175 0.073025 0.073193 0.073209

0.3 0.071214 0.073077 0.073218 0.073233
531024 0.03 0.070782 0.072597 0.072802 0.072815

0.3 0.070802 0.072667 0.072811 0.072827
1 1023 0.03 0.073166 0.075164 0.075209 0.075221

0.3 0.073702 0.075543 0.075663 0.075675
531024 0.03 0.071796 0.073683 0.073827 0.073842

0.3 0.072072 0.073927 0.074060 0.074074
Srinivas and Rao@8# 0.077148

$DQR% 0.076936

Table 3 Comparison of nondimensionalized fundamental frequency „normalized by ArH2ÕE2x…

of simply-supported two-ply square laminates †0°Õ90°‡ „material properties are given in Table 1;
E2x is the modulus of the second layer, and h 1 and h 2 are the thicknesses of the first and
second layers, respectively …

h2 /h1 H/a E h n 737 ~grid! 939 ~grid!
11311
~grid!

13313
~grid!

1 0.1 10 1022 0.05 0.063518 0.063837 0.063938 0.06395
0.4 0.063456 0.063814 0.063915 0.06393

531023 0.05 0.063213 0.063573 0.063675 0.06369
0.4 0.063202 0.063562 0.063664 0.06368

50 1022 0.05 0.063620 0.063984 0.064087 0.06410
0.4 0.063583 0.063947 0.064050 0.06406

531023 0.05 0.063283 0.063647 0.063750 0.06376
0.4 0.063265 0.063628 0.063731 0.06374

Bhimaraddi and Stevens@30# 0.06572
$DQR% 0.065447

0.3 10 1022 0.05 0.440447 0.440411 0.440342 0.44031
0.4 0.440308 0.440270 0.440200 0.44016

531023 0.05 0.440095 0.440060 0.439991 0.43995
0.4 0.440027 0.439990 0.439920 0.43988

50 1022 0.05 0.440938 0.440931 0.440868 0.44083
0.4 0.440852 0.440837 0.440773 0.44074

531023 0.05 0.440319 0.440315 0.440253 0.44022
0.4 0.440283 0.440269 0.440206 0.44017

Bhimaraddi and Stevens@30# 0.47275
$DQR% 0.46312

5 0.1 10 1022 0.05 0.068507 0.068824 0.068913 0.06892
0.4 0.068538 0.068851 0.068939 0.06895

531023 0.05 0.068377 0.068693 0.068782 0.06879
0.4 0.068393 0.068707 0.068795 0.06880

50 1022 0.05 0.069078 0.069399 0.069487 0.06949
0.4 0.069243 0.069549 0.069633 0.06964

531023 0.05 0.068668 0.068986 0.069074 0.06908
0.4 0.068752 0.069062 0.069149 0.06916

Bhimaraddi and Stevens@30# 0.07061
$DQR% 0.070604

0.3 10 1022 0.05 0.464416 0.464359 0.464300 0.46428
0.4 0.464439 0.464380 0.464320 0.46430

531023 0.05 0.464251 0.464194 0.464135 0.46411
0.4 0.464262 0.464204 0.464145 0.46412

50 1022 0.05 0.465295 0.465219 0.465156 0.46513
0.4 0.465577 0.465499 0.465436 0.46541

531023 0.05 0.464705 0.464630 0.464566 0.46454
0.4 0.464844 0.464771 0.464707 0.46468

Bhimaraddi and Stevens@30# 0.48536
$DQR% 0.48418
ied Mechanics NOVEMBER 2003, Vol. 70 Õ 865
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Table 4 Comparison of nondimensionalized fundamental frequency „normalized by
ArH2ÕE2x… of simply-supported square sandwich laminates †0°Õ90°Õ0°‡ „material properties are
given in Table 1; E2x is the modulus of the second layer, and h 1 , h 2 , and h 3 are the thicknesses
of the first, second, and third layers, and h rÄh 2 Õh 1Äh 2 Õh 3…

hr H/a E h n 737 ~grid! 939 ~grid!
11311
~grid!

13313
~grid!

1 0.1 10 1022 0.05 0.068544 0.068837 0.068919 0.06893
0.4 0.068529 0.068817 0.068897 0.06890

531023 0.05 0.067942 0.068235 0.068319 0.06833
0.4 0.067935 0.068225 0.068308 0.06832

50 1022 0.05 0.068955 0.069265 0.069351 0.06936
0.4 0.069078 0.069376 0.069459 0.06947

531023 0.05 0.068139 0.068445 0.068532 0.06854
0.4 0.068202 0.068502 0.068586 0.06860

Bhimaraddi and Stevens@30# 0.07304
$DQR% 0.073006

0.3 10 1022 0.05 0.447945 0.447932 0.447916 0.44792
0.4 0.447624 0.447604 0.447585 0.44759

531023 0.05 0.447134 0.447123 0.447106 0.44711
0.4 0.446977 0.446960 0.446941 0.44695

50 1022 0.05 0.449196 0.449250 0.449254 0.44927
0.4 0.449376 0.449407 0.449405 0.44942

531023 0.05 0.447696 0.447755 0.447759 0.44777
0.4 0.447807 0.447842 0.447840 0.44785

Bhimaraddi and Stevens@30# 0.49119
$DQR% 0.48923

5 0.1 10 1022 0.05 0.060645 0.060966 0.061083 0.06111
0.4 0.060769 0.061076 0.061188 0.06121

531023 0.05 0.060141 0.060457 0.060574 0.06060
0.4 0.060204 0.060512 0.060627 0.06065

50 1022 0.05 0.062401 0.062772 0.062897 0.06292
0.4 0.063062 0.063373 0.063480 0.06350

531023 0.05 0.061019 0.061373 0.061497 0.06153
0.4 0.061362 0.061681 0.061795 0.06182

Bhimaraddi and Stevens@30# 0.07424
$DQR% 0.073300

0.3 10 1022 0.05 0.426236 0.426503 0.426570 0.42660
0.4 0.426393 0.426637 0.426697 0.42673

531023 0.05 0.425453 0.425722 0.425788 0.42582
0.4 0.425540 0.425793 0.425855 0.42589

50 1022 0.05 0.429361 0.429781 0.429897 0.42995
0.4 0.430821 0.431149 0.431238 0.43128

531023 0.05 0.426897 0.427324 0.427438 0.42749
0.4 0.427681 0.428035 0.428128 0.42817

Bhimaraddi and Stevens@30# 0.53438
$DQR% 0.49934
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of two-ply laminates are presented in Table 3, while those of
three-ply laminates in Table 4. Converged results were obta
with a 11311 in-plane grid point distribution. Similar to the firs
example, the results in Tables 3 and 4 reveal that the pre
elastic bonding model is quite different from that of rigid bondi
model, as the structural rigidity of the laminate is reduced. Fr
these numerical results, we note that when the thickness isH/a
50.1 ~in which a is the in-plane dimension of the laminate, andH
is the total thickness of the laminate!, the present results are quit
close to the results of Bhimaraddi and Stevens@30#, who used a
two-dimensional but higher-order plate theory. However, when
thickness is increased toH/a50.3, a larger difference betwee
the two sets of results is observed. From the results of Bhimar
and Stevens@30#, it is noted that the stiffness of the two an
three-layered laminates consisting of equally thick plies is gen
ally softer than that of laminates with unequal lamina thickne
However, for the present elastic bonding cases, the observa
are different. For two-ply laminates, the stiffness of the lamina
consisting of equally thick plies, is softer than that of the lam
nates with unequal lamina thickness; however, for the three
laminates, the converse is true, where the stiffness of the la
nates consisting of equally thick plies, is stiffer than that of t
laminates with unequal lamina thickness. Since the present an
sis is based on a three-dimensional model, the difference ma
attributed to certain limitations of higher-order plate theory
modeling thick laminates of the present configuration.

In the third example, the vibration of two-ply~0°/90°! and
three-ply~0°/90°/0°! rectangular laminates with simply-supporte
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edges along opposite edges (x5constant), and clamped along th
other opposite edges (y5constant), is considered. The materi
properties of the layers are listed in Table 1, and this example
been considered previously by Khdeir@31#, Reddy and Khdeir
@32#, and Khdeir@33#. Both square and rectangular laminates a
analyzed. Results for the two-ply laminates are presented
Tables 5~a! and 5~b!, and those of the three-ply laminates a
presented in Tables 6~a! and 6~b!. Converged solution is obtaine
again with a 11311 in-plane grid point distribution. Present re
sults show reasonable agreement with the results of Kh
@31,33#, and Reddy and Khdeir@32#, who used the third-order
plate theory of Reddy@1,34#. From the results in Tables 5~a!, 5~b!,
6~a!, and 6~b!, it can be observed that the rigid bonding model
slightly stiffer than the elastic bonding model when using an i
tropic elastic bonding layer with modulus equivalent to the mat
material of the composite.

In the fourth and final example, the vibration of fully clampe
two-ply ~0°/90°! and three-ply~0°/90°/0°! rectangular laminates
of various aspect and thickness ratios is studied. The mate
properties of these laminates are the same as that of the pre
example. This problem has no known analytical solution. Res
for the two-ply laminates are shown in Table 7, while those for
three-ply laminates are presented in Table 8. Again, conver
solution is obtained with a 11311 in-plane grid point distribution.
It is interesting to observe here that, unlike the simply-suppor
cases of Example 1, the influence of bonding parameters for
fully clamped plates is less obvious.
Transactions of the ASME
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Table 5 „a… Comparison of nondimensionalized fundamental frequency „normalized by
Ara4ÕH2E2… of two-ply square laminates †0°Õ90°‡ with SCSC edge conditions „material proper-
ties are given in Table 1 …

H/a E1 /E2 E h n 737 ~grid! 939 ~grid!
11311
~grid!

13313
~grid!

0.1 20 1 1023 0.1 12.7302 12.7192 12.7135 12.710
0.4 12.7280 12.7169 12.7112 12.707

531024 0.1 12.7566 12.7457 12.7400 12.736
0.4 12.7555 12.7445 12.7388 12.735

20 1023 0.1 12.8599 12.8454 12.8385 12.834
0.4 12.8668 12.8495 12.8413 12.837

531024 0.1 12.8214 12.8086 12.8023 12.798
0.4 12.8250 12.8107 12.8038 12.800

Khdeir @31# 12.990
$DQR% 12.7672

40 1 1023 0.1 14.4896 14.4769 14.4700 14.466
0.4 14.4877 14.4750 14.4680 14.464

531024 0.1 14.5301 14.5175 14.5105 14.507
0.4 14.5291 14.5165 14.5096 14.506

40 1023 0.1 14.6836 14.6611 14.6506 14.645
0.4 14.6919 14.6655 14.6533 14.647

531024 0.1 14.6281 14.6096 14.6007 14.596
0.4 14.6323 14.6120 14.6022 14.597

Khdeir @31# 15.218
$DQR% 14.5471

0.2 20 1 1023 0.1 9.6745 9.6670 9.6631 9.659
0.4 9.6720 9.6645 9.6606 9.657

531024 0.1 9.6813 9.6737 9.6698 9.666
0.4 9.6800 9.6725 9.6686 9.665

20 1023 0.1 9.7158 9.7055 9.7009 9.697
0.4 9.7157 9.7055 9.7008 9.697

531024 0.1 9.7021 9.6929 9.6887 9.685
0.4 9.7020 9.6930 9.6887 9.685

$DQR% 9.6733
40 1 1023 0.1 10.3278 10.3191 10.3157 10.313

0.4 10.3257 10.3170 10.3136 10.311
531024 0.1 10.3358 10.3271 10.3237 10.321

0.4 10.3347 10.3260 10.3226 10.320
40 1023 0.1 10.3842 10.3694 10.3643 10.361

0.4 10.3837 10.3692 10.3641 10.360
531024 0.1 10.3647 10.3524 10.3481 10.345

0.4 10.3642 10.3523 10.3480 10.344
Reddy & Khdeir@32# 11.890

$DQR% 10.3294

Table 5 „b… Comparison of nondimensionalized fundamental frequency „normalized by
Ara4ÕH2E2… of two-ply rectangular laminates „aÕbÄ2, aÕHÄ10… †0°Õ90°‡ with SCSC edge
conditions „material properties are given in Table 1 …

E1 /E2 E h n 537 ~grid! 539 ~grid!
7311
~grid!

7313
~grid!

20 1 1023 0.1 33.5409 33.0988 33.0278 32.996
0.4 33.5219 33.0811 33.0104 32.979

531024 0.1 33.5720 33.1352 33.0642 33.033
0.4 33.5625 33.1264 33.0555 33.024

20 1023 0.1 33.8307 33.3637 33.2728 33.236
0.4 33.8854 33.3774 33.2871 33.250

531024 0.1 33.7188 33.2681 33.1864 33.152
0.4 33.7464 33.2748 33.1937 33.159

$DQR% 33.0712
40 1 1023 0.1 35.0134 34.7512 34.6763 34.645

0.4 34.9958 34.7349 34.6603 34.628
531024 0.1 35.0487 34.7923 34.7173 34.686

0.4 35.0399 34.7841 34.7093 34.677
40 1023 0.1 35.4280 35.1029 34.9845 34.941

0.4 35.4835 35.1127 34.9965 34.952
531024 0.1 35.2667 34.9731 34.8733 34.835

0.4 35.2930 34.9769 34.8793 34.840
Reddy & Khdeir@32# 40.925

$DQR% 34.7269
ied Mechanics NOVEMBER 2003, Vol. 70 Õ 867
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Table 6 „a… Comparison of nondimensionalized fundamental frequency „normalized by
Ara4ÕH2E2… of square sandwich laminates †0°Õ90°Õ0°‡ with SCSC edge conditions „material
properties are given in Table 1 …

H/a E1 /E2 E h n First Mode Second Mode Third Mode

0.1 20 1 5 3 1024 0.2 13.7852 23.1748 23.2471
0.4 13.7817 23.1718 23.2357

5 3 1025 0.2 13.8124 23.2372 23.2818
0.4 13.8120 23.2369 23.2807

20 5 3 1024 0.2 13.9016 23.4361 24.6940
0.4 13.9179 23.4759 24.4845

5 3 1025 0.2 13.8223 23.2589 23.4295
0.4 13.8242 23.2636 23.4075

Khdeir @33# 18.124 ¯ ¯

$DQR% 13.8124 23.2337 23.3057
40 1 5 3 1024 0.2 16.4612 23.4604 25.7236

0.4 16.4536 23.4485 25.7178
5 3 1025 0.2 16.5040 23.4952 25.8069

0.4 16.5032 23.4940 25.8063
40 5 3 1024 0.2 16.6274 26.0682 26.3859

0.4 16.6477 25.9813 26.1169
5 3 1025 0.2 16.5174 23.8012 25.8336

0.4 16.5200 23.7568 25.8399
Khdeir @33# 20.315 ¯ ¯

$DQR% 16.5051 23.5289 25.8047
0.2 20 1 5 3 1024 0.2 10.5456 11.5640 16.8450

0.4 10.5423 11.5611 16.8410
5 3 1025 0.2 10.5557 11.5731 16.8602

0.4 10.5554 11.5728 16.8598
20 5 3 1024 0.2 10.5860 11.9295 16.9119

0.4 10.5895 11.8761 16.9180
5 3 1025 0.2 10.5587 11.6068 16.8646

0.4 10.5592 11.6018 16.8656
$DQR% 10.5568 11.5839 16.8552

40 1 5 3 1024 0.2 11.5028 11.6498 17.5349
0.4 11.4984 11.6467 17.5304

5 3 1025 0.2 11.5146 11.6590 17.5517
0.4 11.5141 11.6587 17.5512

40 5 3 1024 0.2 11.5528 12.3992 17.6153
0.4 11.5564 12.2934 17.6217

5 3 1025 0.2 11.5179 11.7306 17.5564
0.4 11.5185 11.7202 17.5576

Khdeir @33# 12.333 ¯ ¯

$DQR% 11.5159 11.6739 17.5473

Table 6 „b… Comparison of nondimensionalized fundamental frequency „normalized by
Ara4ÕH2E2… of rectangular sandwich laminates „aÕbÄ2, aÕHÄ10… †0°Õ90°Õ0°‡ with SCSC edge
conditions „material properties are given in Table 1 …

E h n First Mode Second Mode Third Mode

E1 /E2520
1 5 3 1024 0.2 41.2896 43.6831 47.7328

0.4 41.2424 43.6390 47.7092
5 3 1025 0.2 41.3565 43.7639 47.8023

0.4 41.3517 43.7594 47.8000
20 5 3 1024 0.2 41.6812 44.1331 50.7335

0.4 41.6654 44.1241 50.2981
5 3 1025 0.2 41.3966 43.8119 48.1046

0.4 41.3947 43.8104 48.0596
$DQR% 41.3640 43.7730 47.8102

E1 /E2540

1 5 3 1024 0.2 43.0619 45.7661 47.8671
0.4 43.0135 45.7213 47.8431

5 3 1025 0.2 43.1323 45.8599 47.9366
0.4 43.1274 45.8553 47.9343

40 5 3 1024 0.2 43.5908 46.3842 53.8664
0.4 43.5656 46.3688 53.0386

5 3 1025 0.2 43.1903 45.9297 48.5636
0.4 43.1864 45.9264 48.4726

Khdeir @33# 46.693 ¯ ¯

$DQR% 43.1399 45.8701 47.9445
NOVEMBER 2003 Transactions of the ASME
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Table 7 Comparison of nondimensionalized fundamental frequency „normalized by
Ara4ÕH2E2… of two-ply laminates „aÕHÄ10, E1 ÕE2Ä40… †0°Õ90°‡ with CCCC edge conditions
„material properties are given in Table 1 …

a/b E h n 737 ~grid! 939 ~grid!
11311
~grid!

13313
~grid!

1 1 1023 0.1 17.8728 17.8296 17.8087 17.8000
0.4 17.8705 17.8274 17.8068 17.7979

531024 0.1 17.9173 17.8744 17.8537 17.8449
0.4 17.9161 17.8733 17.8527 17.8438

40 1023 0.1 18.0997 18.0419 18.0155 18.0047
0.4 18.1288 18.0653 18.0363 18.0241

531024 0.1 18.0321 17.9809 17.9569 17.9469
0.4 18.0469 17.9930 17.9678 17.9571

$DQR% 17.8893

a/b E h n 537 ~grid! 539 ~grid!
7311
~grid!

7313
~grid!

2 1 1023 0.1 36.5263 36.5154 36.2467 36.2444
0.4 36.5091 36.4982 36.2307 36.2284

531024 0.1 36.5657 36.5548 36.2916 36.2893
0.4 36.5571 36.5462 36.2836 36.2813

40 1023 0.1 36.9478 36.9327 36.6027 36.5998
0.4 37.0144 36.9980 36.6253 36.6221

531024 0.1 36.7865 36.7733 36.4741 36.4715
0.4 36.8189 36.8051 36.4848 36.4820

$DQR% 36.3340
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4 Conclusions
In this paper, three-dimensional elasticity theory within a la

erwise framework is used to model a laminate and an ela
bonding model, which embodies a physical material layer at
interface of two adjacent layers, is presented. The interfacial c
acteristics of continuity and discontinuity are satisfied in a kin
matic sense through the elastic bonding layer. Furthermore,
differential quadrature method~DQM! is employed to analyze the
equations of motion for vibration response. All three-dimensio
equations are satisfied and vibration results for a number of la
nates are presented. The present model is validated through
parisons with existing three-dimensional results from the o
literature. Examples are also included to show that even hig
order plate theories do not predict accurate solutions for th
laminates. The results indicate that the three-dimensional la
wise theory coupled with the elastic bonding model and the
methodology is computationally efficient and accurate. This
be attributed to the correct representation of the kinematics of
laminate and proper exploitation of DQ method for numeri
modeling. Unlike existing rigid bonding model or weak bondin
model, the present elastic bonding model provides a flexible

Table 8 Comparison of nondimensionalized fundamental fre-

quency „normalized by Ara4ÕH2E2… of sandwich laminates
†0°Õ90°Õ0°‡ with CCCC edge conditions „material properties are
given in Table 1; E1 ÕE2Ä40…

a/b E h n First Mode Second Mode Third Mode

1 1 5 3 1024 0.2 21.1403 28.7202 40.2980
0.4 21.1209 28.7056 40.2549

5 3 1025 0.2 21.1894 28.8065 40.3695
0.4 21.1874 28.8050 40.3651

40 5 3 1024 0.2 21.3637 29.0887 40.7008
0.4 21.3721 29.1220 40.6959

5 3 1025 0.2 21.2123 28.8438 40.4118
0.4 21.2131 28.8472 40.4108

$DQR% 21.1943 28.8157 40.3771
2 1 5 3 1024 0.2 43.7278 47.9239 56.5948

0.4 43.6801 47.8806 56.5567
5 3 1025 0.2 43.8035 48.0225 56.7226

0.4 43.7987 48.0181 56.7187
40 5 3 1024 0.2 44.2697 48.5453 57.3141

0.4 44.2488 48.5377 57.3273
5 3 1025 0.2 43.8629 48.0894 56.7988

0.4 43.8594 48.0875 56.7992
$DQR% 43.8117 48.0332 56.7366
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proach that is adaptable to the actual physical characteristic
the variety of bonding mechanisms that may be present i
laminate.
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Nonstick and Stick-Slip Motion of
a Coulomb-Damped Belt Drive
System Subjected to
Multifrequency Excitations
In this paper, the rotational vibration of a belt drive system with a dry friction tensio
subjected to multiple harmonic excitations is studied. The work is focused on the im
of the dry friction torque combined with the multiexcitation frequencies on dynamic c
acteristics of the system. An analytical solution procedure is developed for the first tim
predict two kinds of periodic responses of the system, i.e., nonstop and one-stop m
characterized by the nonstick and stick-slip vibration of the tensioner arm in the sys
respectively. Utilizing this method, parametric studies are carried out to obtain the
quency response of a prototypical belt drive system subjected to harmonic excita
from both the driving and driven pulleys. It is found that the tensioner Coulomb fric
torque has a significant impact on the amplitude response of the system—it reduc
vibration amplitude of the tensioner arm, but for other components in the belt syst
can either decrease or increase the amplitudes under different situations. Furthermo
the excitation frequency from the driving pulley is larger than or equal to that from
driven pulley, the system vibration amplitudes are much larger than those unde
opposite condition.@DOI: 10.1115/1.1629754#
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1 Introduction
Belt drive systems have long been employed in engine app

tions to power accessories such as alternator, air conditio
power steering, and pumps. A typical automotive belt drive c
sists of a crankshaft, accessories and a ‘‘serpentine’’ belt tensio
by a dynamic tensioner. Such systems can exhibit complex
namic behavior including rotational vibrations, which can be
duced by crankshaft excitation, applied moments on driven ac
sories, pulley eccentricities, etc.

The rotational vibration of a belt drive system has been stud
in recent research. In 1991, Hawker@1# investigated natural fre-
quencies of damped belt drive systems with a dynamic tensio
Barker et al.@2# utilized a Runge-Kutta method to solve the tra
sient rotational response of a front end accessory drive system
to engine accelerations using experimentally measured to
characteristics of the tensioner. Later, Hwang et al.@3# determined
rotational mode natural frequencies and mode shapes for the
response of a linearized system of equations for a serpentine
drive system and applied the results to predict the onset of
slip. Beikmann et al.@4# used the prototypical model of two pu
leys with a tensioner to examine the coupling between the r
tional and transverse motions, which led to new conclusions
garding linear free vibrations. The natural frequencies and m
shapes of an operating serpentine belt drive system were d
mined with analytical and experimental methods. In the paper@5#
of Kraver et al., a complex modal procedure was developed
analyze the frequency response characteristics of a flat belt p
system assuming viscous belt and tensioner damping. Iwats
et al. @6# proposed a method for analyzing the dynamic charac

1To whom correspondence should be addressed.
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istics of belt drive systems consisting of multiple belts and p
leys. An algorithm that derives the linear equations of motion
arbitrary multicoupled belt systems was given.

All of the above studies assumed no dry friction at the tensio
hub or used approximate linear viscous damping models. In r
ity, however, dry friction at the tensioner hub represents a str
nonlinearity that may produce rich dynamic responses that can
be captured with linear viscous damping models. The subjec
dry friction has been extensively studied in recent years. Shaw@7#
determined the stability of periodic orbits of a system with d
friction. In the paper of Popp et al.@8#, stick-slip vibrations in-
duced by dry friction were investigated both numerically and e
perimentally. Later, Feeny et al.@9# studied the chaotic dynamic
of a harmonically forced dry friction oscillator. More recentl
Natsiavas@10# presented a stability analysis for periodic motio
of a class of harmonically excited piecewise linear oscillators w
viscous and dry friction damping.

To accurately model the dry friction at the tensioner hu
Leamy et al.@11# developed a nonlinear model that is capable
capturing the nonlinear effects of dry friction at the tensioner a
The tensioner dry friction is assumed to be governed by the c
sical Coulomb law. The derived equations were solved by
adaptive time-step Runge-Kutta explicit integration method. F
thermore, Leamy et al.@12# solved the system by the increment
harmonic balance method~IHB!, which was proposed by Pierr
et al. @13#. This numerical method can efficiently compute th
primary and secondary resonances in a FEAD system. The s
tion clearly captures the stick-slip motions of the tensioner arm

In the aforementioned work, only a single excitation from t
crankshaft was considered. However, the excitation on the
drive system is of multifrequency in nature since the vibration
the system can be excited by multiple sources such as app
moments from the driving pulley or driven accessories, pul
eccentricities, irregular pulley radii and belt properties, or mot
of pulley support. As a classic problem in the theory of nonline
oscillations, multifrequency oscillation has been studied for o
and two degrees-of-freedom systems with weakly nonlinear
@14–16#. Most of the research effort in the above work has go

5,
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nt of
ar-
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into studying the special relationship between the natural frequ
cies and the multiple excitation frequencies of a system, nonlin
modal interactions and the resultant rich nonlinear phenom
such as combination resonances. The recent research in this a
reported in the following. Eneremadu et al.@17# discussed the
vibration stability of a cylindrical shell subjected to two-frequen
excitations using Floquet’s theory. Subsequently, Wang@18# stud-
ied the multifrequency resonances of flexible linkages. Fung@19#
considered a weakly nonlinear beam system subjected sim
neously to parametric and harmonic excitations by use of the
eraging method. Steady-state responses are shown for the va
cases of resonances. In Maccari’s paper,@20#, the transient and
steady-state response of a general nonlinear oscillator to a fi
number of harmonic forcing terms was analyzed by
asymptotic perturbation method. Three cases of the frequenc
lationship were considered. Most recently, chaotic phenom
were demonstrated in the response of a two-frequency exc
mechanical oscillator by Nichols et al.@21#.

In summary, the prior research on the rotational vibration
belt drive systems with dry friction tensioners only deals w
single-frequency excitation using numerical solutions. To addr
the lack of research in this area, it is the objective of this pape
study a belt drive system with a dry friction tensioner subjected
multifrequency excitations using an analytical approach. Base
the analytical method presented by Den Hartog@22#, periodic so-
lutions are developed and derived for two kinds of steady-s
responses, i.e., the nonstop~nonstick! and one-stop~stick-slip!
motions, for the belt drive system. Attention is focused on stu
ing the effect of the tensioner dry friction and the multiple ex
tation frequencies on dynamic behavior of the system. New
interesting results are obtained from parametric studies in num
cal simulations.

2 System Model
Consider a belt drive system, which consists of a belt, a driv

pulley andn21 (n>3) driven pulleys including a tensioner pu
ley supported by its tensioner arm, as shown schematically in
1. The assumptions made in the model are as follows:

1. The belt does not slip on the pulleys.
2. The belt stretches in a quasi-static manner, and the belt s

are modeled as massless axial linear springs and vis
dampers.

3. Pulleys other than the tensioner have fixed axes.
4. The pulley rotational damping is assumed to be linear,

the tensioner arm is subjected to both linear viscous da
ing and Coulomb dry friction at the pivot.

5. The tensioner spring is linear.
6. The motion of the driving pulley and any torque input fro

the driven pulleys are prescribed.

Fig. 1 A belt drive system
872 Õ Vol. 70, NOVEMBER 2003
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7. The geometric nonlinearities of the system are negligible

Under the above assumptions, the equations of motion for
belt drive system can be derived as~cf. @23#!,

M ü1Cu̇1Ku5T5Te11Te21T f (1)

whereM , C, andK aren3n mass, damping, and stiffness matr
ces, respectively, and in particular,M is diagonal:

M5diag$I 2 ,I 3 ,¯,I n ,I t%. (2)

In Eq. ~1!, u is the rotational displacement vector taking the for
of

u5@u2 ,u3 ,¯,un ,u t#
T (3)

with the subscripts 2,3, . . . ,n denoting the driven pulleys andt
denoting the tensioner arm. The vectorT represents the externa
excitation and contains three parts, namely,Te1 , Te2 , and T f .
They are induced by the driving pulley motion, dynam
torques of the driven pulleys and the tensioner dry friction torq
respectively:

Te15F T11 cos~v1t1w11!

T12 cos~v1t1w12!

]

T1~n21! cos~v1t1w1~n21!!

T1n cos~v1t1w1n!

G ,

Te25F T2 cos~v2t1w2!

T3 cos~v3t1w3!

]

Tn cos~vnt1wn!

0

G , T f5F 0
0
]

0
Tf

G (4)

where v j ( j 51,2, . . . ,n) are the excitation frequencies,T1 j ( j
51,2, . . . ,n) and Tj ( j 52,3, . . . ,n) the excitation amplitudes
w1 j ( j 51,2, . . . ,n) and w j ( j 52,3, . . . ,n) the initial phase
angles, respectively.Tf is the tensioner dry friction torque and i
governed by the classical Coulomb law:

Tf52Tf m if u̇ t.0

2Tf m<Tf<Tf m if u̇ t50 (5)

Tf5Tf m if u̇ t,0

in which Tf m is the magnitude of the friction torque when th
tensioner arm is moving. It should be mentioned that then com-
ponents inTe1 are determined uniquely by the driving pulley mo
tion:

u15Q cos~v1t1w1! (6)

whereQ is the amplitude andw1 is the initial phase angle.
In this paper, two types of steady-state vibrations are stud

nonstop motion and one-stop motion. In the nonstop motion,
tensioner arm never comes to a dead stop, while in the one-
motion, the tensioner arm moves during 0,t,t0 and is at a
standstill duringt0,t,T/2, whereT is the period of the motion.
It is assumed that the periodic response is symmetric in suc
way that the following relationship is satisfied:

x~ t !52x~ t1T/2! (7)

wherex is a state vector defined as

x5@u2 ,u3 , . . . ,un ,u t ,u̇2 ,u̇3 , . . . ,u̇n ,u̇ t#
T. (8)

It is noted that the physical meaning of Eq.~7! is that for each
half-cycle, the motion of the system follows the same law.

Suppose that there exists a symmetric periodic solution to
~1!, whose circular frequency isv. From Eqs.~1! and ~7!, it is
clear that

T~ t1p/v!52T~ t !. (9)
Transactions of the ASME
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Substituting Eq.~4! into the above equation, it can be derived th
the following relationship between the excitation frequencies
the frequency of the motion must be satisfied, so that Eq.~9! holds
true at any timet.

v j5~2kj11!v ~ j 51,2, . . . ,n;kj50,1,2, . . . ! (10)

Obviously, Eq.~10! is a necessary condition for the existence
symmetric periodic solutions.

3 Nonstop Vibration
The equation of motion~1! can be rewritten in the first orde

form using the state vectorx:

ẋ5Ax1b (11)

where

A5F 0 I

2M21K 2M21CG (12)

in which I is the identity matrix.b in Eq. ~11! is defined as

b5F 0
M21TG . (13)

Without loss of generality, assume thatA has 2n different com-
plex eigenvaluesl j , j 51,2, . . . ,2n, which correspond to 2n lin-
early independent complex eigenvectorsx̃j , j 51,2, . . . ,2n. The
general solution of the homogeneous form of Eq.~11! can be
expressed in terms of the eigenvalues and eigenvectors:

x~ t !5XeLtc (14)

where

X5@ x̃1 x̃2¯ x̃2n# (15)

eLt5diag$el1t,el2t,¯,el2nt% (16)

andc is the vector of complex integral constants defined as

c5@c1 ,c2 ,¯,c2n#T. (17)

Since it is assumed that the system motion follows the sa
law for each half-cycle, only the motion in the first half-perio
i.e., 0<t,p/v, will be considered from now on. To tackle th
discontinuity of the dry friction toque on the tensioner arm, w
make the initial phase anglew1 of the driving pulley motion as an
unknown while keeping the velocity of the tensioner arm fixed
the following manner:

u̇ t50, t50 (18a)

u̇ t,0, 0,t,p/v (18b)

Correspondingly, during the first half-period, the tensioner
friction torque keeps the same sign:

Tf5Tf m . (19)

Substituting Eqs.~2! and ~4! into Eq. ~13! gives

b5(
j 51

n

~qje
iv j t1q̄je

2 iv j t!1b0 (20)

where

b05@0,̄ ,0,Tf m /I t#
T (21)

qj5
1

2
~qj 12 iqj 2!, j 51,2,̄ ,n (22)

in which qj 1 andqj 2 can be transformed into the following sub
matrix form:

qj 15F 0
qj 1*

G , qj 25F 0
qj 2*

G , j 51,2,̄ ,n (23)
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where

q11* 5F T11 cosw11/I 2

T12 cosw12/I 3

]

T1n cosw1n /I t

G , q12* 5F 2T11 sinw11/I 2

2T12 sinw12/I 3

]

2T1n sinw1n /I t

G ,

q21* 5F T2 cosw2 /I 2

0
]

0
G , q22* 5F 2T2 sinw2 /I 2

0
]

0
G ,

(24)

q31* 5F 0
T3 cosw3 /I 3

0
]

0

G , q32* 5F 0
2T3 sinw3 /I 3

0
]

0

G , . . . ,

qn1* 5F 0
]

0
Tn coswn /I n

0

G , qn2* 5F 0
]

0
2Tn sinwn /I n

0

G .

It should be pointed out that throughout this paper, the symb
‘‘ i’’ and ‘‘ ’̄’, as in Eq. ~20!, denote the imaginary unit and th
complex conjugate, respectively.

The particular solution to Eq.~11! is derived as

x* ~ t !5(
j 51

n

~kje
iv j t1k̄je

2 iv j t!2A21b0 (25)

where

kj5@ iv j I2A#21qj ~ j 51,2,̄ ,n!. (26)

The sum of Eq.~14! and Eq.~25! yields the general solution to th
nonhomogeneous differential Eq.~11!:

x~ t !5XeLtc1(
j 51

n

~kje
iv j t1k̄je

2 iv j t!2A21b0 . (27)

Applying Eq. ~10!, it follows from Eq. ~27! that

x~0!5Xc1(
j 51

n

~kj1k̄j !2A21b0 (28)

x~p/v!5XeLp/vc2(
j 51

n

~kj1k̄j !2A21b0 . (29)

Replacingt by 0 in Eq.~7! gives

x~p/v!52x~0! (30)

which, together with Eqs.~28! and ~29!, determines the complex
integral constants

c52@ I1eLp/v#21X21A21b0 . (31)

So far the solution~27! still contains implicitly an unknown,
namely,w1 . By employing Eq.~18a!, w1 can be solved numeri-
cally from the algebraic equation below:

U"x~0!50 (32)

whereU is a 132n matrix

U5@0,̄ ,0,1#. (33)

Finally, the validity of the solution should be checked, since
has been derived under the assumption, Eq.~18b!. Consequently,
the solution is valid only if the following inequality holds:

U"x~ t !,0 ~0,t,p/v!. (34)
NOVEMBER 2003, Vol. 70 Õ 873
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Table 1 System parameters

PULLEYS
Pulley
No. j

Radius
r j (m)

Moment of Inertia
I j (kg•m2)

Damping Constant
Cjp (N•m•s/rad) Excitation

1 1.1 N/A N/A u15u0 cos(v1t1w1), u050.1 rad
2 1.0 5.0 0.0003 N/A
3 1.2 10.0 0.05 T3 cos(v3t1w3), T350.4 N•m,

w350.5 rad

BELT

Belt Span No.j Damping ConstantCjb (N•s/m) Spring StiffnessK j (N/m)

1, between pulleys No. 1 and No. 2 0.10 0.4
2, between pulleys No. 2 and No. 3 0.12 0.5
3, between pulleys No. 3 and No. 1 0.20 0.4

cosa1520.89 cosa250.05

TENSIONER ARM

Moment of Inertia of Damping Constant Spring StiffnessKt

Length r t (m) Arm/Pulley I t (kg•m2) Ct (N•m•s/rad) ~N•m/rad! u t0 (deg)

1.0 6.0 0.23 0.60 90
f

i
g

n
n

val

-

4 One-Stop Vibration
One-stop motion may take place under larger tensioner dry

tion torque and certain excitation frequencies. It is assumed
the tensioner arm is in motion during the time interval 0,t
,t0 , and is at rest duringt0,t,p/v. Consequently, the equa
tion of motion for the one-stop vibration remains the same as
~11! while the assumption on the velocity of the tensioner a
changes to

H u̇ t50, t50

u̇ t,0, 0,t,t0

u̇ t50, t0<t,p/v

. (35)

Clearly, the form of the general solution for the nonstop mot
given in Eq.~27! still holds true for the one-stop motion durin
the interval 0<t,t0 , althought0 is a new unknown variable.

Introducing a new system state vector

y5@u2 ,¯,un ,u̇2 ,¯,u̇n ,u t ,u̇ t#
T5Sx (36)

where

S5F I ~n21!3~n21! 0~n21!31 0~n21!3~n21! 0~n21!31

0~n21!3~n21! 0~n21!31 I ~n21!3~n21! 0~n21!31

013~n21! 1 013~n21! 0

013~n21! 0 013~n21! 1

G ,

(37)

the equation of motion~11! can be transformed to

ẏ5Ãy1b̃ (38)

in which

Ã5SAS215F ~Ã11!~2n22!3~2n22! ~Ã12!~2n22!32

~Ã21!23~2n22! ~Ã22!232
G (39)

b̃5Sb5F ~ b̃1!2n22

~ b̃2!2
G . (40)

During t0,t,p/v, the displacement and velocity of the te
sioner arm are constant, and therefore it is convenient to defi
new vector describing the state of the pulleys only:
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u5@u2 ,u3 ,¯,un ,u̇2 ,u̇3 ,¯,u̇n#T. (41)

Separating the above vector from Eq.~38! results in the following
equation of motion:

u̇5Ã11u1Ã12v1b̃1 , t0,t,p/v (42)

wherev is the state vector for the tensioner arm during the inter
t0,t,p/v

v5@u t~ t0!,0#T. (43)

The general solution to Eq.~42! can be obtained as

u~ t !5X̃eL̃tc̃1(
j 51

n

~kj* eiv j t1k̄j* e2 iv j t!2Ã11
21Ã12v (44)

where X̃ is a (2n22)3(2n22) modal matrix whose columns

contain the complex eigenvectors ofÃ11, and eL̃t and c̃ are as
follows:

eL̃t5diag$el̃1t,el̃2t,¯,el̃2n22t% (45)

c̃5@ c̃1 ,c̃2 ,¯,c̃2n22#T (46)

in which l̃j andc̃ j ( j 51,2, . . . ,2n22) are the complex eigenval
ues ofÃ11 and complex integral constants, respectively.kj* in Eq.
~44! is defined as

kj* 5@ iv j I2Ã11#
21qj* ~ j 51,2,̄ ,n! (47)

where

qj* 5RSqj ~ j 51,2,̄ ,n! (48)

in which

R5@ I ~2n22!3~2n22! 0~2n22!32#. (49)

Table 2 Natural frequencies

vn150.522v0 , vn250.881v0 , vn351.229v0 ,

v05AK @0#@0#/M @0#@0#50.424 rad/s
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Fig. 2 Amplitude responses with dry friction as parameter in nonstop vibration
The solutions for the one-stop vibration during the intervals
,t,t0 and t0,t,p/v have been derived as in Eqs.~27! and
~44!, respectively, nevertheless, there are still 4n unknown quan-
tities, namely,c, c̃, t0 , andw1 , to be determined. The following
boundary conditions are used to solve these 4n unknowns.

u̇ t~0!50 (50.1)

u̇ t~ t0!50 (50.2)

ü t~0!50 (50.3)
Journal of Applied Mechanics
0 u t~0!52u t~ t0! (50.4)

RSx~ t0!5u~ t0! (50.5)

RSx~0!52u~p/v! (50.6)

Setting t50 in Eq. ~38!, using the conditions~50.1! and ~50.3!,
and redividing the matrices lead to
NOVEMBER 2003, Vol. 70 Õ 875
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F u̇~0!

0
0

G
5F ~Ã11* !~2n22!3~2n22! ~Ã12* !~2n22!31 ~Ã13* !~2n22!31

~Ã21* !13~2n22! Ã22* Ã23*

~Ã31* !13~2n22! Ã32* Ã33*
G

3F u~0!

u t~0!

0
G1F b̃1* ~0!

b̃2* ~0!

b̃3* ~0!
G (51)

from which u t(0) is derived as

u t~0!5Wu~0!1d (52)

where

W52Ã22*
21Ã21* , d52Ã22*

21b̃2* ~0! if Ã22* Þ0 (53)

or

W52Ã32*
21Ã31* , d52Ã32*

21b̃3* ~0! if Ã32* Þ0. (54)

Letting t50 and substituting Eq.~28! into Eq. ~36!, we have

y~0!5Sx~0!5SXc1SF(
j 51

n

~kj1k̄j !2A21b0G (55)

which givesc as a function ofu~0! and the implicitw1

c5X21S21F u~0!

Wu~0!1d
0

G2X21F(
j 51

n

~kj1k̄j !2A21b0G .

(56)

From Eq.~50.6!, c̃ can also be expressed in terms ofu~0! andw1
876 Õ Vol. 70, NOVEMBER 2003
c̃5@X̃eL̃p/v#21H 2u~0!2Ã11
21Ã12FWu~0!1d

0 G
1(

j 51

n

~kj* 1k̄j* !J . (57)

With c and c̃ solved as functions ofu~0! and w1 , Eqs. ~50.2!,
~50.4!, and~50.5! can be turned into a set of nonlinear algebra
equations inu~0!, w1 , andt0 . Since these equations are transce
dental and an explicit solution is impossible, a numerical pro
dure such as quasi-Newton method is needed to solve foru~0!, w1
and t0 . Once they are obtained via a numerical method,u t(0), c
and c̃ can be derived from Eqs.~52!, ~56!, and~57!, respectively.
Finally, the solutions for the one-stop motion during 0,t,t0 and
t0,t,p/v are determined using Eqs.~27! and ~44!.

Remember that the above solution is derived under the assu
tion, Eq. ~35!. Therefore, it is necessary to examine whether
solution satisfies the assumption. Since a half-cycle in the o
stop motion is made up of two distinct time intervals, a conditi
to check the validity of the solution for each interval should
provided. During the period 0,t,t0 when the motion of the
tensioner arm is continuous, the condition is

u̇ t,0, 0,t,t0 . (58)

During the periodt0,t,p/v when the tensioner arm is at res
the condition is that the absolute value of all external torqu
acting on the tensioner arm must be smaller than or equal to
dry friction torque, i.e.,

uW1Z11W2Z21Knnu t~ t0!2T1n cos~v1t1w1n!u<Tf m ,

t0,t,p/v (59)

whereKnn is the rightmost element at the bottom row ofK in Eq.
~1! and

W15@Cn1 ,Cn2 ,¯,Cn~n21!# (60)

Z15@ u̇2 ,u̇3 ,¯,u̇n#T (61)
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Fig. 3 Amplitude responses with excitation frequencies as parameter in nonstop vibration
s

and
od.
, a
ase
ub-
W25@Kn1 ,Kn2 ,¯,Kn~n21!# (62)

Z25@u2 ,u3 ,¯,un#T (63)

in which Cn j andKn j , j 51,2, . . . ,n21 are elements of matrice
C andK in Eq. ~1!.
Journal of Applied Mechanics
5 Numerical Example

In this section, an example belt drive system is introduced
evaluated to illustrate the capability of the above solution meth
Consider a prototypical system consisting of a driving pulley
driven pulley and a dynamic tensioner, which is a special c
(n53) of the general model shown in Fig. 1. The system is s
NOVEMBER 2003, Vol. 70 Õ 877
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t

jected to excitations from the driving pulley motion and the d
namic torque on the driven pulley. The equations of motion for
system can be obtained as

M ü1Cu̇1Ku5T (64)

where
a
f

878 Õ Vol. 70, NOVEMBER 2003
y-
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u5@u2 ,u3 ,u t#
T (65)

M5F I 2 0 0

0 I 3 0

0 0 I t

G (66)
C5F r 2
2~C1b1C2b!1C2p 2C2br 2r 3 r 2r t~C1b cosa12C2b cosa2!

2C2br 2r 3 r 3
2~C2b1C3b!1C3p C2br 3r t cosa2

r 2r t~C1b cosa12C2b cosa2! C2br 3r t cosa2 r t
2~C1b cos2 a11C2b cos2 a2!1Ct

G (67)

K5F r 2
2~K11K2! 2K2r 2r 3 r 2r t~K1 cosa12K2 cosa2!

2K2r 2r 3 r 3
2~K21K3! K2r 3r t cosa2

r 2r t~K1 cosa12K2 cosa2! K2r 3r t cosa2 r t
2~K1 cos2 a11K2 cos2 a2!1Kt1Q0

G (68)
d the

ions
the
re-
ratio
the
n

-
vi-
T5FT11 cos~v1t1w11!

T12 cos~v1t1w12!

T13 cos~v1t1w13!
G1F 0

T3 cos~v3t1w3!

0
G1F 0

0
Tf

G .

(69)

Q0 in Eq. ~68! is defined as

Q05meff gLeff cosu t0 (70)

in which meff represents the total mass of the tensioner pulley
arm, Leff represents the distance between the mass center o
tensioner pulley/arm and the arm pivot, andu t0 denotes the initial
inclination angle of the tensioner arm with respect to the direct
of gravity. In Eq.~69!, Tf is the same as defined in Eq.~5! and

T115r 1r 2u0AK1
21v1

2C1b
2 (71)

T125r 1r 3u0AK3
21v1

2C3b
2 (72)
nd
the

ion

T135r 1r tu0 cosa1AK1
21v1

2C1b
2 (73)

w115w11tan21~C1bv1 /K1! (74)

w125w11tan21~C3bv1 /K3! (75)

w135w11tan21~C1bv1 /K1!. (76)

The basic system parameters used are listed in Table 1, an
natural frequencies of the system are given in Table 2.

The periodic response for both nonstop and one-stop vibrat
is computed, with emphasis laid on studying the influence of
tensioner dry friction and the excitation frequencies on the
sponse. Two parameters are used in the computation: the
between the Coulomb friction torque and the amplitude of
external torque, i.e.,Tf m /T3 , and the ratio between the excitatio
frequencies and the frequency of the motion, namely,n1 (v1 /v)
and n3 (v3 /v). The following plots show the frequency re
sponses of the amplitude ratio for both nonstop and one-stop
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brations as well as the frequency response of 2t0 /T ~T denotes the
period! for the one-stop vibration, under different values of t
parameters.

The plots for the nonstop motion are shown in Figs. 2 and
where the default parameter values are as follows~since only one
parameter is changed at a time, the other parameter take
default value!:

Tf m /T350.01
(77)

n151, n3511.
Journal of Applied Mechanics
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Figures 2~a!–2~c! show the influence of the tensioner dry fric
tion on the amplitude responses of the tensioner pulley, the dr
pulley and the tensioner arm, respectively, with the param
Tf m /T3 ranging from 0.005 to 0.15. Apparently, resonance occ
at the first natural frequency of the system. In addition, it is o
served that there exists a frequency value at which the tensi
dry friction exerts no influence on the vibration amplitude, for t
tensioner pulley and the driven pulley, respectively. Furthermo
the amplitude decreases as the dry friction torque increases b
that critical frequency, while the effect of the dry friction torque
Fig. 4 Amplitude responses with dry friction as parameter in one-stop vibration
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just the opposite after that frequency. In comparison, for the
sioner arm, no such critical frequency exists and the vibrat
amplitude decreases along with the increase of the tensione
friction for all frequency values. It is also found that occurrence
such periodic motion is discontinuous in the frequency doma
which implies the existence of other types of steady motions
the system.

In Figs. 3~a!–3~c!, the effect of different excitation frequencie
on the amplitude response is demonstrated. The parametersn1 and
n3 vary from 1 to 7. From these figures, one can distinguish t
types of behavior and thereby categorize the excitation frequ
cies into two groups. One group corresponds to the case on1
880 Õ Vol. 70, NOVEMBER 2003
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>n3, where the excitation frequencyv1 is greater than or equal to
v3 , while the other group corresponds to the opposite case,
n1,n3 . It is clearly seen that the vibration amplitudes for the ca
of n1>n3 are much larger than those for the case ofn1,n3 .
Within each group, however, the amplitude difference betwe
different cases ofn1 andn3 is very small in comparison with the
group difference. Besides, it is displayed that the frequency ra
where the periodic motion can happen for the group ofn1>n3 is
noticeably wider than that for the other group.

Similar to the plots for the nonstop motion, Figs. 4–7 show
responses for the one-stop motion, but with a different defa
parameter value for the dry friction torque
Fig. 5 t 0 responses with dry friction as parameter in one-stop vibration
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Tf m /T350.20. (78)

Figures 4~a!–4~c! illustrate amplitude responses withTf m /T3
as parameter, whose values fall into the scope@0.20,0.40#. It is
shown that the response pattern for the tensioner arm is q
different from those for the tensioner pulley and the driven pull
Obviously, the response amplitude of the tensioner arm is m
smaller than those of the tensioner pulley and the driven pu
More interestingly, the influence of the dry friction torque on t
response amplitude of the tensioner arm is opposite to that on
Journal of Applied Mechanics
uite
y.

uch
ley.
e
the

amplitudes of the tensioner pulley and the driven pulley. For
tensioner arm the dry friction torque reduces the response am
tude, while for the tensioner pulley and the driven pulley it i
creases the amplitude. Compared with the nonstop case, the
friction effect is the same for the tensioner arm. For the tensio
pulley and the driven pulley, however, it is opposite before
critical frequency and the same after the critical frequency, resp
tively. Another phenomenon worth mention is that the dots
Figs. 4~a!–4~c! are sparsely distributed over the frequency d
Fig. 6 Amplitude responses with excitation frequencies as parameter in one-stop vibration
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main, which indicates the relatively low possibility of occurren
of such one-stop motion with respect to other possible type
motions for the system.

Figure 5 shows 2t0 /T versusv/v0 with the same paramete
values as in Fig. 4. Physically, 2t0 /T means the percentage of th
slip mode of the tensioner arm in the one-stop vibration. Clea
one can see that the larger the tension dry friction, the lo
percentage the slip mode of the tensioner arm. A change tend
of 2t0 /T with frequency is also noticed—as the frequency g
larger, 2t0 /T increases first and then decreases.
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Finally, illustrated in Figs. 6–7 is the effect of different excit
tion frequencies on the response in the one-stop motion, withn1
andn3 taking the same values as in Fig. 3. Similar to the analy
of Fig. 3, the excitation frequencies can be divided into the gro
of n1>n3 and the group ofn1,n3 . The amplitude responses i
Figs. 6~a!–6~c! take on trends agreeing with those in the nons
motion. It is shown that the vibration amplitudes for the case
n1>n3 are much larger than those for the case ofn1,n3 . Within
each group, however, the amplitude difference is very small. F
ure 7 displays 2t0 /T as a function ofv/v0 . It exhibits some
Fig. 7 t 0 responses with excitation frequencies as parameter in one-stop
vibration
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Fig. 8 Time history of angular velocity of tensioner arm
t

o
t

he
top
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pa-
unique characteristics: For the case ofn1>n3 the values of 2t0 /T
are close to 1, signifying that the tensioner arm is in the slip s
most of the period; for the case ofn1,n3 , 2t0 /T increases first
and then decreases as the frequency increases.

The above results are verified by comparing them with th
obtained via directly integrating Eq.~64!. Very good agreemen
has been reached. As an example, Figs. 8~a! and 8~b! show both
d Mechanics
ate

se

the analytical and numerical results for the time history of t
angular velocity of the tensioner arm in the nonstop and one-s
motion, respectively.

6 Conclusions
A belt drive system with a Coulomb friction damped tension

and subjected to multifrequency excitations is studied in this
NOVEMBER 2003, Vol. 70 Õ 883
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per. Two kinds of steady-state vibrations of the system—nons
and one-stop motions are discussed. Applying an analyt
method, the periodic responses of the system for both the non
and one-stop motions are derived. Furthermore, parametric stu
are carried out to analyze the influence of the tensioner dry f
tion and the excitation frequencies on the dynamic behavior of
system. The following conclusions can be drawn from the stu

1. The existence of both nonstop and one-stop motions is
continuous in frequency domain.

2. The tensioner dry friction has a significant impact on t
amplitude response of the system. For the tensioner arm, th
bration amplitude decreases as the Coulomb friction torque
creases in both nonstop and one-top motions. For the tensi
pulley and the driven pulley in the nonstop motion, there exis
critical frequency before which the dry friction torque reduces
vibration amplitude but after which it enlarges the amplitude.
the one-stop motion, the dry friction torque increases the am
tude of the tensioner pulley and the driven pulley.

3. In the one-stop motion, the larger the dry friction torque
the higher percentage of the period the tensioner arm stays in
stick mode.

4. For both nonstop and one-stop motions, if the excitat
frequency from the driving pulley is larger than or equal to th
from the driven pulley, the system vibration amplitudes are mu
larger than those under the opposite condition.

5. In the one-stop motion, the tensioner arm stays in the
state for the most of the period when the excitation freque
from the driving pulley is larger than or equal to that from t
driven pulley.

Nomenclature

M 5 mass matrix (n3n)
C 5 damping matrix (n3n)
K 5 stiffness matrix (n3n)
u 5 rotational displacement vector~n!
T 5 external excitation vector~n!
x 5 state vector (2n)
A 5 system matrix (2n32n)
b 5 transformed excitation vector (2n)
y 5 transformed state vector (2n)
u 5 state vector for driven pulleys (2n22)

I j ( j 52,3, . . . ,n) 5 driven pulley’s moment of inertia about
pivot

I t 5 moment of inertia of tensioner pulley/
arm about pivot

u j ( j 51,2, . . . ,n) 5 angular coordinate
u t 5 tensioner arm angle

v j ( j 51,2, . . . ,n) 5 excitation frequency
w j ( j 51,2, . . . ,n) 5 initial phase angle

u0 5 excitation amplitude from driving pulley
Tj ( j 52,3, . . . ,n) 5 amplitude of external torque

Tf 5 tensioner dry friction torque
Tf m 5 magnitude of tensioner dry friction

torque
T 5 period of motion
v 5 circular frequency of motion
t0 5 critical time in one-stop motion

nj ( j 51,2, . . . ,n) 5 ratio between frequencies of excitation
and of motion

meff 5 total mass of tension pulley/arm
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Leff 5 distance between pivot and mass cente
of tensioner pulley/arm

u t0 5 installed position of tensioner arm
r j ( j 51,2, . . . ,n) 5 pulley radius

Cjp ( j 52,3, . . . ,n) 5 damping constant of driven pulley
Cjb ( j 51,2, . . . ,n) 5 damping constant of belt span
K j ( j 51,2, . . . ,n) 5 elastic constant of belt span

Ct 5 damping constant of tensioner arm
Kt 5 tensioner arm stiffness
r t 5 length of tensioner arm

vn j ( j 51,2, . . . ,n) 5 natural frequency
v0 5 reference frequency
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Multiple-degree-of-freedom linear asymmetric nonviscously damped systems are c
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1 Introduction
Viscous damping is the most common model for the model

of vibration damping. This model assumes that the instantane
generalized velocities are the only relevant variables that de
mine damping. Viscous damping models are used widely for th
simplicity and mathematical convenience even though the
damping behavior is expected to be nonviscous. Damping mo
in which the dissipative forces depend on any quantity other t
the instantaneous generalized velocities will be called nonvisc
damping models. Of many nonviscous damping models, the c
volution integral model~@1–3#! is possibly the most genera
model within the scope of linear analysis. In this paper we c
sider that the damping model consists of viscous and nonvisc
damping. The equations of motion of aN-degree-of-freedom lin-
ear system with such damping can be expressed by

Mü ~ t !1Du̇~ t !1E
0

t

G~ t2t!u̇~t!dt1Ku ~ t !5f~ t !, (1)

where u(t)PRN is the vector of generalized coordinates,M
PRN3N is the mass matrix,KPRN3N is the stiffness matrix,D
PRN3N is the viscous damping matrix, andf(t)PRN is the forc-
ing vector. The matrix of the damping functions,G(t2t), can
have various mathematical forms. For example, whenG(t2t)
5Dd(t2t), whered(t) is the Dirac delta function, the kerne
function reduces to the case of viscous damping. Among m
other mathematically possible damping functions, the exponen
damping model is physically most meaningful~@4#!. For this
damping model the kernel function matrix has the special form

G~ t2t!5(
k51

n

mke
2mk~ t2t!Ck , (2)

where mkPR1 are known as the relaxation parameters,Ck

PRN3N are the damping coefficient matrices, andn denotes the
number relaxation parameters used to describe the damping
havior.
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A brief review of literature on dynamics of nonviscous
damped systems may be found in Ref.@3#. Muravyouv@5,6# and
Muravyov and Hutton@7,8# have considered this kind of system
where the exponential kernel function is associated with the s
ness matrix. Recently Wagner and Adhikari@9# have proposed an
exact state-space method for the analysis of linear systems
exponential damping. Their approach was based on represe
Eq. ~1! in terms of twosymmetricmatrices in an augmented sta
space. In this paper an alternative approach based on only
asymmetric matrix is suggested and the relationships between
eigenvectors in the state space and the eigenvectors in the ori
space have been derived.

It is assumed thatM21 exists, that is, systems with a singula
mass matrix is not considered in the present work. For the sak
generality the usual symmetry and non-negative definiteness p
erties of the system matrices are not assumed. Further, it is
considered that in general the system is neither symmetriz
~@10,11#!, nor simultaneously diagonalizable by any linear tran
formations~@12#!. In Sec. 2, the eigenvalue problem associa
with Eq. ~1! is briefly reviewed. The state-space approach ba
on internal variables is formulated in Sec. 3. The eigenvalue pr
lem in the state space and some properties of the eigensolu
are discussed in Sec. 4. In Sec. 5, the proposed results are
trated by a numerical example.

2 Background: The Eigenvalue Problem
Free vibration characteristics of the system is governed by

eigenvalue problem associated with the equations of motion~1!.
Assuming the initial conditions

u~ t50!5u0PRN and u̇~ t50!5u̇0PRN (3)

and taking the Laplace transform of Eq.~1! one obtains

s2Mū ~s!2sMu02M u̇01s@D1G~s!#ū~s!

2@D1G~s!#u01K ū~s!5 f̄~s! (4)

or s2Mū ~s!1s@D1G~s!#ū~s!1K ū~s!5p̄~s!. (5)

Here

p̄~s!5 f̄~s!1M u̇01@sM1D1G~s!#u0 (6)

is the equivalent forcing function in the Laplace domain. In t
above equationsū(s)5L@u(t)#PCN, f̄(s)5L@ f(t)#PCN and
L@ "# denotes the Laplace transform. The matrixG(s)PCN3N is
the Laplace transform ofG(t) and can be obtained from Eq.~2! as
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G~s!5(
k51

n
mk

s1mk
Ck . (7)

In the context of structural dynamics, the Laplace parametes
5 iv, wherei 5A21 andvPR1 denotes the frequency. Consid
ering the free vibration from Eq.~5! the right-eigenvalue problem
can be represented by

Fl j
2M1l jD1l j(

k51

n
mk

l j1mk
Ck1K Guj50. (8)

Similarly the left-eigenvalue problem can be expressed as

v j
TFl j

2M1l jD1l j(
k51

n
mk

l j1mk
Ck1K G50T. (9)

Herel jPC is the j th eigenvalue andujPCN is the j th eigenvec-
tor. Suppose the number of eigenvalues ism. The methods for
solving this kind of problem follow mainly two routes,~a! the
extended state-space method@13–16,7,6,9#, and ~b! the methods
in the configuration space or ‘‘N’’ space~@2,3#!. In the next section
an extended state-space method based on a set of internal
ables is proposed.

For lightly damped systems, among them eigenvalues 2N ap-
pear in complex conjugate pairs and the rest are purely real
negative~@3,17#!. We emphasize that these results are simply
servations and a detailed mathematical proof of the conditi
under which such results are valid are not yet available. A phys
explanation, however, can be given. TheN pairs of complex con-
jugate eigenvalues can be related to theN ~complex! modes of
structural vibration. These modes are therefore calledelastic
modes~@3#!. The other (m22N) purely dissipative modes appea
due to nonviscous nature of the damping model and there
called nonviscous modes~@3#!. Nonviscous modes, or similar t
these, are known by different names in the literature of differ
subjects, for example, ‘‘wet modes’’ in the context of ship dyna
ics ~@18#! and ‘‘damping modes’’ in the context of viscoelast
structures~@15#!. For convenience we construct and partition t
following matrices:

L5diag@l1 ,l2 , . . . ,lm#PCm3m5diag@Le ,Le* Lnv#, (10)

U5@u1 ,u2 , . . . ,um#PCn3m5@Ue ,Ue* ,Unv#, (11)

and V5@v1 ,v2 , . . . ,vm#PCn3m5@Ve ,Ve* ,Vnv#. (12)

Here (")* denotes complex conjugation, the subscript (")e corre-
sponds to elastic modes, and the subscript (")nv corresponds to
nonviscous modes.

3 State-Space Formulation
For viscously damped systems, the state-space method bas

one asymmetric system matrix has been used extensively in li
ture ~see Newland@19,20#!. Here this approach will be extende
to system~1! by using a set of internal variables. In what follow
next, two physically realistic cases, namely,~a! when allCk ma-
trices are of full rank and,~b! all Ck matrices are rank deficient
886 Õ Vol. 70, NOVEMBER 2003
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have been considered in details. A third possible case, when
someCk matrices are rank deficient, can be easily derived fr
the two preceding cases.

3.1 Case A: All Ck Matrices are of Full Rank. Here it is
assumed that

rank ~Ck!5N, ;k51, . . . ,n. (13)

We introduce a set of internal variablesyk(t)PRN, ;k
51, . . . ,n by

yk~ t !5E
0

t

mke
2mk~ t2t!u̇~t!dt. (14)

Applying Leibniz’s rule for differentiation of an integral to Eq
~14! one obtains

ẏk~ t !5E
0

t

2mk
2e2mk~ t2t!u̇~t!dt1mku̇~ t !. (15)

Multiplying Eq. ~14! by the relaxation parametermk , then adding
it to Eq. ~15! results in

ẏk~ t !1mkyk~ t !5mku̇~ t !. (16)

Now, taking account of the kernel function matrix~2!, Eq. ~1! can
be rewritten as

Mü ~ t !1Du̇~ t !1(
k51

n

CkH E
0

t

mke
2mk~ t2t!u̇~t!dtJ 1Ku ~ t !5f~ t !.

(17)

Substituting Eq.~14! into Eq. ~17! leads to

Mü ~ t !1Du̇~ t !1(
k51

n

Ckyk~ t !1Ku ~ t !5f~ t !. (18)

Using additional state variables

v~ t !5u̇~ t ! (19)

and assuming thatM21 exists, Eq.~17! can be rewritten as

v̇~ t !1M21Du̇~ t !1(
k51

n

M21Ckyk~ t !1M21Ku ~ t !5M21f~ t !.

(20)

Rearranging Eqs.~16!, ~19!, and~20! one obtains

u̇~ t !5v~ t !, (21)

v̇~ t !52M21Dv~ t !2(
k51

n

M21Ckyk~ t !2M21Ku ~ t !1M21f~ t !,

(22)

ẏk~ t !5mkIv ~ t !2mkIy k~ t !, ;k51, . . . ,n (23)

or in the matrix form

ż~ t !5Az~ t !1r ~ t !, (24)

where
A53
O I O O ¯ O

2M21K 2M21D 2M21C1 2M21C2 ¯ 2M21Cn

O m1I 2m1I O ¯ O

O m2I O 2m2I ¯ O

] ] ] ] � ]

O mnI O O O 2mnI

4 PRm3m, (25)
Transactions of the ASME
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r ~ t !55
O

M21f~ t !
O
O
]

O
6 PRm, (26)

and z~ t !55
u~ t !
v~ t !
y1~ t !
y2~ t !
]

yn~ t !

6 PRm. (27)

In the above equationsz(t) is the extended state vector,A is the
system matrix in the extended state space,r (t) is the force vector
in the extended state space,OPRN3N is a null matrix, andI
PRN3N is an identity matrix. It is clear that the order of th
systemm is

m52N1nN. (28)

In the viscous damping limit,all the internal variables can b
disregarded, that is, alln3N equations after the first 2N rows in
Eq. ~24! can be deleted from the formulation. Under these con
tions it is easy to see that the equations of motion~24! reduce to
the standard form~@19,20#! for viscously damped systems with

A5F O I

2M21K 2M21DG , r ~ t !5 H O
M21f~ t !J ,

and

z~ t !5 Hu~ t !
v~ t ! J . (29)

This shows that the representation of the equations of motion
Eq. ~24! is a natural generalization of the standard state-sp
formulation for viscously damped systems.

3.2 Case B: All Ck Matrices are Rank Deficient. In a large
engineering structure it is possible to have different damping
different parts of a structure. For example, different members
space frame may have different damping properties, each as
ated with its relaxation parametermk . In this case the associate
coefficient matrixCk will be rank deficient because it will hav
nonzero blocks corresponding to the associated elements on
this section we assume that in general

r k5rank ~Ck!<N, ;k51, . . . ,n. (30)

This implies that the number of nonzero eigenvalues ofCk is r k .
Therefore there exist two matricesŨkPRN3N and ṼkPRN3N

such that

Ṽk
TCkŨk5F dk O1k

O1k
T O2k

G . (31)

In the above equationdkPRr k3r k is a diagonal matrix consisting
of only the nonzero eigenvalues ofCk , O1k and O2k are null
matrices of ordersr k3(N2r k) and (N2r k)3(N2r k), respec-
tively. For convenience partitionŨk and Ṽk as

Ũk5@Ũ1kuŨ2k# (32)

and Ṽk5@Ṽ1kuṼ2k#. (33)

The columns of matricesŨ1kPRN3r k and Ṽ1kPRN3r k are the
eigenvectors ofCk andCk

T corresponding to the nonzero blockdk

and the columns of matricesŨ2kPRN3(N2r k) and Ṽ2k
Journal of Applied Mechanics
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PRN3(N2r k) are the eigenvectors ofCk andCk
T corresponding to

the other (N2r k) numbers of zero eigenvalues. Now defining t
rectangular transformation matrices

Rk5Ũ1kPRN3r k (34)

and L k5Ṽ1kPRN3r k (35)

it is easy to show that

L k
TCkRk5dk . (36)

Thus the matricesRk andL k in Eqs.~34! and ~35! transform the
originally rank deficient matrixCk to a full-rank matrix with rank
r k .

Now we define a set of internal variables of reduced dimens
ỹk(t)PRr k using the rectangular transformation matrixRk as

yk~ t !5Rkỹk~ t !. (37)

From this equation it immediately follows that

ẏk~ t !5RkyPk~ t !, (38)

whereyk(t) is defined in Eq.~14!. Using these relationships, Eqs
~22! and ~23! can be expressed as

v̇~ t !52M21Dv~ t !2(
k51

n

M21CkRkỹk~ t !2M21Ku ~ t !1M21f~ t !

(39)

and RkyPk~ t !5mkv~ t !2mkRkỹk~ t !. (40)

Because Eq.~40! still represents a set ofN equations, we premul-
tiply this by L k

T to obtain a reduced set ofr k equations:

@L k
TRk#yPk~ t !5mkL k

Tv~ t !2mk@L k
TRk# ỹk~ t !. (41)

Taking the inverse of@L k
TRk#, the preceding equation may b

rewritten as

yPk~ t !5mkTkv~ t !2mkI r k
ỹk~ t !, (42)

where Tk5@L k
TRk#

21L k
TPRr k3N, ;k51, . . . ,n. (43)

Now Eqs.~21!, ~39!, and~42! can be combined into the first-orde
form as

zP~ t !5Ãz̃~ t !1 r̃ ~ t !, (44)

where
NOVEMBER 2003, Vol. 70 Õ 887



Ã53
O IN ON,r 1

ON,r 2
¯ ON,r n

2M21K 2M21D 2M21C1R1 2M21C2R2 ¯ 2M21CnRn

Or 1 ,N m1T1 2m1I r 1
Or 1 ,r 2

¯ Or 1 ,r n

Or 2 ,N m2T2 Or 2 ,r 1
2m2I r 2

¯ Or 2 ,r n

] ] ] ] � ] 4 PRm3m, (45)
Or n ,N mnTn Or n ,r 1
Or n ,r 2

¯ 2mnI r n
-
,
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tate
r̃ ~ t !55
0N

M21f~ t !
0r 1

0r 2

]

0r n

6 PRm, (46)

and z̃~ t !55
u~ t !
v~ t !
ỹ1~ t !
ỹ2~ t !
]

ỹn~ t !

6 PRm. (47)

In the above equations

m52N1(
k51

n

r k (48)

is the order of the system,Oi j are i 3 j null matrices,I j are j 3 j
identity matrices, and0j are vectors ofj zeros. The terms ("̃) are
corresponding to terms~"! defined in Eq.~24!. When allCk ma-
trices are of full rank, that is, whenr k5N,;k, then one can
choose allRk and L k matrices as the identity matrices and E
~44! reduces to Eq.~24!.

4 The Eigenvalue Problem

4.1 Case A: All Ck Matrices are of Full Rank. The right
and the left eigenvalue problems associated with Eq.~24! can be
expressed as

Afj5l jfj (49)

and cj
TA5l jcj

T j 51,2, . . . ,~21n!N, (50)

where l jPC is the j th eigenvalue, fjPC(21n)N and cj

PC(21n)N are respectively thej th right and left eigenvectors. Be
causeA is a real matrix the eigenvalues can only be real or
complex, then must appear in complex conjugate pairs. Cons
the ‘‘modal matrices:’’

F5@f1 ,f2 , . . . ,f~21n!N#PC~21n!N3~21n!N (51)

and C5@c1 ,c2 , . . . ,c~21n!N#PC~21n!N3~21n!N. (52)

It can be easily shown that the right eigenvectors and the
eigenvectors satisfy a biorthogonality relationship, i.e.,ck

TAfj
50, ;kÞ j . We also normalize the eigenvectors such that

CTF5I ~21n!N (53)

and CTAF5L. (54)

However, it should be noted that the above normalization is
sufficient to defineF andC uniquely.
888 Õ Vol. 70, NOVEMBER 2003
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4.1.1 The Structure of the Modal Matrices.From the defini-
tion of z(t) in Eq. ~27!, the right eigenvectors in the extended sta
space can be related to the right eigenvectors in the original s
~8! by

φj55
uj

l juj

y1 j

y2 j

]

yn j

6 , (55)

wherey1 j ,y2 j , . . . ,yn j are components of thej th eigenvector cor-
responding to the internal variablesy1(t),y2(t), . . . ,yn(t). The
vectorsyk jPCN, ;k51,2, . . . ,n can be related touj using Eq.
~16!. Taking the Laplace transform of Eq.~16! results in

sȳk1mkȳk5smkū, (56)

whereȳk is the Laplace transform ofyk(t). For thej th eigenvalue
one obtains

l jyk j1mkyk j5l jmkuj or ~l j1mk!yk j5l jmkuj . (57)

Providedl jÞ2mk , from the preceding equation,

yk j5
l jmk

l j1mk
uj , ;k51,2, . . . ,n; ; j 51,2, . . . ,~21n!N.

(58)

Using Eqs.~55! and~58! the right eigenvectors in the state spa
fj can be related to the right eigenvectors in the original sp
uj . It is useful to represent this relationship in a matrix form
Define a matrix

Yk5@yk1 ,yk2
, . . . ,yk~21n!N

#PCN3~21n!N. (59)

For j 51,2, . . . ,(21n)N, Eq. ~57! can be written in a matrix
form as

YkL1mkYk5mkUL. (60)

Dividing this equation bymk one obtains

Yk5UL@L/mk1I ~21n!N#21. (61)

Using this expression the matrix of right eigenvectors in the s
space, given by Eq.~51!, can be expressed as

F5F U
UL

UL@L/m11I ~21n!N#21

UL@L/m21I ~21n!N#21

]

UL@L/mn1I ~21n!N#21

G . (62)

In view of the partitions shown in Eqs.~10! and~11!, the preced-
ing equation can be conveniently partitioned as
Transactions of the ASME



F53
Ue Ue* Unv

UeLe Ue* Le* UnvLnv

UeLe@Le /m11IN#21 Ue* Le* @Le* /m11IN#21 UnvLnv@Lnv /m11InN#21

UeLe@Le /m21IN#21 Ue* Le* @Le* /m21IN#21 UnvLnv@Lnv /m21InN#214 . (63)
] ] ]

UeLe@Le /mn1IN#21 Ue* Le* @Le* /mn1IN#21 UnvLnv@Lnv /mn1InN#21
en
This equation completely defines the structure of the right-mo
matrix in the state space. Note that the right-modal matrix o
viscously damped system consists of only a 2N32N block in the
top left corner of this expression.

Now consider the left eigenvectors. Suppose

ψj55
p1 j

p2 j

x1 j

x2 j

]

xn j

6 . (64)

Expanding Eq.~50! we get the following equations:

2p2 j
T M21K5l jp1 j

T , (65)

p1 j
T 2p2 j

T M21D1(
k51

n

mkxk j
T 5l jp2 j

T , (66)

and 2p2 j
T M21Ck2mkxk j

T 5l jxk j
T , ;k51, . . . ,n. (67)

Multiplying Eq. ~66! by l j and using Eq.~65! results in

2p2 j
T M21K2l jp2 j

T M21D1l j(
k51

n

mkxk j
T 5l j

2p2 j
T . (68)

Providedl jÞ2mk , from Eq. ~67! we further obtain

xk j
T 52

1

mk1l j
p2 j

T M21Ck . (69)

Substitutingxk j
T from Eq. ~69!, Eq. ~68! results in
Journal of Applied Mechanics
dal
f ap2 j

T M21K1l jp2 j
T M21D1l j(

k51

n
mk

mk1l j
p2 j

T M21Ck1l j
2p2 j

T 50T

(70)

or p2 j
T M21Fl j

2M1l jD1l j(
k51

n
mk

l j1mk
Ck1K G50T. (71)

Comparing Eq.~71! with Eq. ~9! immediately results in

p2 j
T M215v j

T (72)

or p2 j5 5MTv j . (73)

Using Eqs.~72! and ~65! one obtains

p1 j52KTv j /l j . (74)

Similarly, using Eqs.~72! and ~69! results in

xk j52
1

mk1l j
Ck

Tv j . (75)

From Eqs.~73!–~75!, the left eigenvectors in the state space giv
by Eq. ~64! can be expressed as

c j55
2KTv j /l j

MTv j

2C1
Tv j /~m11l j !

2C2
Tv j /~m21l j !

]

2Cn
Tv j /~mn1l j !

6 . (76)

Recalling the partitions in Eqs.~10! and ~12!, for j 51,2, . . . ,(2
1n)N, the matrix of left eigenvectors can be expressed as
C53
2KTVeLe

21
2KTVe* Le*

21
2KTVnvLnv

21

MTVe MTVe* MTVnv

2C1
TVe@Le1m1IN#21 2C1

TVe* @Le* 1m1IN#21 2C1
TVnv@Lnv1m1InN#21

2C2
TVe@Le1m2IN#21 2C2

TVe* @Le* 1m2IN#21 2C2
TVnv@Lnv1m2InN#21

] ] ]

2Cn
TVe@Le1mnIN#21 2Cn

TVe* @Le* 1mnIN#21 2Cn
TVnv@Lnv1mnInN#21

4 . (77)
This equation completely defines the structure of the left-mo
matrix in the extended state space. For viscously damped syst
the left-modal matrix consists of only 2N32N block in the top
left corner of this expression.

4.2 Case B: All Ck Matrices are Rank Deficient. The right
and the left eigenvalue problems associated with Eq.~44! can be
expressed as

Ãφ̃j5l jφ̃j (78)
dal
ems,

and ψ̃j
TÃ5l jψ̃j

T j 51,2, . . . ,m, (79)

wheref̃jPCm and c̃jPCm are respectively thej th right and left
eigenvectors and the order of the systemm is defined in Eq.~48!.
Again we construct the modal matrices

F̃5@φ̃1 ,φ̃2 , . . . ,φ̃m#PCm3m (80)

and C̃5@ψ̃1 ,ψ̃2 , . . . ,ψ̃m#PCm3m. (81)
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These modal matrices also satisfy the biorthogonality prop
defined in Eqs.~53! and ~54!.

4.2.1 The Structure of the Modal Matrices.From the defini-
tion of z(t) in Eq. ~47!, the right eigenvectors in the extended sta
space can be related to the right eigenvectors in the original s
~9! by

φj55
uj

l juj

ỹ1 j

ỹ2 j

]

ỹnj

6 , (82)
o
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whereỹ1 j
PCr 1, ỹ2 j

PCr 2, . . . ,ỹnj
PCr n are components of thej th

eigenvector corresponding to the internal variab
ỹ1(t),ỹ2(t), . . . ,ỹn(t). From Eq.~37! we may obtain

ykj
5Rkỹkj

. (83)

Premultiplying byL k
T yields

ỹkj
5Tkykj

, (84)

where Tk is defined in Eq.~43! and ykj
is defined in Eq.~58!.

Substitutingỹkj
in Eq. ~82! for j 51,2, . . . ,m, the matrix of right

eigenvectors in the extended state space can be obtained as
F̃53
Ue Ue* Unv

UeLe Ue* Le* UnvLnv

T1UeLe@Le /m11IN#21 T1Ue* Le* @Le* /m11IN#21 T1UnvLnv@Lnv /m11InN#21

T2UeLe@Le /m21IN#21 T2Ue* Le* @Le* /m21IN#21 T2UnvLnv@Lnv /m21InN#21

] ] ]

TnUeLe@Le /mn1IN#21 TnUe* Le* @Le* /mn1IN#21 TnUnvLnv@Lnv /mn1InN#21

4 . (85)

Now consider the left eigenvectors. Suppose

ψj55
p1 j

p2 j

x̃1 j

x̃2 j

]

x̃nj

6 . (86)

Following the procedure outlined in the previous section, it can be shown thatp2 j
andp1 j

are again given by Eqs.~73! and~74! while
x̃kj

is given by

x̃kj
52

1

mk1l j
Rk

TCk
Tvj . (87)

Substitutingx̃kj
in Eq. ~86! for j 51,2, . . . ,m, the matrix of left eigenvectors in the extended state space can be expressed as

C̃53
2KTVeLe

21
2KTVe* Le*

21
2KTVnvLnv

21

MTVe MTVe* MTVnv

2R1
TC1

TVe@Le1m1IN#21 2R1
TC1

TVe* @Le* 1m1IN#21 2R1
TC1

TVnv@Lnv1m1InN#21

2R2
TC2

TVe@Le1m2IN#21 2R2
TC2

TVe* @Le* 1m2IN#21 2R2
TC2

TVnv@Lnv1m2InN#21

] ] ]

2Rn
TCn

TVe@Le1mnIN#21 2Rn
TCn

TVe* @Le* 1mnIN#21 2Rn
TCn

TVnv@Lnv1mnInN#21

4 . (88)
ntial

d by
The analysis presented here clarifies the structure of the m
matrices in the extended state space. The response to the s
subjected to dynamic forces and initial conditions can be ea
obtained by utilizing the biorthogonality of the left and the rig
eigenvectors~see the Appendix!. In the next section the result
derived here are illustrated by a numerical example.

5 Numerical Example
We consider a three-degree-of-freedom system with asymm

ric coefficient matrices. The purpose of this example is to ve
some of the mathematical expressions derived in this paper.
dal
stem

sily
t

et-
ify
The

damping of the system is expressed as a sum of two expone
kernels. For this special case the equations of motion~1! reads

Mü ~ t !1E
0

t

@m1e2m1~ t2t!C11m2e2m2~ t2t!C2#u̇~t!dt1Ku ~ t !

5f~ t !. (89)

The mass and the stiffness matrices of the system are define
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n be

3.2.

Eq.
M5F 0.5740 1.3858 1.3858

0.7070 0.7070 20.7070

0.4620 20.1914 20.1914
G (90)

and

K5F 1.3748 10.9440 25.2975

1.2625 2.8770 217.4195

0.7455 24.1244 0.8625
G . (91)

Numerical values for the entries ofM and K matrices are taken
from Adhikari @21#. Note that these matrices are asymmetric a
not positive definite. The damping coefficient matrices are giv
by

C15F 0.3588 21.3747 21.1471

20.3574 2.6618 22.1707

0.0210 21.4199 3.3674
G (92)

and

C25F 1.1198 1.1915 1.1495

1.7641 1.8770 1.8109

0.6881 0.7321 0.7063
G . (93)

Numerical values for the relaxation parameters are assumed
Journal of Applied Mechanics
nd
en

o be

m151.5 and m250.1. (94)

Both of the damping coefficient matrices have rank deficienc
because one can easily verify that

t15rank~C1!52<3 (95)

and t25rank~C2!51<3. (96)

The order of the system matrix in the extended state space ca
obtained from Eq.~48! as m52331(211)59 and the matrix
itself can be obtained using the procedure described in Sec.
The transformation matricesRk andL k for k51,2 given by Eqs.
~34! and ~35! are obtained as

R15F 0.0397 20.8274

20.7128 0.4356

0.7002 0.3545
G , L15F 0.0497 20.1887

20.5719 0.6828

0.8188 0.7058
G
(97)

and R25F 0.5091
0.8019
0.3128

G , L25F 0.5603
0.5961
0.5751

G . (98)

Using these, the system matrix in the extended state space in
~45! is given by
by

genvector
Ã53
0 0 0 1.0000 0 0 0 0 0

0 0 0 0 1.0000 0 0 0 0

0 0 0 0 0 1.0000 0 0 0

21.7281 4.8272 28.0485 0 0 0 26.2763 20.6986 22.6209

20.1670 29.3966 8.8830 0 0 0 6.7959 0.4790 20.9270

20.1093 20.5001 223.8041 0 0 0 24.3340 0.7501 0.6523

0 0 0 0.0759 20.8728 1.2494 21.5000 0 0

0 0 0 20.4021 1.4554 1.5044 0 21.5000 0

0 0 0 0.0594 0.0632 0.0610 0 0 20.1000

4 (99)

The nine eigenvalues of the system are arranged according to Eq.~10!. The diagonal matrices containing the eigenvalues are given

Le5diag@0.021711.4060i , 0.037113.1929i ,

20.235915.6940i # (100)

and Lnv5diag@20.0905, 20.8755, 21.7798#. (101)

Note that the eigenvalues corresponding to the nonviscous modes are purely real and negative. The right and the left ei
matrices corresponding to these eigenvalues are obtained as

F̃53
0.008820.5690i 0.007010.1364i 0.002020.0866i 0.008810.5690i 0.007020.1364i 0.002010.0866i 0.8662 0.3905 20.1046

20.002910.0147i 0.002620.2245i 20.001710.1015i 20.002920.0147i 0.002610.2245i 20.001720.1015i 0.0171 20.2630 0.0428

20.008210.0102i 0.020920.0531i 20.004320.1030i 20.008220.0102i 0.020910.0531i 20.004310.1030i 20.0168 0.1207 0.0320

0.800210.0000i 20.435310.0275i 0.492510.0317i 0.800220.0000i 20.435320.0275i 0.492520.0317i 20.0784 20.3419 0.1861

20.020720.0037i 0.716910.0000i 20.577420.0338i 20.020710.0037i 0.716920.0000i 20.577410.0338i 20.0015 0.2302 20.0762

20.014620.0114i 0.170210.0646i 0.587210.0000i 20.014610.0114i 0.170220.0646i 0.587220.0000i 0.0015 20.1057 20.0570

0.017920.0238i 20.033510.1236i 0.052720.2122i 0.017910.0238i 20.033520.1236i 0.052710.2122i 20.0019 20.5748 20.0338

20.139910.1145i 0.202420.3644i 20.016110.0236i 20.139920.1145i 0.202410.3644i 20.016120.0236i 0.0224 0.5021 0.9702

0.002120.0321i 0.002120.0093i 20.000220.0050i 0.002110.0321i 0.002110.0093i 20.000210.0050i 20.4923 0.0157 20.0016

4
(102)

and
NOVEMBER 2003, Vol. 70 Õ 891



C̃53
0.000110.8070i 20.003310.0672i 0.002010.0129i 0.000120.8070i 20.003320.0672i 0.002020.0129i 0.1088 0.0407 0.1185

0.019310.5788i 0.125211.7383i 0.030220.2378i 0.019320.5788i 0.125221.7383i 0.030210.2378i 0.1130 20.8364 20.7962

0.471620.7060i 20.195512.4606i 0.368113.1361i 0.471610.7060i 20.195522.4606i 0.368123.1361i 0.1211 1.4596 22.3903

0.623120.0078i 0.034410.0088i 0.015910.0013i 0.623110.0078i 0.034420.0088i 0.015920.0013i 0.0053 0.0257 0.1441

0.411920.0068i 0.579320.0450i 20.171620.0202i 0.411910.0068i 0.579310.0450i 20.171610.0202i 0.0038 20.0658 20.0634

20.099120.0271i 0.534910.0026i 0.684420.0649i 20.099110.0271i 0.534920.0026i 0.684410.0649i 0.0001 0.0204 20.2511

20.202310.2660i 0.077020.4024i 20.134410.7134i 20.2023202660i 0.077010.4024i 20.134420.7134i 20.0056 21.1162 0.88264 .

ake

to these

.

20.116710.0959i 0.073620.1696i 0.005720.0725i 20.116720.0959i 0.073610.1696i 0.005710.0725i 20.0013 20.0547 1.1414

20.120711.4685i 0.002610.0872i 20.007120.0988i 20.120721.4685i 0.002620.0872i 20.007110.0988i 21.8409 20.0090 0.2873

(103)

The eigenvectors are normalized so thatC̃TF̃ is an identity matrix. However, it should be noted that this normalization does not m
the eigenvectors unique.

In view of Eq. ~85!, the right-eigenvector matrix corresponding to the elastic modes in the space of the original variables,Ue , can
be obtained directly by taking a 333 block in the top left corner of Eq.~102!:

Ue5F 0.008820.5690i 0.007010.1364i 0.002020.0866i

20.002910.0147i 0.002620.2245i 20.001710.1015i

20.008210.0102i 0.020920.0531i 20.004320.1030i
G . (104)

Similarly Unv can be obtained by taking first three rows and last three columns of Eq.~102!:

Unv5F 0.8662 0.3905 20.1046

0.0171 20.2630 0.0428

20.0168 0.1207 0.0320
G . (105)

Now consider the left eigenvectors. Because it is assumed thatM21 exists, from the blocks~2,1! and~2,3! of Eq. ~88!, Ve andVnv can
be obtained. So, from the corresponding blocks in Eq.~103! we obtain

Ve5F 0.190120.0150i 0.346220.0047i 0.271220.0316i

0.361410.0144i 0.031420.0337i 20.605410.0317i

0.559420.0202i 20.403910.0765i 0.623920.0065i
G (106)

and Vnv5F 0.0021 0.0036 20.0840

0.0026 20.0610 0.1327

0.0049 0.1445 0.2131
G . (107)

As mentioned before,Unv and Vnv turned out to be real matrices. This is expected because the eigenvalues corresponding
modes~the nonviscous modes! are purely real.

Using these numerical values one can easily verify Eqs.~85! and~88!. A typical case for block~3,2! in Eq. ~88! is considered here
Using the numerical values given by Eqs.~92!, ~94!, ~97!, ~100!, and~106! one obtains

2R1
TC1

TVe* @Le* 1m1I3#215F20.202320.2660i 0.077010.4024i 20.134420.7134i

20.116720.0959i 0.073610.1696i 0.005710.0725i G . (108)
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These values can be exactly identified inC̃i j given by Eq.~103!
for i 57,8 andj 54,5,6, which corresponds to block~3,2! in Eq.
~88!. This illustrates the relationship between the modal matri
in the extended state space and the modal matrices in the ori
N space.

6 Conclusions
Linear vibration of multiple-degree-of-freedom damped s

tems with combined viscous damping and exponentially fad
damping memory kernels has been considered. It has been
sumed that in general, the mass, the stiffness and the dam
coefficient matrices are neither symmetric nor positive defin
An extended state-space method based on a set of internal
ables has been proposed. Two physically realistic cases, na
~a! when all the damping coefficient matrices are of full rank, a
~b! when the damping coefficient matrices are rank deficient, h
been presented. It was shown that for both the cases the equ
of motion in the extended state space can be represented in t
of a single asymmetric matrix of higher dimension. The dime
sion of this matrix depends on the rank of the damping coeffic
892 Õ Vol. 70, NOVEMBER 2003
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matrices. The eigenvalues and the corresponding eigenvecto
the system were obtained by solving the standard eigenv
problem in the state space.

Closed-form exact relationships relating the modal matrices
the extended state space and the modal matrices in the ori
space have been derived. All the entries of the modal matrice
the extended state space can be represented in terms of the e
values, the systems matrices, and the modal matrices in the o
nal space. It is expected that these results will be useful to un
stand the nature of the eigensolutions of nonviscously dam
systems.

Appendix A: Dynamic Response of Asymmetric Nonvis-
cously Damped Systems

In this section the dynamic response of the system will be
tained by using the mode superposition method, commonly
ployed for undamped or proportionally damped systems. We
gin by assuming that all the initial conditions are zero. Taking
Laplace transform of Eqs.~24! or ~44! one obtains
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sz̄~s!5Az̄~s!1 r̄ ~s!, (109)

where the system matrixA is given by Eqs.~25! or ~45!, depend-
ing on the ranks of theCk matrices. Similarlyz̄(s) and r̄ (s) are
the Laplace transforms ofz(t) and r (t) or z̃(t) and r̃ (t), respec-
tively. Using the modal transformation

z̄~s!5Fq̄~s! (110)

and the orthogonality relationships~53! and ~54!, we obtain

~sI2L!q̄~s!5CTr̄ ~s! or q̄~s!5~sI2L!21CTr̄ ~s!.
(111)

Substitution of q̄(s) from the preceding equation in Eq.~110!
results in

z̄~s!5F~sI2L!21CTr̄ ~s!5(
j 51

m
f jc j

T

s2l j
r̄ ~s!. (112)

Using the expression ofcj in Eq. ~64! and recalling that onlyN
11 to 2N rows of r̄ (s) is nonzero, one has

cj
Tr̄ ~s!5p2 j

T M21 f̄~s!. (113)

Substitutingp2 j from Eq. ~73!, Eq. ~112! can be rewritten as

z̄~s!5(
j 51

m
v j

T f̄~s!

s2l j
fj . (114)

Taking only the firstN rows of Eq.~114! and using Eq.~55! one
obtains the displacement response

ū~s!5(
j 51

m
v j

T f̄~s!

s2l j
uj . (115)

In view of the partitions~10!–~12!, the preceding expression ca
be conveniently expressed as

ū~s!5(
j 51

N Fv j
T f̄~s!

s2l j
uj1

v j*
T
f̄~s!

s2l j*
uj* G1 (

j 52N11

m vnv j

T f̄~s!

s2lnv j

unv j
.

(116)

This expression of the dynamic response is in terms of the left
the right eigenvectors of the system inN space. The second part o
Eq. ~116! is the contribution of the nonviscous modes to the g
bal dynamic response. This part is not present for viscou
damped systems and consequently the response of a visc
damped system can be obtained only form the first part of
right-hand side of Eq.~116!. In the presence of nonzero initia
conditions the vectorf̄(s) needs to be replaced byp̄(s) defined in
Eq. ~6!. Therefore the dynamic response with nonzero initial co
ditions can be expressed as

ū~s!5(
j 51

m
1

s2l j
S v j

T f̄~s!1v j
TMu̇01v j

TDu0

1sv j
TMu01(

k51

n

mk

v j
TCku0

s1mk
D uj . (117)

In the time domain the response can be obtained by taking
inverse Laplace transform of Eq.~117!:

u~ t !5L21@ ū~s!#

5L21F(
j 51

m
1

s2l j
S v j

T f̄~s!1(
k51

n
1

s1mk
mk~v j

TCku0!D
1

v j
TMu̇01v j

TDu0
1S s Dv j

TMu0Guj
s2l j s2l j
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j 51

m S E
0

t

el j ~ t2t!v j
Tf~t!dt

1(
k51

n E
0

t

mke
l j t2~l j 1mk!tv j

TCku0dt D uj1el j t~v j
TMu̇0

1v j
TDu0!uj1$l je

l j t1d~ t !%~v j
TMu0!uj . (118)

For t.0 the preceding equation may be rewritten as

u~ t !5(
j 51

m H E
0

t

el j ~ t2t!v j
Tf~t!dt1aj~ t !J uj , (119)

where aj~ t !5el j t~v j
TMu̇01v j

TDu0!1l je
l j t~v j

TMu0!

1(
k51

n

mk

~el j t2e2mkt!

l j1mk
v j

TCku0 . (120)

It is interesting to note that the expression ofaj (t) is indepen-
dent of the ranks of theCk matrices. The ranks of theCk matrices
only effect the number of terms~m! to be added in Eq.~119! to
obtainu(t).
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Transient Growth Before
Coupled-Mode Flutter
Transient growth of energy is known to occur even in stable dynamical systems due
non-normality of the underlying linear operator. This has been the object of grow
attention in the field of hydrodynamic stability, where linearly stable flows may be fo
to be strongly nonlinearly unstable as a consequence of transient growth. We apply
concepts to the generic case of coupled-mode flutter, which is a mechanism with imp
applications in the field of fluid-structure interactions. Using numerical and analyt
approaches on a simple system with two degrees-of-freedom and antisymmetric co
we show that the energy of such a system may grow by a factor of more than 10,
the threshold of coupled-mode flutter is crossed. This growth is a simple conseque
the nonorthogonality of modes arising from the nonconservative forces. These ge
results are then applied to three cases in the field of flow-induced vibrations: (a) p
flutter (two-degrees-of-freedom model, as used by Dowell) (b) follower force (
degrees-of-freedom model, as used by Bamberger) and (c) fluid-conveying pipes
degree-of-freedom model, as used by Benjamin and Paı¨doussis) for different mass ratios
For these three cases we show that the magnitude of transient growth of mech
energy before the onset of coupled-mode flutter is substantial enough to cause a s
cant discrepancy between the apparent threshold of instability and the one predict
linear stability theory.@DOI: 10.1115/1.1631591#
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1 Introduction

Flow-induced vibration phenomena are a ubiquitous featur
numerous engineering applications ranging from buffeting of
foils to deformation of building structures and bridges under w
loads. In most cases, these vibrations are undesirable, cau
material fatigue at best and catastrophic failure at worst. It is t
not surprising that a substantial body of literature is devoted to
analysis and control of flow-induced instabilities. Low
dimensional models are often used to approximate prohibitiv
complex systems, and the critical parameters for the onset of
ter are computed for a moderate number of degrees-of-freed
The analysis follows a typical modal approach where the temp
motion of the structure is assumed to behave exponentially
time. In the very common mechanism of coupled-mode flutter t
~or more! purely oscillatory states merge and produce expon
tially growing ~and decaying! motion. For parameter values belo
this critical one, it is believed that stable motion prevails.

A similar argument has been used for the onset of transitio
turbulence: As exponentially growing solutions of the lineariz
fluids equations are encountered, the transition to turbulent fl
motion is expected. In recent years, however, it has been dis
ered that short-term instabilities are present even at subcri
parameter values, and that these type of instabilities are a co
quence of the nature of the underlying stability equations~see,
e.g.,@1–4#!.

The equations governing many cases of fluid-structure inte
tions are also of this type, and it therefore appears likely that
governing equations support transiently growing solutions for
rameter values below the critical one for the onset of coupl

1Permanent address: Department of Applied Mathematics, University of Wash
ton, Box 352420, Seattle, WA 98195-2420.
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mode flutter. If this transient growth is sufficiently large, finit
amplitude effects can be triggered even though infinitesim
motion is asymptotically stable.

It is the goal of this study to explore the potential of short-te
energy growth at subcritical conditions for simple two-degrees-
freedom approximations to technologically relevant configu
tions.

The organization of the paper is as follows. We will first co
sider a simple undamped two-degrees-of-freedom model
coupled-mode flutter and establish the mathematical framew
for stability calculations. Modal and nonmodal stability will b
considered, and asymptotic scalings as well as upper bound
disturbance growth will be presented. Effects of damping on
stability characteristics will be treated as well. Three classical
plications then follow, namely, panel flutter,@5#, follower-force,
@6#, and fluid-conveying pipes,@7#, which will further exemplify
the techniques of the previous sections. Summarizing comm
conclude this paper.

2 Theoretical Framework

2.1 General Undamped Two-Degrees-of-Freedom System
Many problems involving fluid-structure interactions can be mo
eled by a coupled system of oscillators of the form

ẍ1x5ay (1a)

ÿ1V2y52ax (1b)

describing the temporal evolution of the two degrees-of-freedox
and y. The left-hand side describes harmonic oscillators of f
quencies 1 andV, while the right-hand side accounts for the co
pling of the two oscillators witha as the coupling coefficient
Systems of this form often arise when equations governing
continuous deformation of flexible structures are approximated
a model capturing the two modes of deflection. This typica
applies to problems such as flutter of flexible airfoils, fluidelas
instability of tube arrays in cross flow or unstable whirl of rotatin
shafts in confined fluids~see, for instance,@5,8,9#!.

Traditional stability analysis of the above system is straightf
ward and leads to a critical coupling coefficientac of
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2
. (2)

For two oscillators with a supercritical coupling coefficient exp
nentially growing solutions are encountered. For coupling coe
cients below the critical one, we observe purely oscillatory beh
ior. The above critical coupling coefficient is a widely used a
accepted tool for determining the onset of unstable motion. I
commonly believed that for coupling coefficients below the cr
cal one no amplification of infinitesimal disturbances is possib

2.2 Transient Amplification of Disturbance Energy. The
goal of this manuscript is to explore the potential for short-te
linear instabilities in the absence of exponentially growing so
tions. To this end we treat the above system of equations
general initial value problem of the form

d

dt S x
ẋ
y
ẏ
D 5S 0 1 0 0

21 0 a 0

0 0 0 1

2a 0 2V2 0

D S x
ẋ
y
ẏ
D or

d

dt
q5Aq.

(3)

The formal solution of this initial value problem can be writte
in terms of the matrix exponential ofA. We obtain

q~ t !5exp~ tA!q0 (4)

with q0 as the vector of initial conditionsx0 , ẋ0 , y0 , and ẏ0 .
Using this formulation, we wish to compute the amplification
disturbances by determining the ratio of the disturbance energ
a given timet to the initial energy of a general perturbation. Max
mizing this ratio over all possible initial conditions results in t
largest possible amplification of initial perturbations over a tim
span@0 t#. Mathematically, we define the largest possible ene
amplificationG(t) as

G~ t !5max
q0

E~ t !

E~0!
5max

q0

iq~ t !i2

iq0i2 5max
q0

iexp~ tA!q0i2

iq0i2

5iexp~ tA!i2 (5)

where we have assumed that taking the norm of the state vecq
is equivalent to computing the energy of the state vector.
therefore define

iqi25x21 ẋ21V2y21 ẏ2 (6)

which is easily related to the standardL2-norm i•i2 by introduc-
ing weight matricesF according to

iqi25iFqi2
2 F5S 1 0 0 0

0 1 0 0

0 0 V 0

0 0 0 1

D . (7)

Reformulating the energy amplificationG(t) in terms of the
L2-norm results in

G~ t !5iF exp~ tA!F21i2
2. (8)

It is often desirable to bound the maximum amplification
energy. Using the definition of the energy amplification it
straightforward to derive lower and upper bounds as follows:

exp~2lt !<G~ t !5iSexp~Lt !S21i2<k2~S!exp~2lt ! (9)

wherel is the real part of the least stable eigenvalue ofA, andS
denotes the 434 matrix of normalized eigenvectors ofA. The
symbol

k~S![iSiiS21i (10)
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stands for the condition number ofS, andL is a diagonal 434
matrix containing the eigenvalues ofA.

We notice the following relation. For systems withk(S)51 the
upper and lower bound coincide, and the temporal evolution oG
is entirely governed by the real part of the least stable eigenva
Systems withk(S)51 are known asnormal systems. On the
other hand, ifk~S! is larger than 1, the discrepancy between low
and upper bound allows for short-term effects before the expon
tial behavior governed byl prevails ast→`. Systems with
k(S).1 are categorized asnon-normalsystems. Non-normal sys
tems have a set of nonorthogonal eigenvectors and the sour
short-term energy growth lies in this nonorthogonality of the s
tem’s eigenvectors. Even under subcritical conditions, i.e.,
coupling coefficients below the critical one, a nonorthogonal
perposition of exponentially decaying eigensolutions can lead
substantial disturbance growth.

2.3 Asymptotic Scalings. To further probe the solution be
havior as we approach the critical coupling coefficientac we
Laplace transform the governing equations to obtain

~p211!X2aY5px01 ẋ0 (11a)

~p21V2!Y2aX5py01 ẏ0 (11b)

with X(p) and Y(p) as the Laplace transform of the depende
variablesx(t) andy(t), respectively. Solving forX(p) we obtain
the expression

X~p!5
1

~p211!~p21V2!1a2 @A1pB1p2C1p3D# (12)

with A, B, C, and D determined from the initial conditions. An
analogous expression can be derived forY(p). After inversion of
the Laplace transform we get the following expression for
variablex(t):

x~ t !5
1

2acA12~a/ac!
2

@A8 cosat1B8 sinat1C8 cosbt

1D8 sinbt# (13)

where

a2,b25
1

2
~11V26A~V221!224a2! (14)

and A8, B8, C8, and D8 depend on initial conditions. This las
expression yields the behavior ofx(t) as the critical coupling
coefficient is approached. We obtain

x~ t !;
1

A12~a/ac!
2

. (15)

The same holds true forẋ(t), y(t), and ẏ(t). Consequently, the
energyE of the coupled oscillators is expected to behave as

E;
1

12~a/ac!
2 (16)

as the stability boundary is approached, when time is fixed.

2.4 Numerical Results. The quantityG(t), computed from
Eq. ~8!, represents the maximum possible energy amplificati
which for each instant in time is optimized over all possible init
conditions of unit energy, as is apparent from Eq.~5!. The specific
initial condition that achieves an amplification ofG(t) may be
different for different times, andG(t) should be thought of as the
envelope of the energy evolution of individual initial conditions
unit energy. The energy amplificationG(t) for the undamped gen
eral system withV251.1 anda/ac50.9 is shown in Fig. 1~a!
together with the energy evolution of four randomly chosen init
conditions of unit energy. We notice an amplification of energy
nearly twenty times the initial energy after approximately 1
NOVEMBER 2003, Vol. 70 Õ 895
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time units. We like to emphasize that this amplification occurs
value of the coupling coefficient that is below the critical one
the onset of couple-mode flutter. As the critical coupling coe
cient for this particular frequency ratioV is approached we obtain
an even larger transient amplification of initial energy, as depic
in Fig. 1~b!. The asymptotic behavior given by~16! is included as
the dashed curve. As the critical coupling coefficient is a
proached, the maximum transient amplification of energyGmax
[maxt G(t) follows the correct asymptotic behavior.

The transient amplification of disturbance energy prevails a
for a significantly larger frequency ratio. Figure 2~a! shows the
temporal evolution ofG for a frequency ratio ofV2510. Again,

Fig. 1 General undamped system with V2Ä1.1 and aÕac
Ä0.9. Optimal energy amplification versus time „top, solid line …

and energy amplification for four random initial conditions of
unit energy „top, dashed lines …. Maximum energy amplification
versus the coupling coefficient „bottom …. The dashed curve
„bottom … represents the function 1 Õ„1À„aÕac…

2
…. The continu-

ous curve „bottom … represents both the maximum of G„t … over
time and the upper bound given in Eq. „9….
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we observe a short-term amplification of initial energy of up
fifty times. The behavior ofGmax as the critical coupling coeffi-
cient is approached is displayed in Fig. 2~b! together with the
asymptotic behavior~16!.

2.5 Effects of Damping. Damping is a naturally occuring
effect in many fluid-structure systems that has to be accounted
or modeled when analyzing the onset of coupled-mode flutter
this paper, we are mainly interested how additional damping te
modify the observations we made in the previous section.
again start by analyzing a simple two-degrees-of-freedom mo
but add a damping term proportional to the velocity. We get

ẍ1bẋ1x5ay (17a)

Fig. 2 General undamped system with V2Ä10 and aÕacÄ0.9.
Energy amplification versus time „top … and maximum energy
amplification versus the coupling coefficient „bottom …. The
dashed curve represents the function 1 Õ„1À„aÕac…

2
…. The con-

tinuous curve represents both the maximum of G„t … over time
and the upper bound given in Eq. „9….
Transactions of the ASME
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with b as the damping coefficient. Traditional stability analysis
this problem follows along the same lines as for the undam
case. Applying a Laplace transform to the initial value proble
results in the relation

detUp21bp11 2a

a p21bp1V2U50 (18)

from which—via Routh’s criterion—we obtain a value for th
critical coupling coefficient for the onset of flutter motion:

ac5ac
0A122b2

V211

~V221!2. (19)

Fig. 3 General damped system with V2Ä10 and aÕacÄ0.9. For
damping a coefficient of bÄ0.1, „top … and a damping coefficient
of bÄ1 „bottom ….
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The above formula describes the modification of the critical c
pling coefficient when a velocity-dependent damping term is
troduced into the governing equations.

We are of course also interested in the effects of damping on
potential for transient amplification at subcritical values of t
coupling constant. Modifying the system matrixA to account for
the additional damping terms, we compute the amplification
disturbance energyG(t) as in the previous section.

The results in Fig. 3 demonstrate that the additional damp
terms exert a rather substantial—but not surprising—influence
the long-term behavior. The short-term amplification of energy,
the other hand, is only mildly influenced by damping. We s
observe an energy amplification of approximately forty times
initial energy for a damping coefficient ofb50.1, and even for an
excessively large damping ofb51 we obtain an increase in en
ergy of nearly one order of magnitude before strong decay se

Fig. 4 General damped system with V2Ä10 at criticality. En-
ergy amplification versus time for bÄ1 „top …, and maximum
energy amplification versus damping coefficient „bottom …. The
dashed curve represents the asymptotic behavior È1Õb 2.
NOVEMBER 2003, Vol. 70 Õ 897
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Fig. 5 Maximum energy amplification as a function of coupling and damping
coefficient for the general damped system at V2Ä10
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~see Fig. 3!. As the critical coupling parameter~19! is approached,
an oscillatory state is reached forG(t) with a maximum amplifi-
cation of more than forty times the initial energy~see Fig. 4~a!!.

A simple analysis shows that at the onset of instability, i.e.,
a5ac , the solution to the damped system behaves like

x;e2bt~cosat1t cosat1¯ ! (20)

and similarly for they-component. For this solution behavior, th
maximum of the energy amplification is found to occur att
'1/b and the maximum transient growth scales likeGmax

;1/b2. This scaling is verified by numerical computations wi
the results shown in Fig. 4~b!. The asymptotic scaling is displaye
as the dashed curve.

A two-dimensional parameter study of the maximum amplific
tion of initial disturbance energy is depicted in Fig. 5. We obse
a substantial amount of maximum transient growth as the stab
boundary is approached.

The above analysis describes external damping that acts
equal magnitude on the two degrees-of-freedom. It is a w
known fact~see@10,11#! that a discrepancy between the dampi
in the equations forx andy can have a stabilizing or destabilizin
effect and thus change the critical coupling constant. Follow
Bolotin @10# and introducing a damping coefficient ofb and hb
into thex andy-equation, respectively, the critical coupling coe
ficient can be derived as

ac5ac
0S 2Ah

11h DA11b2
~11h!V21h1h2

~V221!2 (21)

which represents the generalization of Eq.~19! which is recovered
for h51. Numerical experiments have revealed that the trans
effects observed forh51 prevail qualitatively for the more gen
eral case once the critical coupling coefficient has been redefi
according to Eq.~21!.

3 Applications
The strong short-term amplification of initial energy for para

eters below the critical ones for the onset of coupled-mode flu
can have significant consequences for the design of systems
exhibit aeroelastic deformations or other fluid-structure pheno
ena. The above analysis of a simple two-degrees-of-freedom
BER 2003
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tem provides the mathematical tools as well as the motivation
investigate more realistic models of fluid-structure interactions
their potential to amplify energy in the subcritical parameter
gime. To this end, we concentrate on three classical and w
studied examples of two-degrees-of-freedom systems:~a! panel
flutter, ~b! follower-force, and~c! fluid-conveying pipes~see Fig.
6 for a sketch of the geometry!. For each system we will comput
and present the amplification of energyG(t) over a range of gov-
erning parameters.

3.1 Panel Flutter. As high-speed flow passes a flat pla
with clamped edges, the induced elastic bending in the direc
normal to the flow can lead to vibrational instabilities. This ty
of instabilities is prototypical and very important for many co

Fig. 6 Geometry sketch for panel flutter „top …, follower force
„bottom left …, and fluid-conveying pipe „bottom right …
Transactions of the ASME
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figurations in aerospace applications~supersonic flow past an air
foil ! and has thus been studied extensively. In this paper we
focus on a highly simplified, yet physically relevant, model whi
will capture some of the main features of panel flutter instabilili
The model under investigation is taken from Dowell@5#. Three
plates of lengthl and massm are linked together and supported
each end~see Fig. 6~a!! introducing two degrees-of-freedom fo
the motion of the system. Withq1 andq2 as the vertical displace
ment of the interior nodes, Dowell@5# derives the following set of
equations

2

3
mlq̈11

ml

6
q̈21kq11

r`U`
2

2M`
q250 (22a)

ml

6
q̈11

2

3
mlq̈21kq22

r`U`
2

2M`
q150 (22b)

wherek denotes the spring constant, andr` , U` , andM` stand
for the freestream density, velocity, and Mach number, resp
tively. Nondimensionalizing the above equations usingl
5r`U`

2 /2M`k and Aml/k as a characteristic time scale, we o
tain

2

3
q̈11

1

6
q̈21q152lq2 , (23a)

1

6
q̈11

2

3
q̈21q25lq1 . (23b)

We can further simplify the system by introducing new depend
variables defined asx5A5/3(q11q2) and y5q12q2 which
yields

ẍ1x5ay (24a)

ÿ1V2y52ax (24b)

with V255/3 anda5A5/3l.
In this form, the reduced system resembles the undamped

degrees-of-freedom system of the previous section, and we sh
expect the existence of transient amplification of energy for s
critical coupling coefficientsl. The critical coupling coefficient is
ac51/3, equivalent tolc51/A15 in @5#. Figure 7~a! shows the
maximum energy amplificationG(t) as a function of time for
a/ac50.9 or, equivalently, (U` /Uc)

250.9 whereUc is the criti-
cal flow velocity. For this choice of parameter we observe
amplification of 20 times the initial energy. As the critical co
pling coefficient is approached, we again recover the pro
asymptotic scaling~dashed curved! as displayed in Fig. 7~b!.
These results clearly demonstrate that large disturbance grow
possible even before the coalescence of natural frequencies
thus, the onset of panel flutter.

3.2 Follower Force. A slightly more complex two-degrees
of-freedom model is sketched in Fig. 6~b! where two hinged rods
of lengthl are subject to a forceF acting on the bottom and in th
direction of the lower rod. The motion of the two rods is affect
by a torsional spring acting at the hinge. The configuration of
rods is described by the anglesu andf measured with respect t
the vertical axis. We will follow Bamberger@6# in deriving the
system of equations governing the above configuration. Benja
@7# has studied models of this type and the specific case illustr
in Fig. 6~b! emerges as a particular case of a fluid-conveying p
for zero mass ratiob and infinite fluid velocityU, but constant
AbU ~see Paı¨doussis@12#!.

According to Bamberger@6#, but using the dimensionless pa
rameters of Benjamin@7# for the sake of clarity, the governing
equations are given as
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F 4 3/2

3/2 1 GF ü

f̈
G1F 2 21

21 1 G F u
f G5aF1 21

0 0 G F u
f G (25)

with a5F/kl as the coupling coefficient.
At a value ofa50.1, we determine the two natural frequenci

of the system asv150.337 andv252.243 which results in the
square of the frequency ratioV2544.4. Increasing the paramete
a beyond this critical point, which Bamberger@6# determined as
ac52.54, exponentially growing solutions are encounter
Again, we wish to probe the possibility and amount of short-te
energy growth for parameter valuesa below the critical one.

In order to use the formalism introduced in this paper, we defi
the system matrixA in ~3! as

Fig. 7 Energy amplification for undamped panel flutter with
aÕacÄ0.9 versus time „top …, maximum energy amplification ver-
sus coupling coefficient „bottom …. The dashed curve repre-
sents the asymptotic behavior 1 Õ„1À„aÕac…

2
…. The continuous

curve represents both the maximum of G„t … over time and the
upper bound given in Eq. „9….
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A5S 1 0 0 0

0 4 0 3/2

0 0 1 0

0 3/2 0 1

D 21S 0 1 0 0

~a22! 0 ~12a! 0

0 0 0 1

1 0 21 0

D .

(26)

Alternatively, using different dependent variables the govern
equations can be rewritten in the form

ẍ1x5a~y2jx! (27a)

ÿ1V2y52a~x1zy! (27b)

Fig. 8 Energy amplification for undamped follower force prob-
lem with aÕacÄ0.9 versus time „top …, maximum energy amplifi-
cation versus coupling coefficient „bottom …. The dashed curve
represents the asymptotic behavior 1 Õ„1À„aÕac…

2
…. The con-

tinuous curve represents both the maximum of G„t … over time
and the upper bound given in Eq. „9….
900 Õ Vol. 70, NOVEMBER 2003
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with V2544.4 anda proportional toa. Strictly speaking, due to
the different coupling term, the above system does not resem
the general undamped system introduced previously. Never
less, the results of our analysis are similar to the ones found
Eq. ~3!.

Indeed, computing the maximum energy amplification reve
transient growth of more than one order of magnitude even tho
the coupling coefficient is only 90 percent of the critical one~see
Fig. 8~a!!. The asymptotic scaling as criticality is approached
once again confirmed numerically~Fig. 8~b!!.

3.3 Fluid-Conveying Pipe. As our last example we con
sider the instability of an articulated fluid-conveying pipe~see Fig.

Fig. 9 Energy amplification for the fluid-conveying pipe prob-
lem with aÕacÄ0.999 versus time „top …, maximum energy am-
plification versus coupling coefficient „bottom …. The dashed
curve represents the asymptotic behavior 1 Õ„1À„aÕac…

2
…. The

top curve represents the square of the condition number of the
eigenvector matrix and acts as an upper bound on the maxi-
mum energy amplification.
Transactions of the ASME
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6~c!!. Benjamin@7# and Paı¨doussis@12# have studied the stability
and dynamics of this configuration in great depth. We will clos
follow their derivation, nondimensionalization and choice of go
erning parameters resulting in the following set of govern
equations:

F 4 3/2

3/2 1 GF ü

f̈
G1F 2 21

21 1 G F u
f G

523AbvF1 2

0 1GF u̇

ḟ
G23v2F21 1

0 0G F u
f G (28)

with b5mf luid /(mpipe1mf luid) as the mass ratio andv as the
nondimensional fluid velocity. We recover the follower-forc
problem discussed in the previous section for the caseb50.

We again define the system matrixA in ~3! as

A5S 1 0 0 0

0 4 0 3/2

0 0 1 0

0 3/2 0 1

D 21S 0 1 0 0

~a22! 2b ~12a! 22b

0 0 0 1

1 0 21 2b

D
(29)

wherea53v2 andb53Abv.
Evaluating the maximum energy growth versus time we no

that the amplification is somewhat smaller than in the previ
cases with energy growth of only about eight times the ini
energy~Fig. 9~a!! for a coupling coefficienta50.999ac . In addi-
tion, flow-induced damping effects are clearly present act
mainly on the second mode. Owing to this damping the maxim
amplification of initial energy does not follow the asymptotic b
havior ~16! as the critical coupling coefficient is approached~see
Fig. 9~b!!. However, in the limit ofb→0 we recover the correc
asymptotic behavior ofGmax asa→ac .

Included in Fig. 9~b! is the upper bound based on the conditi
numberk~S! as introduced in~9!. Although the condition numbe
provides a simple estimate, the actual maximum energy grow
one order of magnitude smaller. In all previous cases, the estim
of maximum energy growth~9! based on the condition numbe
was within plotting accuracy of the computedGmax.

4 Conclusions
We studied simple two-degrees-of-freedom systems arising

variety of applications and investigated the potential for sho
term amplification of initial energy under subcritical condition
This amplification is due to the nonorthogonal superposition
modal solutions which in turn is a consequence of the non-nor
nature of the underlying system matrix. The maximum achieva
growth can be significant and scales like;1/(12(a/ac)

2) as the
critical coupling coefficientac is approached in the absence
damping. For damped systems, the maximum growth scales
versely to the square of the damping constant.

Since the nonorthogonality of the leading eigenfunctions is p
served as more modes are included in an attempt to mode
continuous system, we expect transient amplification of energ
discrete models of high degrees-of-freedom as well as in cont
ous models. In fact, the inclusion of more nonorthogonal mo
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may give rise to an increase in transient energy growth. Never
less, we believe that the simple two-degrees-of-freedom mo
presented in this article capture the essential characteristics o
phenomenon.

Three classical applications have been considered, and it
been demonstrated that significant amplification of energy be
the onset of coupled-mode flutter can occur. Whereas panel-flu
and follower-force computations showed substantial short-te
energy growth, the transient amplification of initial perturbati
was less marked in the case of a fluid-conveying pipe which
be attributed to the flow-induced damping present in the dynam
of the pipe.

As initial perturbations are amplified, nonlinear effects w
come into play, and a marked deviation from linear behav
should be expected. Despite this effect, the underlying linear
plification process constitutes an important component in desc
ing the onset of flutter instabilities. For extensions of dynami
systems that exhibit transient growth into the nonlinear regime
interested reader is referred to@13# and references therein.

The transient amplification of initial energy cannot be captu
by analyzing the eigenvalues of the system matrix. Instead, b
eigenvalues and eigenvectors are needed to account for short
instabilities. Since these type of instabilities are present before
onset of flutter and show amplification rates of one to two ord
of magnitude, nonlinear finite-amplitude effects may be trigge
long before the system exhibits vibrational instabilities. When
signing fluid-structure systems, an analysis of the type introdu
in this paper is recommended.
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Modeling Air Entrainment and
Temperature Effects in Winding
Rolls of films and paper are routinely stored under varying conditions before being
wound into downstream operations. During storage, interlayer pressures can ch
relative to the pressures generated during winding. These changes can lead to pro
such as film/paper blocking (increased interlayer pressure) and roll shifting/cinch
(decreased interlayer pressure). To study the storage effect, a nonlinear wound roll
model including air entrainment is first developed and applied to predict the in-
stresses during film/paper winding. Thereafter, a thermal stress model is used to stu
temperature effect on wound roll stresses. Key inputs to the models are the stack mo
contact clearance, and air film reference clearance. A method is developed to me
these key model inputs. Results of a parametric study show that among the proc
conditions, storage temperature and thermal expansion coefficients of the core an
film/paper are key factors that affect in-roll stresses during storage. Limitations of
models will also be discussed along with recommendations for future mod
development.@DOI: 10.1115/1.1629758#
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1 Introduction
Wound roll quality is primarily a function of the level and dis

tribution of stresses developed within a roll both during and a
winding. Because of this relationship, developing an improv
understanding of wound roll stresses has historically been
main driver in the development of wound roll models. It is we
known that wound roll stresses are influenced by many fac
including process parameters, product parameters, and env
mental conditions. Owing to the increasing desire to stream
process and product design, the complexity of wound roll mod
has increased over the last few years. In particular, researc
have sought to include more of the factors influencing wound
stresses into the models. The wound roll model presented in
paper seeks to combine physical effects that have been studi
the past. In addition, a discussion is presented noting the lim
tions of the model along with recommendations for future mod
ing.

There is a rich history of literature devoted to the wound r
problem. We will cite only a few selected papers here. One of
earliest works was that of Altmann@1# who idealized the winding
process as the addition of a sequence of stretched hoops shri
onto the roll. This idealization has been employed ever since.
further assumed that the roll could be modeled as a linear or
tropic material enabling an analytic solution to the winding pro
lem. Connolly and Winarski@2# built on Altmann’s work by add-
ing temperature and humidity effects. They formulated
problem in terms of radial displacements and obtained solut
numerically. Hakiel@3# extended the earlier works by treating th
roll as a nonlinear orthotropic material, specifically noting that
radial compressive modulus is a nonlinear function of press
Solutions were obtained numerically using a quasilineariza
procedure. Qualls@4# extended the work of Hakiel@3# by includ-
ing the thermoelastic effect into the winding model. The probl
was formulated in terms of radial stress and verification exp
ments were presented. Results indicated that the thermoelasti
havior could have a significant impact on wound roll stress lev
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Good et al.@5# further extended Hakiel’s formulation to includ
the effect of an idling pressure roll~Fig. 1!. Pressure rolling is
used to minimize air entrainment and Good showed that, at
winding speeds, a simple modification to the outer lap press
boundary condition is required to model the effect. Good a
Holmberg@6# were the first to add air entrainment to the cent
winding model. Foil bearing theory was used to estimate
amount of entrained air while the in-roll problem was treated
modifying the Hakiel formulation to include an additional com
ponent of radial compressive modulus because of isothermal c
pression of air. Side leakage was not considered in their form
tion. Good and Covell@7# examined air entrainment in th
presence of an idling pressure roll. A simple hydrodynamic mo
without compressibility was used to estimate the magnitude
entrained air. The in-roll problem was treated as in Good a
Holmberg@6#. A more detailed theoretical study of air entrainme
in the presence of a nip roller was performed by Chang et al.@8#
This work showed that air compressibility has a significant imp
on the amount of air that passes through the nip. An experime
study was performed by Taylor and Good@9# which showed that
Chang’s work accurately predicts the magnitude of entrained

Forrest @10,11# formulated a more complete air entrainme
centerwinding model by considering roughness and air pres
coupling under the idling pressure roll. The in-roll problem w
solved using a plane-strain formulation. A buckling analysis w
also presented enabling prediction of machine and cross direc
buckles. Bouquerel and Bourgin@12# presented a similar model
but like Good and Covell@7#, they used an air entrainment ni
model that neglected contact between the pressure roll and
winding roll. One extension that was considered in the model w
an empirical treatment of side leakage during and after windi
Later papers, i.e., Bourgin@13# and Forrest@14#, surveyed the
state of art in winding models and included in their discussions
entrainment, side leakage, and wound roll defect prediction. It w
noted that the time scale of side leakage was highly dependen
factors such as initial lap-to-lap clearance and web width. Fina
several papers, Pfeiffer@15,16# and Forrest@17#, provided discus-
sions and work directed toward the measurement of the ra
compressive modulus. It is clear from these references that
measurement of this property requires care. Details such
sample preparation, test equipment, test procedures, and
analysis can all have a major impact on experimental results.

The main objective of the present study is to present a mo
that combines the effects of air entrainment during pressure
centerwinding with the thermoelastic effect after winding. Met
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n on
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nta
nths
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ods to measure the inputs to the model are discussed. Experi
tal results validating the winding model are also presented
parametric study is presented that indicates the mitigating effec
air entrainment on the impact of thermoelastic expansion
wound roll stresses. It is finally noted that side leakage is
considered in the model. A detailed analysis is presented justify
this approach. This analysis provides quantitative guidance a
when side leakage must be considered and further provides in
into future model extensions.

2 Air Entrainment Winding Model
In this section, the air entrainment winding model is develop

First, a model for web roughness is presented. This model, a
with the theoretical results from Chang et al.@8# is then used to
analyze the amount of air entrained into the wound roll as the w
passes between the pressure roll and the winding roll. Finally,
in-roll model is derived and includes the combined effects
roughness contact and air pressure.

2.1 Web Roughness Model. In order to determine the
amount of air entrainment during winding, a simple model
web roughness is first presented. The roughness parameters
in the air entrainment model are defined in Fig. 2. Part~a! of the
figure shows a cross section of two webs at incipient contac
vacuum conditions. As compressive loading is applied to
webs, displacements will occur in the roughness interface
within the support. The contact reference clearance,cco , is de-
fined as the combined height of the roughness over which in
facial displacements occur. The air film reference clearance,cao ,
is the average of void space~gap! between two webs at the incipi
ent contact condition. Contact and air film reference clearan
are determined from Wyko® surface roughness measuremen
both the front and backside of the web. Two of the key parame
from the Wyko® measurements are the peak-to-valley surf
roughnessRz and mean-peak-roughness,Rpm . In the model, the
root-mean-square of the front and backsideRz are used as the
contact reference clearance,cco . The root-mean-square of th
engagement heights of the front and back surfaces,@18#, is used as
an approximation to the air film reference clearance,cao .

Fig. 1 Center winding with an idling pressure roll. Center of
the winding roll is driven by a motor.
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Part~b! and~c! in Fig. 2 show the geometry for two cases th
are possible once air entrainment occurs. Part~b! shows the cor-
responding contact clearance,ccw( i ), and air film clearance,
caw( i ), under the outer lap away from the web/pressure roller
for winding conditions where roughness contact occurs. The v
able i indicates the lap number. Note that the clearance,ccw( i ),
between two webs is reduced relative to the contact refere
clearance,cco . This will occur under low speed winding wher
the air entrainment effect is minimal. On the other hand, for hig
speed winding when the pressure roller load is not sufficien
large, the air film clearance will be increased from the refere
clearance as the outer lap winds onto the roll because of air
trainment~Part ~c!!. In this case all the belt wrap loading will b
air supported.

In addition to the clearance definitions under the outer lap,
contact clearance,cc( i ), and the air film clearance,ca( i ), within
the wound roll are also defined. These additional variables
needed to enable the model to track clearance and interlayer
sure as the roll winds.

2.2 Pressure Roller Nip Analysis. From the above discus
sion, it is clear that for a nonzero winding speed under nonvacu
conditions, air will always contribute to the interlayer pressure.
order to determine the magnitude of this contribution during pr
sure roller winding, the air entrained in the outer lap must first
determined.

Consider a winding roll with widthwise invariant web and co
properties. Under the pressure roller, the nip force per web wi
f p( i ), is comprised of an air force,f a( i ), and/or a contact force
f c( i ):

f p~ i !5 f a~ i !1 f c~ i !. (1)

The air force arises because of entraining of air and the con
force arises if the web wrapping the pressure roller is in phys
contact to the roll through its rough surface. From Chang et
@8#, the air film clearance beneath the pressure roller nip,can( i ),
can be expressed as a function of the developed air forcef a( i ):

Fig. 2 Web roughness model
can~ i !

R~ i !
5H 6.5S mV

paR~ i ! D
0.65S f a~ i !

paR~ i ! D
20.28S E~ i !

pa
D 20.44

for 0.69<E<4.84 MPa

8.7S mV

paR~ i ! D
0.72S f a~ i !

paR~ i ! D
20.49S E~ i !

pa
D 20.48

for 4.84<E<34.5 MPa

(2)
NOVEMBER 2003, Vol. 70 Õ 903
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where V is the winding speed,pa is atmospheric pressure, an
R( i ) andE( i ) are the equivalent radius and equivalent modulus
the pressure roller/winding roll.

The air film clearance is related to the contact clearance if
assumed that under loading, the reduction in contact clearan
equivalent to the reduction in air clearance:

ccn~ i !2cco5can~ i !2cao . (3)

This assumption is not rigorously justified; however for typic
loads and for webs dominated by very fine roughness with a
dom distribution of sparse high roughness, this would seem to
a reasonable assumption since the interfacial displacements w
occur mainly in these high roughness areas.

From the Hertzian contact theory,@19#, the contact force,f c( i ),
in terms of the contact clearance,ccn( i ), is found to be

f c~ i !5
pR~ i !

E~ i !
Pn

2~ccn~ i !!, (4)

wherePn(ccn) is the contact pressure under the nip and is rela
to the contact clearance via a look up table generated from
stack modulus measurement:

Pn~ccn~ i !!5 f ~ccn~ i !!5H f * ~ccn~ i !! for ccn<cco

0 for ccn.cco
.

(5)

The above equations are well posed to solve for the unkno
under the nip,ccn( i ), can( i ), f c( i ), and f a( i ).

2.3 Internal Outer Lap Analysis. The analysis of this sec
tion uses the results of the pressure roller nip analysis to de
mine the air film clearance, air pressure, and contact condi
under the outer lap away from the nip.

Empirical studies,@7#, have shown that the effective windin
tension~wound-in-tension! in pressure roller winding,ta( i ), can
be expressed as

ta~ i !5t~ i !1mww fc~ i !, (6)

wheremw is the front-to-back friction coefficient of the web,w is
the width of the web andt( i ) is the upstream winding tension
This expression indicates that an additional component, know
the nip-induced tension, arises during winding when a press
roller is added.

The winding tension stress under the outer lap away from
nip is related to the effective winding tension by
a

q
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su~ i !5
ta~ i !

whl
, (7)

wherehl is the load sharing web thickness~Fig. 3!. The belt wrap
pressure under the outer lap away from the nip is supported b
pressure and possibly contact pressure:

P8~ i !5
hlsu~ i !

r d~ i !
5

ta~ i !

wrd~ i !
5Pg8~ i !1Pc8~ i !. (8)

The contact pressure is related to the contact clearance in the
fashion as Eq.~5!. The air pressure under the outer lap away fro
the nip,Pg8( i ), is related to the air film clearance by a sequence
two equations. The first, according to Chang et al.@8#, relates the
clearance adjusted to atmospheric pressure to the pressure
air load, f a( i ),

Fig. 3 Continuum differential force element in the wound roll
caa~ i !

R~ i !
5H 7.4S mV

paR~ i ! D
0.66S f a~ i !

paR~ i ! D
20.21S E~ i !

pa
D 20.33

for 0.69<E<4.84 MPa

12.5S mV

paR~ i ! D
0.71S f a~ i !

paR~ i ! D
20.20S E~ i !

pa
D 20.23

for 4.84<E<34.5 MPa

, (9)
,
t

ce
s
tact
wherecaa( i ) is the air film clearance under the outer lap aw
from the nip adjusted to atmospheric pressure. The second re
the air pressure to the air film clearance using the perfect gas

pacaa~ i !5~pa1Pg8~ i !!caw~ i !. (10)

By using the relation betweencaw( i ) andccw( i ) ~the same fash-
ion as in Eq.~3!!, the above becomes

Pg8~ i !5
pacaa~ i !

ccw~ i !2cco1cao
2pa . (11)

Once the pressure roller air load is determined, the above e
tions can be solved for contact clearance and air pressure u
the outer lap away from the nip.
y
lates
law:

ua-
nder

2.4 In-Roll Analysis. Prior to the addition of the next lap
say theith, the roll will have a radius,r d( i ). Assume that the nex
lap under wound-in-tension,ta( i ), is added to the roll. The roll
profile after the addition of theith lap, r d( i 11) is

r d~ i 11!5r d~ i !1U8~ i !1ham~ i !, (12)

whereU8( i ) is the radial displacement of the roll due to the for
exerted by theith lap andham( i ) is the reference web thicknes
added to the roll profile accounting for air entrainment and con
if present

ham~ i !5ha1ccw~ i !2cco . (13)
Transactions of the ASME
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The derivation of in-roll analysis begins by considering t
forces that act on a differential element located in the wound
at a nominal wound roll radius. Figure 3 shows such an elem
that can be thought of as a continuum equivalent of the ac
situation where the load sharing web thickness,hl , will be less
than the reference web thickness,ham( i ).

To accommodate this difference, two in-roll tension stress
rameters are defined. The first,T8* , is the continuum approxima
tion to the actual incremental in-roll stress,T8, which is distrib-
uted over the load sharing thickness. The apostrophe is adde
denote that the stresses are incremental due to the addition
single lap. In addition, anisotropic constitutive properties are
fined for the continuum approximation (Ex* , n ru* , andnur* ).

To simplify the development of the remaining equations in t
section, explicit reference to lap number will be excluded from
model variables. It is understood that the stresses are evaluat
each lap.

Consider first the continuum approximation. A fundamental
lationship between the continuum in-roll tension stress,T8* , and
the interlayer pressure stress,P8, can be obtained by force equ
librium:

P81T8* 1r
dP8

dr
50. (14)

The continuum in-roll tension stress is related to the actual in-
tension stress by considering a balance of total tension within
circumferential load carrying thickness and total web thicknes

T8* ham5hlT8, (15)

which reflects the fact that the actual in-roll tension stress a
over a proportionally smaller radial differential than the co
tinuum in-roll tension stress.

The strain-displacement and constitutive relationships for
continuum approximation are given by

«u85
U8

r
5

T8*

Ex*
1

nur* P8

Eya
5«uu8 1«ur8 ,

« r85
dU8

dr
52

P8

Eya
2

n ru* T8*

Ex*
5« rr8 1« ru8 , (16)

where nur* and n ru* are the two components of Poisson’s ra
relating strain in one direction to strain in the other. In Eq.~16!, it
has been assumed that the strains from the continuum model
resent the actual strains whenhlÞham . This will be true when
these strains equal the following alternate expressions:

«uu8 5
T8

Ex
, «ur8 5

nur P8

Eya
, « rr8 5

2P8

Eya
, « ru8 5

2hln ruT8

hamEx
.

(17)

From Eqs.~15!–~17!, the continuum constitutive properties a
related to the physical properties of the web (Ex , n ru , andnur)
by

Ex* 5
hl

ham
Ex , nur* 5nur , n ru* 5

hl

ham
n ru . (18)

Strain energy consideration,@3#, gives the following relationship
between the constitutive properties:

nur*

Eya
5

n ru*

Ex*
. (19)

Combining Eqs.~14! to ~19! yields the following differential
equation for the incremental interlayer pressure:

r 2
d2P8

dr2
13r

dP8

dr
1S 12

hlEx

hamEya
D P850. (20)
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This is a second-order ordinary differential equation and its so
tion requires that two boundary conditions be specified. At
periphery of the winding roll, a single winding lap exerts a pre
sure on the roll that is given by the wound in tension as

P8~ i !5
ta~ i !

wr~ i !
at the periphery. (21)

At the periphery of the core, since the radial displacement of
core must equal that of the roll, a boundary condition can
written

dP8

dr
5

2

c S Exhl

Echam
211

hl

ham
n D P8 at the core/roll interface.

(22)

The total pressure in-roll is the sum of total air pressure a
total contact pressure if the neighboring layers are in contact:

P5Pc1Pg . (23)

As the total pressure increases, when more laps are wound, th
pressure, contact pressure, and thus the contact clearance
change as well. Within the roll, the contact pressure and con
clearancecc are related by Eq.~5!. On the other hand, the ai
pressure in roll is related, by the ideal gas law, to the amount o
entrained while the local lap was being wound:

~Pg1pa!~cc2cc01ca0!5~Pg81pa!caw . (24)

When winding more laps, the contact clearance between lap
the existing roll can then be updated according to Eqs.~23! and
~24!.

3 Thermal Stress After Winding
Roll winding usually takes place in a temperature-control

environment where the temperature variation is minimal. Af
being wound, the rolls are often stored in facilities where t
temperature can be significantly different from the winding te
perature. In the following we model the effect of temperatu
changes after winding to in-roll stresses.

After winding, the force equilibrium Eq.~14! still governs the
stress distribution in roll. The constitutive relations, including t
effect of temperature, are

«u85
U8

r
5

1

Ex*
T8* 1

nur*

Eya
P81a tF8,

« r85
dU8

dr
52

1

Eya
P82

n ru*

Ex*
T8* 1a rF8, (25)

whereP8 andT8* are the increments of in-roll pressure and te
sion stress due to the temperature changeF8(r ).

For simplicity, the material properties such as web moduli e
cluding air and Poisson’s ratio are assumed independent of
perature. From Eqs.~18! and ~25!

d«u8

dr
5

ham

hlEx

dT8*

dr
1

n ru

Ex

dP8

dr
1a t

dF8

dr
. (26)

To arrive the above equation, we have assumed the load sha
thickness, web circumferential modulus, coefficient of thermal
pansion, and Poissons ratio are invariant with the radius.
variation ofham with radius is typically very small, and therefor
is neglected here. Combining Eqs.~14!, ~25!, and ~26! gives the
differential equation for the increment in interlayer pressure due
a temperature change
NOVEMBER 2003, Vol. 70 Õ 905
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r 2
d2P8

dr2 13r
dP8

dr
1S 12

hlEx

hamEya
D P81

hl

ham
Ex~a r2a t!F8

2
hl

ham
a tExr

dF8

dr
50. (27)

The boundary conditions for the second order ordinary differen
Eq. ~27! are the following. At the periphery of the wound rol
there is no pressure increment

P850 at the periphery. (28)

At the surface of the core (r 5c/2) the radial displacement cont
nuity due to the local pressure and core temperature cha
(P18 ,F18) yields

Uc8~c/2!52
P18c

2Ec
1

accF18

2
, (29)

where ac is an equivalent thermal expansion coefficient of t
core, andEc is the core modulus evaluated at initial temperatu
and assumed not varying with temperature.

Equation~29! is based on the assumption that the tempera
increase within the core is uniform. This is a valid assumpt
only if heat transfer in the core is much faster than that in
wound roll so that the core reaches thermal equilibrium mu
faster than the roll.

When Eq.~29! is combined with Eq.~25!, it yields the second
boundary condition

dP8

dr U
r 5c/2

5
2

c F Exhl

Echam
211

hl

ham
nGP181

2hl

cham
Ex~a t

r2ac!F18 .

(30)

Temperature variations after winding change the in-roll press
and thus the air pressure, contact pressure, and contact clea
change as well. These in-roll variables can be updated by the s
routine as that in the in-roll analysis, except when the tempera
effect on air pressure is included, Eq.~24! becomes

~Pg81pa!caw

Fs
5

~Pg1pa!~cc2cc01ca0!

F
, (31)

whereFs is the roll temperature at the start of the thermal ana
sis. TemperaturesF and Fs are absolute in reference to2273°C
~2460°F!.

4 Modified Stack Modulus to Include Air and Tem-
perature Effects

In Eq. ~19! the stack modulus with the air effect,Eya , is a
modified version of the stack modulusEy without air entrainment.
The purpose of this section is to develop an expression forEya in
terms ofEy and the thickness variables of the model. The analy
first establishes basic definitions where air entrainment is
glected. This is followed by a derivation for the stack modu
where air entrainment between the laps is considered. Final
derivation is presented for the stack modulus which addition
includes the temperature effect.

4.1 Stack Modulus Excluding Air Entrainment. Consider
part ~a! of Fig. 2, which shows incipient contact of two webs in
vacuum. In this figure, the reference web thickness is the t
web thicknessha , and the contact reference clearance iscco . The
total web thickness,ha , can be broken into two layers, one o
which is the support with reference thicknesshl and bulk modulus
Es , and the other is the layer consisting of surface roughness
reference thicknesscco and modulusEr . When air is excluded,
these two layers are modeled as elastic springs linearly conne
in series~Fig. 4~a!!. The stack modulus of the total web excludin
air is
906 Õ Vol. 70, NOVEMBER 2003
tial
,

-
nge

e
re

ure
on
he
ch

re,
rance
ame
ure

ly-

sis
ne-
us
y, a
lly

a
tal

f

ith

cted
g

Ey5
haErEs

ccoEs1hlEr
. (32)

The above equation can be solved for the roughness modulusEr if
the stack modulusEy , bulk modulusEs , and reference thicknes
of each layer are available.

4.2 Stack Modulus Including Air Entrainment. Next,
consider parts~b! and~c! of Fig. 2 that shows the relative positio
of the outermost two laps after the outer lap has passed onto
wound roll. In this figure, the reference web thickness,ham , is
now the total web thickness including the effect of air entrainm
and the effect of roughness if contact occurs under the outer
such as shown in Part~b! of Fig. 2. The contact reference clea
ance is nowccw and air film reference iscaw . These quantities
are computed in the outer lap analysis.

The air trapped in the roughness area between two laps
affect the compressibility of the roll. When air is included, th
roughness area is modeled as two springs in parallel~Fig. 4~b!;
one represents the roughness surface with reference thicknescco
and modulusEr , and the other represents the air film referen
thicknesscaw and modulusEa . The total web is modeled as thi
roughness layer and the support layer~reference thicknesshl and
bulk modulusEs) connected in series. The air film modulus
from the compressibility of the air. When air leakage through
sidewall is excluded and the air follows the ideal gas law, the
film modulus is,@6#,

Ea5
~Pg1pa!2

~Pg81pa!
. (33)

The stack modulus of the total web is then

Eya55
ham

hl

Es
1

caw

Ea

when the laps are not in contact

ham

hl

Es
1

1

Ea

caw
1

Er

cco

when the laps are in contact

.

(34)

In the in-roll stress analysis, before theith lap is added, the
stack modulus is computed along the radius in the winding r
This is done at each radial location as follows. First, the roughn
interface modulus is computed using Eq.~32!. Then Eq.~34! is

Fig. 4 Stack modulus
Transactions of the ASME
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Table 1 Winding conditions and results from experiments and model predictions

Test
#

Speed,
m/s

Start
tension

per width,
N/m

Finish
tension

per width,
N/m

Nip
force per

width,
N/m

Accel at
cinching,

m/s2

Torque
per

width at
core, N

Contact
pressure
at core,

kPa

Contact
pressure at
core from

model, kPa

1 4.3 622 263 263 0.76 572 73 97
2 4.3 727 306 263 .1.02 .762 .97 104
3 4.3 832 350 263 .1.02 .762 .97 108
4 5.1 727 306 263 1.02 762 97 102
5 5.1 766 766 263 1.02 762 97 103
6 5.1 832 350 263 .1.02 .762 .97 106
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used to evaluate the stack modulus with the air entrainment e
included. Once the stack modulus is known, the incremental
roll solution for theith lap can be found. Finally, the cumulativ
in-roll solution is determined.

4.3 Stack Modulus Including Air Entrainment and Ther-
mal Effect. We assumed the support and roughness modul
not vary with temperature in the temperature range of inter
With this assumption, the effect of temperature on stack modu
depends solely onEa , the modulus of the air film. Using the idea
gas law under isothermal expansion, the air film modulus is

Ea5
~Pg1pa!2Fs

~Pg81pa!F
. (35)

Then the stack modulus, including air entrainment and temp
ture effect, is available by substituting the above equation into
~34!.

4.4 Stack Modulus Measurement and Data Reduction.
In order to perform numerical simulations using the windi
model, several material properties and geometric parameters
be measured empirically. Some of these are measured conven
ally ~e.g., Young’s modulus of the web!; however, several new
variables have been introduced and so some discussion on ho
measure them is now provided.

The new material properties required of the model include
underlying support modulus and the roughness modulus as
fined in Eq.~32!. To obtain these parameters, the circumferen
load carrying thickness and the total web thickness must
known as well. The total web thickness is the sum of the lo
sharing thickness and the contact reference clearance. It is d
mined from experimental stack modulus measurements as
lows. First, three stacks of support are constructed from individ
plies having an area of 1.27 cm by 5.08 cm. The number of p
within each stack is chosen such that the height is 0.51 cm. E
of the three stacks is sequentially placed between two par
plates and compressed to a small preload of 103 Kpa. The loa
then reduced to 13.8 KPa and the height of each stack noted
the average output from three LVDT’s located at 120° increme
around the perimeter of the upper and lower platens. The t
stack height is divided by the number of individual plies and
resulting thickness is averaged from the three separate mea
ments to yield the total web thickness.

Following this measurement, each stack is then compressed
constant strain rate of 0.51 mm/min up to a final stress of 1
MPa. Displacements are measured as the average output o
three LVDTs and stress is measured using a load cell. From
data, the radial compressive modulus excluding air is compu
since the stack area is sufficiently small enough to mitigate the
effect during compression. The bulk modulus is determined
computing the tangent modulus from the stress-strain data
the upper end of the stress range. Presumably, at the hi
stresses, the roughness interface has been significantly
pressed and the stress-strain behavior is predominately gove
by the bulk modulus.
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Finally, the roughness modulus is computed by inverting E
~32! once the contact reference clearance is known. As previo
mentioned, the contact reference clearance is determined from
root-mean-square of the front and backsideRz ~measured via the
Wyko®!.

5 Numerical Solution
The solution of the above model was obtained numerically. T

numerical algorithm ‘‘winds’’ one lap after another onto th
‘‘core’’ until the last lap is wound. During winding of each indi
vidual lap, the algorithm is as follows:

1. Pressure roller nip analysis: Given the nip load, winding
speed, web reference clearances, and roll/pressure rolle
ometry, the equivalent radius and equivalent modulus of
roll/pressure roller are evaluated. Then Eqs.~1! to ~5! are
solved by Newton’s iterative method for the contact for
f c( i ), air force f a( i ), contact clearanceccn( i ), and air film
clearancecan( i ) under the nip.

2. Internal outer lap analysis: The contact force from the step
is used to obtain the nip induced tension and wound-
tension. Then Eq.~9! is used to evaluatecaa( i ), the air film
clearance under the outer lap away from the nip adjuste
the atmospheric pressure. Equations~8!, ~10!, and ~11! are
solved afterwards to obtain the contact clearanceccw( i ), the
contact pressurePc8( i ), and air pressurePg8( i ) under the
outer lap away from the nip.

3. In-roll analysis: The stack moduli including the air effect ar
first evaluated using the in-roll conditions. Central finite d
ference method is then applied to solve the ordinary diff
ential Eq.~20! with the boundary conditions~21! and ~22!.

4. Roll profile and stress update: Results from step 3 are use
to update the roll profile and in-roll stress distribution.

5. Repeat: Steps 1 to 4 are repeated until all laps are wou
onto the roll.

6. Thermal stress analysis after winding: The nonlinear bound-
ary value problem of the thermal stress analysis~Eq. ~27!! is
solved by Newton’s iterative method.

6 Experimental Verification and Parametric Study

6.1 Experiments. Experiments are conducted in the Koda
conveyance and winding laboratory. The experiments consiste
winding a sequence of polymer-coated paper~224 mm thick and
7925 m long, roll OD 1.5 m! onto 0.127 m~5 inch! outer diameter
cardboard cores. Test rolls are wound with a pressure roller fo
of 263 N/m ~1.5 pli! contact force under two levels of speed, 4
and 5.1 m/s~850 and 1000 fpm!, and five levels of tension profile
as detailed in Table 1. The tension profiles, with the exception
test 5, which is at constant tension, are linearly tapered with
length of the web wound onto the roll.

After winding, the rolls are tested to evaluate the torque tra
mission capability. Before testing, straight lines are drawn on b
sides of every test roll. Then the rolls are repeatedly acceler
up to 5.1 m/s~1000 fpm! using incremental acceleration rates a
then stopped. The acceleration rate starts at 0.25 m/s2 ~50 fpm/
NOVEMBER 2003, Vol. 70 Õ 907
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Table 2 Material properties used in modeling

c (m) 0.127 Ex (MPa) 5720 n 0.02 Es (MPa) 179
cao (mm) 8.387 ha (mm) 235 Ep (MPa) 2 density, kg/m3 1107
cco (mm) 10.64 hl (mm) 224 r p (m) 0.0762 roll OD, m 1.5
Ec (MPa) 410 mw 0.31 vp 0.495 lap number 3089
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sec!, and then increases up to 1.02 m/s2 ~200 fpm/sec! in 0.25
m/s2 increments. The rolls are then decelerated at a much ge
deceleration rate of 0.05 m/s2 ~10 fpm/sec!. After rolls are
stopped, they are checked for cinches~circumferential breaks of
the straight lines on both ends!. Results are shown in Table 1
from which half of the six rolls do not cinch at 1.02 m/s2, the
maximum acceleration capability of the lab equipment. Amo
the three rolls that cinched, one cinched at 0.76 m/s2 ~150 fpm/
sec!, and two cinched at 1.02 m/s2. For all of these three rolls, cin
ching takes place near the core. The acceleration rate when c
ing starts can be used to estimate the contact pressure at the
In this calculation, it is assumed that it is the contact pressure
provides the roll with torque transmission capability. The cont
pressures at the core from the cinch tests are shown in Table

6.2 Model Predictions. The computer program describe
above is used to predict the in-roll stress distribution of ro
wound at the winding conditions listed in Table 1. Key inputs
the model are summarized in Table 2, and the relationship am
contact clearance, contact pressure, and roughness modulus
testing of the same polymer coated paper is listed in Table 3. F
the model prediction, the contact pressures at the core at diffe
winding conditions are listed in Table 1, and they agree fairly w
with the respective contact pressures from the torque transmis
tests.

When using the winding conditions of test 1 in Table 1, the to
interlayer pressure, contact pressure, and air gage pressure
bution after winding are shown in Fig. 5. For comparison p
poses, the interlayer pressure from a nonair entrainment mod
also included. With the air entrainment effect, the total pressur
the sum of contact pressure and air pressure, the former of w
is supported by roughness contact of two neighboring laps and
later from air gage pressure. The result indicates the existence
core zone where the total pressure and gage pressure start a
values and then rapidly increase to peak pressures. Further o
the roll, the total pressure and gage pressure fall and become
to zero at the finished roll surface. The presence of the core z
is mostly due to the soft cardboard core, which results in a
core modulus, thus resulting in a sharp drop in the pressures a
core. In winding and in downstream unwinding, the torque fro
the core is transmitted from the inner laps to the outer laps b
friction force induced by direct contact pressure. The contact p
sure at the core therefore determines the local torque transmis
capability. The interlayer pressure from the non-air entrainm
model is higher than the contact pressure but lower than the
interlayer pressure from the air entrainment model.

Figure 6 shows the interlayer tension, wound-in-tension,
machine tension stress distributions. Again, the interlayer ten

Table 3 Roughness modulus of the polymer coated paper ex-
cluding air effect

Contact Clearance,mm Contact Pressure, MPa Stack Modulus, MP

10.640 0.000 0.021
4.933 0.014 0.083
3.896 0.028 0.227
3.416 0.041 0.396
2.210 0.138 1.609
1.380 0.345 4.326
0.798 0.689 8.887
0.282 1.379 20.057
0.016 2.413 69.154
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from the non-air entrainment model is included for comparis
purposes. Because of the low core modulus when the air effe
included, the interlayer tension stress near the core is highly n
tive, which could potentially cause local buckling. The wound-
tension~tension in the outer lap downstream of the pressure rol!
is higher than the machine tension~tension upstream of the pres
sure roller! due to the friction force induced by the pressure lo
underneath the pressure roller nip. The interlayer tension st
from the nonair entrainment model is different than that from
air entrainment model, and in this example does not show a re
of sharp change near the core.

The contact clearances under the pressure roller, under the
lap away from the nip, and after winding are shown in Fig. 7. A
clearances are lower than the reference contact clearancecco and
air film reference clearancecao . This indicates that throughou

a

Fig. 5 In-roll pressure stresses right after winding from both
air entrainment model and nonair entrainment model. The gage
pressure is the air pressure above the ambient pressure.

Fig. 6 In-roll tension stresses right after winding from both air
entrainment model and nonair entrainment model
Transactions of the ASME
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the winding process, no laps are floating or are purely suppo
by air pressure. The contact clearance under the outer lap is b
the contact reference clearance due to the existence of the pre
roller, which squeezes out most of the air under the nip and o
lets a small amount of entrapped air into the roll. Contact cle
ance under the outer lap away from the nip is higher than
under the pressure roller, which suggests that right after be
compressed by the pressure roller nip, the air under the oute
expands. Depending on how much air passes through the nip
the wound-in-tension, the gage pressure could be negative u
the outer lap away from the pressure roller nip, resulting in s
ambient air pressure locally.

6.3 Thermoelastic Effect. After winding, the rolls are usu-
ally put into storage before unwinding. The typical storage ti
varies from hours to years. Often, rolls are stored in nontemp
ture controlled warehouses where the roll temperature varies
the season. In some manufacturing processes, rolls are inten
ally stored at elevated temperatures for a specific time to con
certain web properties~such as core set curl!. In-roll stress
changes with roll temperature mostly because the coefficien
thermal expansion~CTE! of the web is anisotropic, and the cor
CTE is different than that of the web. The interlayer press
increases at elevated temperature when the CTE along the r
direction is higher than that of the circumferential direction b
cause the roll expands more along the radial direction than
hoop direction.

In the following, the temperature effect on wound roll stress
studied by assuming the roll is wound using test 1~Table 1! wind-
ing conditions at an ambient temperature of 70°F, and after w
ing there is a step change in roll temperature from 70°F to 10
After the temperature change, the total interlayer pressure
contact pressure from the air entrainment model are show
Figs. 8 and 9 at three levels of radial coefficient of thermal
pansion,a r51025, 1024, and 1023 (1/°F). Other coefficients of
thermal expansion are fixed atau51025 1/°F tangentially for the
web, andac51024 1/°F for the core. As shown in Figs. 8 and
the total interlayer pressure is much more sensitive to the ra
CTE than the contact pressure. This indicates that the increa
total interlayer pressure is mostly from the increase in gage p
sure~the difference between the total interlayer pressure and c
tact pressure!, which is due to both a higher temperature and
lower air gap.

When using the non-air entrainment model, the tempera
effect to interlayer pressure is given in Fig. 10, which shows

Fig. 7 Contact clearances under the pressure roller, under the
outer lap away from the nip, and after winding
Journal of Applied Mechanics
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effect of temperature change on interlayer pressure is simila
the total interlayer pressure when the air effect is included.

Besides the thermal expansion coefficients of the web,
wound roll stress is also affected by the thermal expansion c
ficient of the core. At a temperature change from 70°F to 100
Figs. 11 and 12 give the model predictions of the total interla
pressure and contact pressure at three levels of core coefficie
thermal expansion,ac51025, 1024, and 1023 (1/°F). Web coef-
ficients of thermal expansion are fixed ata r51024 1/°F radially
and au51025 1/°F tangentially. When using the nonair entrai
ment model, the results are shown in Fig. 13. From the pre
tions, the core effect is only localized to the laps close to the c
A higher core thermal expansion coefficient than the web wo
enhance the thermal stress effect, and make the local in-roll p
sure even higher when heated, and even lower when cooled.

Fig. 8 The effect of roll radial CTE on total interlayer pressure
right after winding at 70°F and after heated to 100°F. Results are
from the air entrainment model. The radial CTE of the roll is
indicated in the figure. Other CTEs are auÄ10À5Õ°F and ac
Ä10À4Õ°F.

Fig. 9 The effect of roll radial CTE on contact pressure right
after winding at 70°F and after heated to 100°F. Results are from
the air entrainment model. The radial CTE of the roll is indi-
cated in the figure. Other CTEs are auÄ10À5Õ°F and ac
Ä10À4Õ°F.
NOVEMBER 2003, Vol. 70 Õ 909
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7 Model Limitations
The model presented in this paper neglects the effect of

leakage both during and after winding. As the experimental res
indicate, reasonable agreement is obtained for a specific test
However, as process conditions are changed, it is expected
this assumption will no longer be valid. For example, as w
width is decreased, the air under the outer lap will be more
nificantly affected by the atmospheric boundary conditions at
ther end of the roll. To further investigate the quantitative imp
of this limitation, a simple theory was developed to establish ti
scales for air leakage from a wound roll and is presented in
Appendix.

Results from the analysis are presented in Figs. 14 and
These figures give a plot of the percentage of original air mass
from the first lap of the roll~nearest the core! as a function of the

Fig. 10 The effect of roll radial CTE on interlayer pressure
right after winding at 70°F and after heated to 100°F. Results are
from the nonair entrainment model. The radial CTE of the roll is
indicated in the figure. Other CTEs are auÄ10À5Õ°F and ac
Ä10À4Õ°F.

Fig. 11 The effect of roll core CTE on total interlayer pressure
right after winding at 70°F and after heated to 100°F. Results are
from the air entrainment model. The core CTE of the roll is
indicated in the figure. Other CTEs are a rÄ10À4Õ°F and au

Ä10À5Õ°F.
910 Õ Vol. 70, NOVEMBER 2003
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initial clearance and the web width. The results are compute
the completion of winding and indicate that wider webs w
smaller initial clearances have smaller air leakage and that les
leakage occurs at higher winding speeds. For example, as
cated in the Appendix, the initial clearance under the lap nea
the core after the 4th lap of the roll is added is equal 1.464mm.
This corresponds to results from test 1 from Table 1. Using th
values and the web width in test 1, the percentage of air mass
under the lap nearest the core at the completion of winding
between 25 and 40%. While this magnitude of air loss is sign
cant, it is cumulative over the winding duration and therefo
probably does not invalidate the winding model since the imp
of added laps to interlayer pressure is localized to laps in
vicinity of the radial location of interest.

However, since even more air will leak out of the roll aft
winding, the subsequent assumption of no side leakage during
thermoelastic portion of the analysis is probably invalid. This su

Fig. 12 The effect of roll core CTE on contact pressure right
after winding at 70°F and after heated to 100°F. Results are from
the air entrainment model. The core CTE of the roll is indicated
in the figure. Other CTEs are a rÄ10À4Õ°F and auÄ10À5Õ°F.

Fig. 13 The effect of roll core CTE on interlayer pressure right
after winding at 70°F and after heated to 100°F. Results are from
the nonair entrainment model. The core CTE of the roll is indi-
cated in the figure. Other CTEs are a rÄ10À4Õ°F and au

Ä10À5Õ°F.
Transactions of the ASME
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all
gests that for the range of speeds and for the web width con
ered in this study that the no side leakage assumption is not
sonable. However, as the web width is increased, the assum
is better met and in the limit for a very wide web, our thermoel
tic results will be accurate. Therefore, for many practical w
winding simulations, side leakage needs to be incorporated
the winding model. However, this will introduce much more co
plexity into the model and will be expected to be numerica
intensive.

8 Conclusions
An air entrainment model was developed. The model include

web roughness model, a pressure roller nip analysis, an oute
analysis, and an in-roll analysis. In addition, the effect of tempe
ture on thermoelastic stresses after winding is included. The w
ing model gives reasonable predictions compared with wind
experiments on polymer coated paper. The parametric study sh
ing the effect of CTEs on in-roll stress is also presented. Co
parison to previous models excluding air entrainment indicate
very significant reduction in contact interlayer pressure cause
the trapped air. The model does not include side leakage du
and after winding. An analysis was developed indicating the ra
over which this assumption is valid. Future modeling will be e
tended to include the effect of side leakage.

Fig. 14 Total mass of air lost from the first lap of a roll after
winding 3089 laps at 2.54 m Õs „500 ft Õmin …, expressed as a per-
centage of the original mass in the lap. The half-width of the
roller in centimeters, L , is indicated on the figure. Data are pre-
sented here for a core having outer diameter of 0.127 m „5
inches …, and for a web thickness of 224 mm.

Fig. 15 Total mass of air lost from the first lap of a roll after
winding 3089 laps at 7.62 m Õs „1500 ft Õmin …, expressed as a
percentage of the original mass in the lap. The half-width of the
roller in centimeters, L , is indicated on the figure. Data are pre-
sented here for a core having outer diameter of 0.127 m „5
inches …, and for a web thickness of 224 mm.
Journal of Applied Mechanics
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Appendix

Air Leakage in Winding. The purpose of this appendix is t
set forth a simple theory that establishes time scales for air le
age from a wound roll under a tensile load. The results of t
theory may be used to demonstrate the validity of various assu
tions used in winding models, which often involve issues rega
ing air leakage out of the widthwise edges of a roll while windi
is occurring. The incorporation of air leakage into a windin
model introduces much complexity and is numerically intensi
as such, the subsequent analysis can justify when the added
plexity is necessary, and when a simpler nonleakage mode
adequate.

Theory of Air Loss. We first consider a simple one
dimensional lubrication model for the ‘‘squeezing’’ of air out of
gap as it closes under a constant external load. This is to m
the approximate air loss occurring on any single lap of the r
We then provide some limiting cases of the lubrication mod
Lastly, we show how the model is used to approximate the cum
lative air loss in a given lap as more laps are added to a roll.

Consider the configuration shown in Fig. 16 in which wa
bound a region containing air. Thex-y coordinate system is a
indicated, and thez-direction extends out of the figure. The do
main has lengthL; we assume that the flow is invariant in th
z-direction. At the locationx50, we assume that there can be n
flow, and atx5L, we assume that the air pressure is atmosphe
pa . We assume that the top wall of the domain is entirely flat a
is set in motion due to a pressure difference between an exte
pressure loadPL , and an initial air pressure in the gap,PH . We
parameterize the moving top wall location asy5h(t), while the
bottom wall aty50 remains stationary. As a result, the internal
generates a pressure fieldP(x,t) that opposes this load, and the
is a resulting air flow exiting from the domain atx5L. We as-
sume that the air obeys a polytropic relation between the lo
densityr and pressure, i.e.,

r5cP1/g, (A1)

wherec and g are constants. For isothermal compression,g51,
while for adiabatic compression,g5Cp /Cv , whereCp and Cv
are the respective heat capacities at constant pressure and vo
~g;1.4 for air!; the flow is incompressible in the limit asg ap-
proaches infinity. We further assume that inertial effects are n
ligible, and that the assumptions of lubrication theory are va
These two assumptions are satisfied, provided

h0

L
!1, S r0Qs

m D S h0

L D!1, (A2)

whereh0 andr0 are characteristic scales for the gap clearance
density, respectively; we choose these quantities ash(t50)5h0
andr(t50)5r0 . Qs is a volumetric flow per width scale given
in ~A3g!. Our goal is to determine the pressure field in the sm

Fig. 16 Geometry for lubrication analysis of squeezing flow
NOVEMBER 2003, Vol. 70 Õ 911
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gap, the location of the top surfaceh(t), and the mass of air
exiting the domain to atmosphere as a function of time.

With the above stated assumptions, the dimensionless sy
governing the location of the moving wall and internal pressur
given by

]

] t̄
~ h̄P̄1/g!1

]

] x̄
~ P̄1/gQ̄!50, (A3a)

Q̄52h̄3
] P̄

] x̄
, (A3b)

E
0

1

P̄dx̄51, (A3c)

P̄5 P̄H , h̄51, at t̄50, (A3d)

] P̄

] x̄
50 at x̄50, (A3e)

P̄5 P̄A at x̄51, (A3f)

where

P̄5
P

PL
, P̄H5

PH

PL
, P̄A5

pa

PL
, x̄5

x

L
, t̄5

t

ts
,

Q̄5
Q

Qs
, ts5

12mL2

h0
2PL

, Qs5
h0

3PL

12mL
. (A3g)

As indicated in~A3!, our convention is that overbars denote d
mensionless variables. In~A3!, Q̄ is the dimensionless volumetri
flow rate per unit width. The above system~A3! is standard, ex-
cept for the integral constraint~A3c! that balances forces on th
moving wall. Note that in keeping with the constraints of lubric
tion theory, we have also neglected inertial effects in~A3c!. The
system~A3! is well posed to solve for the pressure and web lo
tion.

Of particular interest is the mass exiting the domain to atm
sphere atx̄51. We determine this quantity as follows. First, th
Eq. ~A3a! is integrated inx̄ between the limits 0 and 1 using th
pressure boundary conditions in~A3e! and ~A3f! to obtain

Q̄u x̄5152
1

P̄A
1/g

]

] t̄ S h̄E
0

1

P̄1/gdx̄D . (A4a)

The expression~A4a! yields the volumetric flow rate existing th
domain. Since the flow is compressible, the mass flow rate,Qm ,
is the useful quantity. Using the density given by~A1!, the relation
between the dimensionless mass and volumetric flow rate ca
expressed as

Q̄m5PA
1/gQ̄, Q̄m5

Qm

cPL
1/gQs

, (A4b)

and thus

Q̄mu x̄5152
]

] t̄ S h̄E
0

1

P̄1/gdx̄D . (A4c)

The result~A4c! is integrated over time to yield the total mass p
unit width that has left the domain at any timet, M (t). Using the
initial condition ~A3d!, we thus obtain

M̄ ~ t̄ !5 P̄H
1/g2h̄~ t̄ !E

0

1

P̄~ x̄, t̄ !1/gdx̄, M̄ ~ t̄ !5
M

Ms
,

Ms5cPL
1/gh0L. (A4d)
912 Õ Vol. 70, NOVEMBER 2003
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The original mass in the domain per unit width,M0 , can be ex-
pressed in dimensionless form using the density~A1!, initial con-
dition ~A3d!, and the dimensionless scaling for massMs given in
~A4d! as

M̄05 P̄H
1/g . (A4e)

Finally, combining~A4d! and~A4e!, we obtain the desired expres
sion for the fraction of the original mass lost at any time as

M ~ t !

M0
5

M̄ ~ t̄ !

M̄0

512
h̄~ t̄ !

P̄H
1/g E

0

1

P̄~ x̄, t̄ !1/gdx̄. (A4f)

This concludes our derivation of the squeezing flow problem.
A numerical solution of~A3! is required except in certain lim

iting cases. To proceed, a new variableU5h̄P̄1/g is introduced
into ~A3!. The resulting system is then solved using finite diffe
ences with a Crank-Nicholson implicit scheme, and a full Newt
iteration at each time step.

An analytic solution to~A3! can be obtained for the limiting
case of an incompressible fluid, for whichg;` in ~A1!. Under
such circumstances theP̄1/g terms in~A3a! are lost. Then, since
P̄5 P̄( x̄, t̄) andh̄5h̄( t̄), Eqs.~A3a! with ~A3b! are separable and
can be integrated; after subsequent application of the boun
conditions in~A3! we obtain

h̄5@116~12 P̄A! t̄#21/2, (A5a)

P̄5
3

2
~12 P̄A!~12 x̄2!1 P̄A . (A5b)

We note here that~A5b! does not satisfy the initial pressure co
dition in ~A3d!; an incompressible fluid instantaneously yields t
pressure field~A5b! underneath the closing gap for all time
There is no finite transient in pressure as can be obtained in
case of a compressible fluid. For an incompressible fluid, the
pression~A4f! for the fraction of the original mass lost from th
domain becomes

M ~ t !

M0
512h̄~ t̄ !, (A5c)

which is identical to the fraction of the volume lost as expecte
On the other hand, for cases of negligible flow,Q̄→0 in ~A3a!,

and the system~A3! yields the simple result that

h̄P̄1/g5K, (A6)

where K is a constant. This case corresponds to the situa
where there is no air leakage from the domain, and the pres
field is constant everywhere.

We now consider how the preceding model may be used
approximate the air leakage in a winding roll. To proceed,
assume that the air flow variations in the direction of the w
motion are small compared with those across the width of
web. Thus, we focus attention solely on the air flow occurring
the widthwise direction towards the edges of the web. The no
condition located atx50 in Fig. 16 is interpreted as a symmetr
condition for the roll width; thus, the computational length of th
domain,L, is taken to be half of the roll width. We fix our view o
a given lap in the roll, and track the mass of air lost in th
particular lap as additional laps are added. Since the first lap~i.e.,
at the core! has the longest time available for air leakage a
generally experiences the highest pressure loading, the cumul
amount of air leakage is the largest of all laps. For this reason
examine the first lap in this appendix. We assume that when
first lap is an outer lap of the roll, it experiences a constant lo
~due to the roll tension! until one revolution of the roll occurs, a
which time a second lap begins to be wound. At this point, ther
an instantaneous pressure load increase on the original lap, w
Transactions of the ASME
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again remains constant for the whole lap. This procedure is c
tinued as more laps are added. For a web moving at speedV, the
time to complete a revolution,tR , is given by

tR5
2p~r 1~ i 21!ha!

V
. (A7)

Thus, in~A7!, any given pressure load is applied for the length
time tR .

A relation between the load pressure,PL , and the number of
laps being wound onto the roll,i, is required so that~A3! may be
solved on each lap. One such relationship may be obtained v
simple membrane theory between pressure and tension in w
there is no contact between laps as additional laps are adde
more realistic pressure load model incorporates the effect of w
to-web contact, which tends to reduce the pressure load on th
To obtain such an expression, the full winding model detailed
this report was utilized; as in the case of our air leakage mo
the full winding model assumes that the pressure load rem
constant until a new lap is added. Although this relationship g
erally changes as winding conditions are altered, we simpli
our calculations by obtaining a single relationship betweenPL and
i for one set of intermediate winding parameters, and then u
this relationship for all data generated from the simple model.
the pressure relationship from the full winding model assumes
air leakage, we can assume that the results of our simple m
are self-consistent when the mass loss due to air flow is sma
cases where the mass loss is large, the full winding mode
invalid for those specific conditions.

The numerical procedure is thus as follows. For the outer
the system~A3! is solved as written. When the next lap is adde
the pressure load increases. The system~A3! is then solved again
where the initial condition~A3d! is replaced by the pressure fie
and height of the web at the end of the previous lap. This pro
dure is repeated as more laps are added to the roll.

Air Loss Results. We begin by obtaining the relationship be
tween pressure loading,PL , and the lap number,i, from the wind-
ing model; this relationship is used in the generation of all sub
quent data from the simple air-leakage model. The winding mo
with air entrainment~no side leakage! was run to give the pressur
loading and the lap number under the first lap~Fig. 17! using the
winding conditions in test I of Table 1. We next proceeded
generate data from the simple air flow model following the alg
rithm in the preceding section. Note that as the full winding mo
is assumed to be isothermal, all subsequent calculations ar
isothermal conditions, i.e.,g51 in ~A3! and ~A4!. Comparisons

Fig. 17 Calculated absolute air pressures under the first lap
„circles … from full winding model. These air pressures are used
to model the air loss under the first lap.
Journal of Applied Mechanics
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between results for cases where the compressibility is assume
be adiabatic versus isothermal show some relatively small qu
titative differences, but the qualitative trends are the same. Fig
14 gives a plot of the percentage of the original air mass lost fr
the first lap of the roll as a function of the initial clearance b
tween the web and the roll, for various web widths. Data is p
vided after winding 3089 laps for a winding speed of 2.54 m
~500 ft/min!; the air exits the web at the ambient atmosphe
pressure. It is assumed that the initial pressure in the gap at
t50 is equal to the imposed load pressure~i.e., P̄H51 in ~A3!
and ~A4! in the first lap at the start of the calculation!. Figure 15
provides data for the same conditions as Fig. 14, except at
m/s~1500 ft/min!. Note that in generating these figures, we star
our calculation when the 4th lap of the roll was added (PH
50.105 MPa andca5h051.464mm), as this is the first lap for
which the pressure in the clearance~i.e., between the web and th
roller! is larger than atmospheric pressure. In the simple mode
the pressure in the clearance is subatmospheric, then air m
into the gap and initially increases the clearance. Furthermore
simple model predicts a relatively large increase in clearance;
culations show it takes hundreds of laps to again squeeze
increased mass out of the domain as the pressure loading
creases. It is our opinion that this behavior is not physical, as
neglected local deformation of the web would presumably red
this large increase in air mass. Figures 14 and 15 indicate tha
expected, wider webs with smaller initial clearances have sma
air leakage, where less air leakage occurs at faster winding spe
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Weakly Nonlinear Stability
Analysis of Condensate/
Evaporating Power-Law Liquid
Film Down an Inclined Plane
Weakly nonlinear stability analysis of thin power-law liquid film flowing down an inclin
plane including the phase change effects at the interface has been investigated. A n
mode approach and the method of multiple scales are employed to carry out the
stability solution and the nonlinear stability solution for the film flow system. The res
show that both the supercritical stability and subcritical instability are possible for c
densate, evaporating and isothermal power-law liquid film down an inclined plane.
stability characteristics of the power-law liquid film show that isothermal and evapora
films are unstable for any value of power-law index ‘n’ while there exists a critical va
of power-law index ‘n’ for the case of condensate film above which condensate film
system is always stable. Thus, the results of the present analysis show that the
transfer effects play a significant role in modifying the stability characteristics of
non-Newtonian power-law fluid flow system. The condensate (evaporating) powe
fluid film is more stable (unstable) than the isothermal power-law fluid film flowing d
an inclined plane.@DOI: 10.1115/1.1631592#
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1 Introduction
The stability of fluid flowing down a vertical or inclined wa

has been the subject of considerable research due to its impor
in many industrial applications such as film coating and interf
heat and mass transfer processes in chemical technology an
ergetics. The problem of linear stability of thin liquid layers drai
ing down an inclined plane surface has been considered by Yih@1#
for isothermal films. The elegant explanation by Landau@2# for
the transition mechanism from laminar to turbulent flow has p
vided a motivation for later developments on nonlinear film s
bility. Benjamin @3# and Yih @4# have formulated the disturbe
wave equation of free film surface and studied the flow and
bility characteristics of an isothermal film on an inclined plane

Although the theory of laminar film condensation flow due
gravity has been analyzed by Nusselt@5#, the stability of conden-
sate film has not been studied until the 1970s. The stability an
sis of a condensate film down a vertical or an inclined plane
been performed by Bankoff@6#, Marshall and Lee@7#, and Lin@8#
and their investigations have revealed that the critical Reyno
number is small for all practical condensation problems so that
liquid film can be regarded as unstable. They have also poin
out that condensation would stabilize the film flow where
evaporation would destabilize the flow. U¨ nsal and Thomas@9#
have considered the effects of mass transfer at the interface
have presented the linear stability analysis of condensate
flow. It is known that the effects of heat transfer appear mainly
thermocapillary and vapor recoil effects. Since surface tens
generally decreases with temperature, very thin layers of a n
volatile liquid on a heated surface tend to destabilize the film.
the other hand, vapor recoil effects are destabilizing for a vola
liquid, @10,11#.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar.
2002; final revision, Apr. 23, 2003. Associate Editor: D. A. Siginer. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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Using perturbation methods, U¨ nsal and Thomas@12# have in-
vestigated the nonlinear stability of vertical condensate film flo
Hwang and Weng@13# have examined the finite-amplitude stab
ity analysis of liquid film down a vertical plane with and withou
interfacial phase change and have shown that both supercr
stability and subcritical instability are possible for condensate fi
flow system.

In contrast to the vast majority of investigations on Newtoni
film flows ~isothermal, condensate, evaporating!, relatively few
papers have been published on the dynamics of non-Newto
film flows. The dynamics of non-Newtonian fluids are importa
in the understanding of the rheological behavior of fluids dur
the manufacturing process, movement of biological fluids, ap
cation of paints and performance of lubricants. Apart from inv
tigation on flow characteristics and linear stability analysis of no
Newtonian fluid films along a vertical or an inclined plane,@14–
17#, investigations on films of inelastic non-Newtonian fluids ha
considered either the boundary layer development in the entra
region or linear instability analysis of the primary flow,@18,19#.

Motivated by the scarcity of nonlinear theories for large Re
nolds number flows of non-Newtonian fluids, Lee@20# has fo-
cussed his attention on the investigation of stability characteris
of an inelastic fluid of shear-thinning type down an incline usi
dynamical systems approach. He has employed a new rheolo
model with three parameters, called the modified power-l
which exhibits the shear thinning behavior away from the z
shearing rate.

The investigations on the stability characteristics of Newton
fluid film down an inclined/a vertical plane show that in the line
theory, the film flow system is unstable for any Reynolds numb
However, the finite-amplitude stability analysis of liquid film
down a vertical wall by Hwang and Weng@13# with interfacial
phase change reveal that the isothermal and evaporating New
ian films are unstable for any Reynolds number while there ex
a finite critical Reynolds number for the case of condensate
below which condensate Newtonian film flow system is alwa
stable. This shows that the effect of mass transfer at the inter
of a Newtonian fluid film strongly modifies the stability chara
teristics of the film flow when the phase change is considered
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view of this, it becomes important to include the effects of pha
change at the interface in the study of stability characteristics
fluid film down an inclined or a vertical wall. Such an investig
tion has not been considered so far, for non-Newtonian inela
fluids.

In this paper, the weakly nonlinear instability of condensa
evaporating power-law liquid film flowing down an inclined plan
is investigated. The finite-amplitude stability of the power-la
film is examined and the study extends the investigation by
and Hwang@21# by including the effects of phase change at t
interface. The method of multiple scales is employed to solve
nonlinear generalized kinematic equation order by order. T
leads to a secular equation of Ginzburg-Landau type. The ana
shows that supercritical stability and subcritical instability a
both possible for the film flow system. Applications of the resu
to isothermal, condensate, and evaporating power-law film fl
indicate that mass transfer into~away from! the liquid phase sta-
bilizes ~destabilizes! the film flow and that the power-law inde
‘n’ strongly influences the stability characteristics of the no
Newtonian inelastic fluids.

2 Mathematical Formulation
A thin power-law liquid film flow with phase change at th

interfaceȳ5h̄( x̄, t̄) flowing down an inclined planeȳ50 ~Fig. 1!
is considered.

The governing equations,@13,21#, are the two-dimensiona
mass, momentum, and energy balance equations for the po
law model given by

]ū

] x̄
1

] v̄
] ȳ

50 (1)

rS ]ū

] t̄
1ū

]ū

] x̄
1 v̄

]ū

] ȳD52
] p̄

] x̄
1rg sinu~12g!1

]t̄ x̄x̄

] x̄
1

]t̄ x̄ȳ

] ȳ
(2)

rS ] v̄
] t̄

1ū
] v̄
] x̄

1 v̄
] v̄
] ȳ D52

] p̄

] ȳ
2rg cosu~12g!1

]t̄ ȳx̄

] x̄
1

]t̄ ȳȳ

] ȳ
(3)

S ]T̄

] t̄
1ū

]T̄

] x̄
1 v̄

]T̄

] ȳ D 5
K

rcp
S ]2T̄

] x̄2
1

]2T̄

] ȳ2D (4)

where K is the thermal conductivity,r is the density,cp is the
liquid specific heat,g is the gravity,g is the ratio of vapor density
to liquid density andT̄ is the temperature.

Fig. 1 Schematic representation of a thin film flow down an
inclined plane
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The boundary conditions at the wall are the no slip condition
velocity and a constant wall temperature (T̄w) given by

ū50, v̄50, T̄5T̄w on ȳ50. (5)

The boundary conditions at the liquid-vapor interface,@12,13#, are
the balance of normal and tangential stresses, the relation o
terfacial energy balances and the equality of liquid and satura
vapor temperatures (T̄s) and are given by

p̄1S 2
]h̄

] x̄
t̄ x̄ȳ2S ]h̄

] x̄D 2

t̄ x̄x̄2 t̄ ȳȳD S 11S ]h̄

] x̄D 2D 21

1K2hf g
22 ~g21!

rg S ]T̄

] ȳ
2

]h̄

] x̄

]T̄

] x̄ D 2S 11S ]h̄

] x̄D 2D 21

1s
]2h̄

] x̄2 F11S ]h̄

] x̄D 2G23/2

5 p̄a on ȳ5h̄ (6)

]h̄

] x̄
~ t̄ ȳȳ2 t̄ x̄x̄!1S 12S ]h̄

] x̄D 2D 21

t̄ x̄ȳ50 on ȳ5h̄ (7)

KS ]T̄

] ȳ
2

]h̄

] x̄

]T̄

] x̄ D 2rhf gS ]h̄

] t̄
1ū

]h̄

] x̄
2 v̄ D 50 on ȳ5h̄ (8)

T̄5T̄s on ȳ5h̄ (9)

where

t̄ x̄x̄52mn

]ū

] x̄ S ]ū

] ȳD n21

(10)

t̄ x̄ȳ5 t̄ ȳx̄5mnS ]ū

] ȳD n

(11)

t̄ ȳȳ522mn

]ū

] x̄ S ]ū

] ȳD n21

(12)

and mn is the consistency coefficient,n is the flow index. When
the power-law exponentn is equal to 1, then the model describe
the Newtonian fluid; Ifn,1, the fluid is said to be pseudoplast
or shear thinning and ifn.1, the fluid is called dilatant or shea
thickening. It is important to note that the zero shear assump
in Eq. ~7! is a reasonable approximation for external gravity dom
nated flows~u.0 deg! only and not for shear dominated horizon
tal or near horizontal flows. Using the dimensionless quanti
defined by

u5
ū

ū0
, v5

v̄
aū0

,

~velocities in the x̄ and ȳ directions, respectively!

x5
a x̄

h̄0

, y5
ȳ

h̄0

,

t5
aū0t̄

h̄0

~ time!, H5
h̄

h̄0

, (film thickness!,

Fr5
ū0

2

g~12g!h̄0

, ~Froude number!,

ū05
n

n11 S rg~12g!sinu

mn
D 1/n

h̄0
~n11!/n ~reference velocity!,
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2ph̄0

l
~wave number!,
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rū0
2

~pressure!,
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~ temperature!,

Ren5
rū0
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the nondimensional governing equations and the boundary co
tions are obtained as
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In ~21!, j.0 corresponds to condensate film flow,j,0 to evapo-
rating film flow andj50 corresponds to isothermal film.

It is to be noted that whenn51, u590 deg, the above equation
and boundary conditions reduce to evaporating or condensa
Newtonian flow down a vertical wall investigated by Hwang a
Weng @13# and for j50 ~with no phase change at the interface!,
they reduce to the equations obtained for isothermal power-
fluid film flow investigated by Lin and Hwang@21#. Whenn51,
j50 andu590 deg, the equations agree with the equations g
erning the Newtonian film flow down a vertical wall investigate
by Hung et al.@22# ~for a fluid with no micropolar effect!. Since
the long wavelength modes are the most unstable ones for the
flow, the physical quantitiesu, v, p, andQ are expanded in pow-
ers of small wave numbera. Substituting these in~14!–~22! and
collecting the coefficients of like powers ofa, the zeroth and the
first-order equations are obtained. Noting that Wen is large in
practical applications,a2Wen is taken to be of order one. Also
since the effect ofNd has been found to be negligible on stabilit
@9#, Nd Ren

22 is taken to be of ordera2. Further, in the analysis
Ren.O(1) and Pen.O(1). Thesolutions are given by
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n11

1

H2
HxH H ~n11!/nF ~H2y!3

6
2

H2~H2y!

6 G
2

n2

~3n11!~4n11!
@~H2y!~4n11!/n2H ~3n11!/n~H2y!#J G . (24)
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The generalized kinematic equation is obtained from~21! using
~23! and ~24! as

Ht1X~H !1A~H !Hx1B~H !Hxx1C~H !Hxxxx1D~H !Hx
2

1E~H !HxHxxx1O~a2!50
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H
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(25)
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Pen
S 12
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3D 1

H
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3 Stability Analysis
As the variation of the film thickness of the base flow is fou

to be very small foruaHxu!1 using an analysis based on Nuss
assumption, the dimensionless film thickness is expressed as

H511h~x,t !

whereh(x,t) is the perturbation of the stationary film thicknes
The approximationuaHxu!1 gives qualitative results for the con
stant film thickness assumption at the zeroth order. It is impor
to note that this constant film thickness approximation with lo
wave perturbations are reasonable approximations only for ce
segments of weakly condensing and evaporating flows. Subs
ing for H(x,t) in ~25! and retaining terms up to the order ofh3,
the evolution equation forh is obtained as

h t1X8h1Ahx1Bhxx1Chxxxx

52FX9h2

2
1

X-h3

6
1S A8h1A9

h2

2 Dhx

1S B8h1B9
h2

2 Dhxx1S C8h1C9
h2

2 Dhxxxx

1~D1D8h!hx
21~E1E8h!hxhxxxG1O~h4!

(26)

where the values ofX, A, B, C, D, E and their derivatives are
evaluated at the dimensionless height of the filmH51.
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3.1 Linear Stability Analysis. For the linear stability analy-
sis, the nonlinear terms of Eq.~26! are neglected and the linea
ized equation

h t1X8h1Ahx1Bhxx1Chxxxx50 (27)

is obtained. Assuming the normal mode solution as

h5aei ~x2dt!1āe2 i ~x2dt!, (28)

the complex wave celerity corresponding to linear stability pro
lem is given by

d5dr1 idi5A1 i ~B2C2X8! (29)

wheredr is the linear wave speed, anddi is the linear growth rate
of the amplitudes. The flow is in a linearly unstable supercriti
condition for di.0 and in a linearly stable subcritical conditio
for di,0. Fordi50, the flow is neutrally stable.

3.2 Nonlinear Stability Analysis. The nonlinear stability
analysis of Eq.~26! by the method of multiple scales,@23#, yields

~L01eL11e2L2!~eh11e2h21e3h3!52e2N22e3N3
(30)

where

h~e,x,x1 ,t,t1 ,t2!5eh11e2h21e3h3 ;

t15et, t25e2t, x15ex

]

]t
→ ]

]t
1e

]

]t1
1e2

]

]t2
;

]

]x
→ ]

]x
1e

]

]x1

L05
]

]t
1X81A

]

]x
1B

]2

]x2
1C

]4

]x4

L15
]

]t1
1A

]

]x1
12B

]2

]x]x1
14C

]4

]x3]x1

(31)

L25
]

]t2
1B

]2

]x1
2 16C

]4

]x2]x1
2

N25
X9

2
h1

21A8h1h1x1B8h1h1xx1C8h1h1xxxx1Dh1x
2

1Eh1xh1xxx

N35X9h1h21
X-

6
h1

31A8~h1h2x1h1xh21h1h1x1
!

1B8~h1h2xx12h1h1xx1
1h1xxh2!1C8~h1h2xxxx

14h1h1xxxx1
1h1xxxxh2!1D~2h1xh2x12h1xh1x1

!

1E~h1xh2xxx13h1xh1xxx1
1h1xxxh2x1h1xxxh1x1

!

1
A9

2
h1

2h1x1
B9

2
h1

2h1xx1
C9

2
h1

2h1xxxx1D8h1h1x
2

1E8h1h1xh1xxx .

The solution of Eq.~30! at the orderO(e) is obtained by solving
L0h150 and is in the form

h15aei ~x2dr t !1āe2 i ~x2dr t ! (32)

where a(x1 ,t1 ,t2) is the nonlinear amplitude function an
ā(x1 ,t1 ,t2) is its complex conjugate. The solution of the equati
L0h21L1h152N2 at theO(e2) is in the form

h25ea2e2i ~x2dr t !1ēā2e22i ~x2dr t !. (33)
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Using the solutions forh1 andh2 in theO(e3) equation given by
L0h31L1h21L2h152N3 , the equation for the perturbation am
plitude a(x1 ,t1 ,t2) is obtained as

]a

]t2
1D1

]2a

]x1
2

2e22dia1~E11 iF 1!a2ā50

from the secular condition forO(e3), where

D15B26C,

F15~X925B8117C814D210E!ei1A8er1
A9

2

E15~X925B8117C814D210E!er

2A8ei1S X-

2
2

3

2
B91

3

2
C91D82E8D (34)

er1 iei5

S 2
X9

2
1B82C81D2ED2 iA8

~16C24B1X8!
.

The weakly nonlinear behavior of the fluid film can be inves
gated using Eq.~34!. It is important to note that such an expansi
is only valid for wave numbers close to neutral and not ne
critical whena approaches zero. The solution of~34! for a filtered
wave in which spatial modulation does not exist and the diffus
terms in~34! vanishes is obtained by takinga5a0e2 ib(t2)t2. This
leads to the Ginzburg-Landau equation given by

]a0

]t2
5~e22di2E1a0

2!a0 (35)

]~b~ t2!t2!

]t2
5F1a0

2. (36)

The second term in Eq.~35! induced by the effect of nonlinearity
can either accelerate or decelerate the exponential growth o
linear disturbance depending upon the signs ofdi and E1 . The
perturbed wave speed caused by the infinitesimal disturbance
pearing in the nonlinear system can be modified using Eq.~36!.
The threshold amplitudeea0 is given by

ea05Adi

E1
(37)

and the nonlinear wave speed is given as

Ncr5e2b5dr1di

F1

E1
. (38)

It is observed from~37! that in the linearly unstable region (di
.0), the condition for existence of a supercritical stable region
E1.0 andea0 is the threshold amplitude. In the linearly stab
region (di,0), if E1,0, then the flow has the behavior of su
critical instability andea0 is the threshold amplitude. The cond
tion for the existence of a subcritical stable region isE1.0 and
E150 gives the condition of existence of a neutral stability cur

4 Numerical Results and Discussion
In order to understand the flow characteristics and the ass

ated time dependent properties of power-law fluid film down
inclined plane, the conditions obtained for linear and nonlin
stability of the flow system are numerically evaluated for Re
nolds number Ren , Weber number Wen , and Prandtl number Prn ,
which are defined in terms of power-law indexn. The values of
dimensional quantities are taken as,@21#, r5998 Kg/m3, mn

51.00231023 m Pasn, h051024 m, s50.0727 N/m,
g50.000611, andu560 deg. The temperature at the interface
taken asT̄s5373 K and the temperature difference between
920 Õ Vol. 70, NOVEMBER 2003
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wall and the interface asT̄s2T̄w5647 K. Under such tempera
ture conditions, the phase change parameterj takes valuesuju
50.0872~with phase change! and uju50 ~without phase change!.
In what follows, attention is focussed on the investigation of t
influence of the phase change at the interface on the stabilit
the flow of the power-law fluid film down an incline.

4.1 Linear Stability Solutions. The linear stability analysis
yields the neutral stability curve, which separates thea-n plane
into two regions depending on the value of phase change pa
eter j. Figure 2 shows the neutral stability curve for isotherm
~j50!, condensate~j.0! and evaporating~j,0! power-law films.

It is observed that linearly unstable region becomes smalle
the phase change parameter increases and the linearly stab
gion is more for dilatant fluids than pseudoplastic fluids. The n
tral stability curve for condensate film shows that, there exist
critical value forn, above which condensate power-law fluid film
is always stable. It is also observed that condensate power
fluid film is more stable than the corresponding isothermal a
evaporating power-law fluid film.

Figure 3 shows the temporal growth rate of power-law flu
given by Eq.~29!. It is observed that the temporal growth rate
less for a condensate power-law fluid film than for an isotherm
power-law fluid film. On the other hand, for an evaporati
power-law film, the temporal growth rate is more than for isoth
mal power-law film. Further, temporal growth rate decreases w
increase in power-law indexn. The results of the linear stability
analysis are in agreement with those of Hwang and Weng@13#
~Newtonian condensate/evaporating film! and Lin and Hwang
@21# ~isothermal power-law liquid films!.

4.2 Nonlinear Stability Solutions. As the perturbed wave
grows to a finite amplitude, linear stability theory cannot be us
to predict the flow behavior accurately. Therefore, in order
examine whether the finite-amplitude disturbance in the linea
stable region causes instability~subcritical instability! and to in-
vestigate whether the subsequent nonlinear evolution of dis
bances in the linearly unstable region develops into a new e
librium state with a finite-amplitude~subcritical stability! or
grows to be unstable, the nonlinear stability analysis is employ
It is observed from the nonlinear amplitude Eq.~35! that a nega-
tive value ofE1 can make the system unstable. Such a type
instability in the linearly stable region is called subcritical inst
bility. In this case, the amplitude of disturbance is larger than
threshold amplitude and causes the system to reach an expl
state.

The neutral stability curves are obtained from Eqs.~29! and
~34! by equating to zero, the linear amplification ratedi and the
nonlinear amplification rateE1 . Figure 4 shows regions of sub
critical instability (di,0,E1,0) in the linearly stable region and
supercritical explosive state (di.0,E1,0) in the linearly unstable
region. It is clear from Fig. 4 that both these states of the film fl
system are possible for isothermal as well as condensate or ev
rating films. However, for the condensate film, supercritical e
plosive state exists only for pseudoplastic fluids. The conden
film, exhibits two distinct disjoint regions of subcritical instabilit
near lower and upper branches of neutral stability curve. This i
contrast to the isothermal and evaporating films, which exh
only one such region. The regions of supercritical stability (di
.0,E1.0) in the linearly unstable region and subcritical stabil
(di,0,E1.0) in the linearly stable region are shown in Fig.
Further, from Fig. 4 it is observed that subcritical stable reg
increases, while supercritical stable region decreases as the p
change parameterj increases. Also, for the condensate film, s
percritical stable region exists only for pseudoplastic fluids. F
condensate~evaporating! film, the region of stability is more~less!
than that for isothermal film.

An infinitesimal disturbance in the linearly unstable regi
(di.0) will attain a finite equilibrium amplitude, when the non
linear amplification rateE1 in the region is positive. Figure 5
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Fig. 2 Neutral stability curves for isothermal, condensate, and evaporating films
a

he
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ing
i-
shows the threshold amplitude and the nonlinear wave spee
the supercritical stable region for various values of wave num
a. It is noted that the threshold amplitude and the nonlinear w
speed are less for the condensate pseudoplastic fluid film. In
supercritical stable region, the nonlinear wave speed of
pseudoplastic fluid is more than the linear wave speed.

Figure 6 shows the threshold amplitude and the nonlinear w
speed in the subcritical unstable region for various values of w
lied Mechanics
d in
ber
ve
the

the

ave
ave

number a. It is observed that the threshold amplitude and t
nonlinear wave speed increase with the increase in phase ch
parameterj and it is more for dilatant fluids.

5 Conclusion
Weakly nonlinear stability of a condensate or evaporat

power-law liquid film flowing down an inclined plane is invest
Fig. 3 Growth rate for different values of phase change parameter, „a… isother-
mal film flow, „b… condensate film flow, „c… evaporating film flow
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Fig. 4 Neutral stability curve in the a-n plane: „a… isothermal film flow, „b…
condensate film flow, „c… evaporating film flow
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t-
gated by the method of long-wave perturbation. The interfa
boundary conditions include the effects of phase change acros
interface. The generalized nonlinear kinematic equation of the
surface is obtained for the condensate or evaporating film and
stability of the film flow system is investigated. As the power-la
exponent ‘n’ decreases, the effective viscosity decreases
hence ‘n’ influences the Reynolds number Ren and Weber number
Wen . The effect of increasing the phase change parameterj is to
stabilize the film flow system. Further, the dimensional quanti
used to discuss the stability characteristics of the power-
model in terms of the power-law exponent ‘n’ show that there
exists a critical value of ‘n’ for the condensate film, above whic
BER 2003
ial
s the
ree
the
w
nd

ies
aw

the film flow system is always stable~Fig. 2!, while isothermal
and evaporating power-law fluid films are unstable for any va
of power-law index ‘n’.

The nonlinear stability analysis of the power-law film flow sy
tem using long-wave theory and the results obtained in the pr
ous sections are based on rather restrictive assumptions. T
results are even more qualitative than the linearised stability
sults and they reveal that

~i! both subcritical instability (di,0,E1,0) and supercritical
stability (di.0,E1.0) are possible for isothermal and evapora
ing power-law fluid films.
Fig. 5 Amplitude and nonlinear wave speed of supercritical wave for different
values of n , „a… isothermal film flow, „b… condensate film flow, „c… evaporating
film flow
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Fig. 6 Amplitude and nonlinear wave speed of subcritical wave for different
values of n ; „a… isothermal film flow, „b… condensate film flow, „c… evaporating
film flow
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~ii ! power-law evaporating~condensate! fluid films are more
unstable~stable! than the power-law isothermal films.

~iii ! pseudoplastic evaporating films are the most unsta
~Figs. 4 and 5! and the dilatant condensate films are the m
stable films~Figs. 4 and 5!.

~iv! supercritical stabiliy (di.0,E1.0) and supercritical ex-
plosive state (di.0,E1,0) are not possible for condensate dil
tant fluid films ~Fig. 4!.

The investigations on the stability characteristics of the pow
law fluid film down an inclined plane by Lin and Hwang@21#
show that the isothermal film flow system is unstable for a
power-law index ‘n’. The present results show that isothermal a
evaporating films are unstable for any value of power-law ind
‘n’ while there exists a critical value of power-law index ‘n’ for
the case of condensate film above which condensate film
system is always stable. Thus, the results of the present ana
show that the mass transfer effects play a significant role in m
fying the stability characteristics of the non-Newtonian power-l
fluid flow systems.
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Constant Flux Diffusion Across a
Corner

C. Y. Wang
Department of Mathematics, Michigan State University,
East Lansing, MI 48824 Mem. ASME

The temperature distribution of a curved barrier heated by co
stant flux on one side is studied. Both the right-angled corner
the rounded corner are solved by the method of domain dec
position and matching. It is found that hot spot temperatures m
reach 2.5 times that of a flat barrier but may be tempered w
appropriate rounding at the corner.@DOI: 10.1115/1.1629105#

Introduction
The diffusion of mass or heat across a barrier is importan

many engineering and biological processes. We shall use the
minology of heat transfer, although the results may apply to m
transfer as well. Previous work on diffusion across a corner c
sidered constant temperature boundary conditions. For a ri
angled corner, it is possible to solve the Dirichlet problem
conformal mapping~see e.g., Wang@1# and Ivanov and Tru-
betskov@2#!. For a rounded corner numerical methods or dom
decomposition and matching,@3#, are needed.

The present paper considers the case where one surface o
corner is heated by constant flux. This situation occurs when
heating is produced by an exothermic chemical reaction or
electric heating elements. In most cases, the boundary conditi
somewhere between constant temperature and constant flux
ditions. Both the right-angled corner and the rounded corner
be studied.

The Right-Angled Corner
Figure 1(a) shows the right-angled corner with lengths norm

ized by the thicknessH. Two subcases are considered. The in
rior surface (DEF) heated by constant flux and the exterior su
face (ABC) cooled by constant temperature or vice-versa, w

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Fe
1999, final revision, Aug. 2000. Associate Editor: L. T. Wheeler.
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the exterior surface heated by constant flux. Note that for cons
flux heating, conformal mapping is impractical. We shall use
domain decomposition method.

The corner is partitioned into a square~Region 1! and a strip
~Region 2! with their own axes as shown. The other leg is
reflection of Region 2. Letq be the constant flux on one surfac
andT0 be the fixed temperature on the other surface. Constru
normalized temperatureT5(T82T0)k/qH where T8 is the di-
mensional temperature andk is the thermal conductivity. If the
interior is heated by constant flux, the boundary conditions ar

T1~x,0!50 (1)

T2~x,0!50 (2)

]T2

]y
~x,0!51. (3)

Also due to symmetry alongBE

T1~x,y!5T1~y,x! (4)

and continuity along the partition

T1~1,y!5T2~0,y! (5)

]T1

]x
~1,y!5

]T2

]x
~0,y!. (6)

Equations~2!–~8! are to be solved. The general solution ofT1
satisfying Eqs.~1!, ~4! and the Laplace equation is

T15(
n51

`

Bn@sin~lny!~eln(x21)2e2ln(x11)!

1sin~lnx!~eln(y21)2e2ln(y11)!# (7)

whereln5(n2
1
2)p andBn are constant coefficients. The gener

solution to Eqs.~2!, ~3! is

T25y1(
n51

`

An sin~lny!e2lnx. (8)

The series are truncated toN terms and the matching condition
Eqs. ~5!, ~6! are applied. Multiplying with sin(lmy) and integrat-
ing from 0 to 1 give a set of linear algebraic equations which c
be easily inverted.

The accuracy can be improved by increasingN. In general
three significant digits are obtained forN540. There is a ‘‘cold
spot’’ on the inside heated surface isT1(1,1)50.649. Linear tem-
perature is established far from the corner aty→`.

b.
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Next we look at the subcase where the constant flux heatin
on the outside. Equations~1!–~3! are supplanted by

]T1

]y
~x,0!521 (9)

T2~x,1!50,
]T2

]y
~x,0!521. (10)

The appropriate expansions are

T1522x2y1(
n51

`

Bn@cos~lny!~eln(x21)1e2ln(x11)!

1cos~lnx!~eln(y21)1e2ln(y11)!# (11)

T2512y1(
n51

`

An cos~lny!e2lnx. (12)

Using the matching conditions and similarly integrating, one o
tains the coefficients.

We find there exists a ‘‘hot spot’’T1(0,0)52.542 at the outer
corner. Since the maximum temperature of a flat plate is 1 un
the same circumstances, such a right-angled corner heated
the outside elicits a local temperature more than 2.5 times hig
which is unlikely to be acceptable.

The Rounded Corner
We investigate whether the rounded corner would alleviate

local temperature rise due to constant flux heating. Let
rounded section have inner radiusb, outer radius 11b and open-
ing angle 2b. Figure 1~b! shows polar coordinates (r ,u) for the
rounded section~Region 1! and Cartesian coordinates for th
straight section.

First consider constant flux heating on the inside. The exp
sion for T1 satisfying the cylindrical Laplace equation and t
boundary conditions on curved surfaces is

T1~r ,u!5b lnS 11b

r D
1(

n51

`

Bn cosFan lnS r

bD G~ean(u2b)1e2an(u1b)!. (13)

The eigenvalues are uncommon,

an5

S n2
1

2Dp

ln~111/b!
. (14)

The expansion forT2 is

Fig. 1 „a… the right-angled corner, „b… the rounded corner
Journal of Applied Mechanics
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T2~x,y!512y1(
n51

`

An cos~lny!e2lnx (15)

whereln5(n2
1
2)p. The matching conditions are then similarl

applied,

T1~y1b,b!5T2~0,y! (16)

1

~y1b!

]T1

]u
~y1b,b!5

]T2

]x
~0,y!. (17)

Except for very low values ofb, convergence is fairly fast. Usu
ally five terms in the series would ensure a three-digit accurac

In the case the rounded corner is heated from the outside,
proper expansions are

T1~r ,u!5~11b!lnS r

bD
1SBn sinFan lnS r

bD G~ean(u2b)1e2an(u1b)! (18)

T2~x,y!5y1SAn sin~lmy!e2lnx. (19)

Figure 2 shows the predicted hot spot and cold spot temp
tures on the constant flux heated surface. The barrier become
for either b→` or b50, where the temperature on the heat
surface would be 1. The dashed lines correspond to the cas
annular cylinder, either heated inside by constant flux or outs
by constant flux. The exact formulas are

Tc5b lnS 11
1

bD (20)

Th5~11b!lnS 11
1

bD . (21)

These curves serve as bounds for the temperature extrem
Note that b5p/4 is the right-angled rounded corner an

Fig. 2 Hotspot temperature Th for exterior constant flux heat-
ing and coldspot temperature Tc for interior constant flux heat-
ing of a rounded corner. Dashed lines show exact annular for-
mulas.
NOVEMBER 2003, Vol. 70 Õ 925
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b5p/2 represents a cylinder head with aU-shaped cross section
Due to poor convergence for smallb, results forb,0.05 are not
presented, although extrapolation tob50 is possible.

Conclusion and Discussion
The constant flux heating of a corner is studied in detail.

contrast to constant temperature heating, there exist hot spots
cold spots on the heated surface. The worst case is the r
angled corner heated from the outside. The local temperatur
the apex reaches 2.5 times higher than a flat plate of same th
ness. If the corner is rounded, the highest temperature is at
1.6 times higher~whenb50).

We have used the domain decomposition and matching me
which is quite efficient. Numerical finite differences can also
used, but the infinite geometry and the sharp corners need t
compromised.
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Application of a Hybrid Method to the
Solution of the Nonlinear Burgers’
Equation

Bor-Lih Kuo
Department of Mechanical Engineering, Chengshiu
Institute of Technology, Kaohsiung, Taiwan 833, Repub
of China
e-mail: borlih@cc.csit.edu.tw

Chao-Kuang Chen
Department of Mechanical Engineering, National Cheng
Kung University, Tainan, Taiwan 710, R.O.C.

This paper presents the use of a hybrid method which comb
differential transformation and finite difference approximatio
techniques in the solution of the nonlinear Burgers’ equation
various values of Reynolds number including high values. In
der to demonstrate the accuracy and validity of the propo
method, it is used to solve several examples of Burgers’ equa
with each example having different initial conditions and boun
ary conditions. It is found that the results obtained are in go
agreement with the analytical solutions, and that the results
more accurate than those provided by other approximate num
cal methods. @DOI: 10.1115/1.1629107#

Introduction
Burgers’ equation is used as a model for governing equation

many mechanics problems. Therefore, it is important to deve
analytical methods or numerical approaches which may be use
its solution. Cole@1# studied the general properties of Burge

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, July 1
2002; final revision, Apr. 12, 2003. Associate Editor: D. A. Siginer.
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equation and its use in the solution of related fluid mechan
problems. In his study, he also provided some exact solutions
mathematical models of turbulence. Caldwell and Smith@2#
solved Burgers’ equation for two different initial conditions b
using a finite element method and a finite difference method.
numerical results provided by the two methods for various R
nolds numbers were discussed and were found to be in g
agreement with those generated by analytical solutions. More
cently, the differential transformation method has been applie
many nonlinear problems. For example, in 1996 Chen and Ho@3#
introduced the concept of a differential transformation method
the solution of eigenvalue problems. A few years later, Yu a
Chen@4# adopted a hybrid method combining the Taylor transf
mation and the finite difference approximation to solve the n
linear transient conduction-convection-radiation heat transfer
nular fin equation.

The purpose of this paper is to present the use of a hy
method, which combines differential transformation and finite d
ference approximation, in the analysis of Burgers’ equation w
specified initial conditions and boundary conditions. The stu
begins by applying differential transformation and finite diffe
ence approximation methods to the complete nonlinear Burg
equation and to its initial and boundary conditions. The study th
considers two different cases of initial condition and bound
conditions and uses the proposed method to solve Burgers’ e
tion in the form of a finite power series. Finally, the results whi
are derived using this method are compared carefully with th
given by analytical solutions, particularly in the case of high
numbers. The validity of the proposed method is demonstrated
comparing the steady-state solutions of Burgers’ equation der
by the proposed hybrid method with those obtained from the a
lytical approach.

Problem—Burgers’ Equation
The complete nonlinear Burgers’ equation is expressed

follows:

]u

]t
1u

]u

]x
5

1

Re

]2u

]x2
(1)

whereu5u(x,t) in some domain and Re is the Reynolds numb
which characterizes the flow. The equation is a parabolic pa
differential equation, which is composed of an unsteady term
nonlinear convective term and a viscous term.

The initial condition is given by

u~x,0!5 f ~x! a<x<b. (2)

The boundary conditions are expressed as

u~a,t !5g~ t !
(3)

u~b,t !5w~ t ! t.0.

Differential Transformation
The basic principles of the differential transformation meth

may be explained as follows.
Differential transformation of functiony(t) is defined as

Y~k!5
Hk

k! F ]ky~ t !

]tk G
t50

. (4)

In this equation,Y(k) is the transformed function in the transfo
mation domain,y(t) is the original function in the time domain,k
is the transformation parameter, andH is the time interval.

The differential inverse transformation ofY(k) is expressed as

y~ t !5(
k50

` S t

H D k

Y~k!. (5)

Substituting Eq.~4! into Eq. ~5! yields
9,
2003 by ASME Transactions of the ASME
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y~ t !5(
k50

`
tk

k! Fdky~ t !

dtk
G

t50

. (6)

Equation~6! implies that the concept of differential transform
tion is derived from the Taylor series expansion. Therefore,
basic operation properties of the differential transform are gi
by

Linearity: T$y~ t !1z~ t !%5Y~k!1Z~k! (7)

Convolution: T$y~ t !•z~ t !%5Y~k!* Z~k!5(
k50

`

Y~ l !Z~k2 l !

(8)

Derivative: TH dny~ t !

dtn
J 5

~k11!~k12!¯~k1n!

Hn
Y~k1n!

(9)

whereT denotes differential transformation and ‘‘* ’’ denotes the
convolution operation in the transformation domain.

If the method of differential transformation is applied with r
spect to the time domain,t, then Eqs.~1!–~3! may be rewritten in
the following form:

k11

H
U~x,k11!1(

l 50

k
dU~x,l !

dx
U~x,k2 l !5

1

Re

d2U~x,k!

dx2

(10)

U~x,0!5F~x! (11)

U~a,k!5G~k!
(12)

U~b,k!5W~k!

where U(x,k), F(x), G(k), and W(k) are the spectrum o
u(x,t), f (x), g(t), and w(t), respectively,k and l are transfor-
mation parameters andH is the time interval.

The finite difference approximation method may be appl
with respect tox in Equations~10!–~12!. The regiona<x<b is
divided into several equal intervals. Each interval,D, is given by
D5(b2a)/m, where m is the total number of intervals. By usin
the second-order accurate central difference formula for the
and second derivatives, it is possible to express Eq.~10! at any
position, i, within the flow as

k11

H
Ui~k11!1(

l 50

k
Ui 11~ l !2Ui 21~ l !

2D
Ui~k2 l !

5
1

Re

Ui 21~k!22Ui~k!1Ui 11~k!

D2
(13)

wherei indicates the position number in the flow direction.
To demonstrate the use of the hybrid method in the solution

Burgers’ equation, the present study considers two different c
of initial condition and boundary conditions. These are as follow

Case 1: u~x,0!5sinpx 0<x<1 (14)

u~0,t !5u~1,t !50 t.0 (15)

Case 2: u~x,0!50 0<x<1 (16)

u~0,t !51
(17)

u~1,t !50 t.0.

Applying the method of differential transformation to these in
tial and boundary conditions gives

Case 1: Ui~0!5sinpx (18)

U0~k!5U j~k!50 (19)

Case 2: Ui~0!50 (20)
Journal of Applied Mechanics
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U0~k!5d~k!
(21)

U j~k!50 t.0

where j represents the number of the final position in the flo
direction, and

d~k!5H 1 for k50

0 otherwise
.

When the various values ofUi(k) are obtained by using Eq
~13!, together with the transformed initial condition and bounda
conditions, the solution of Burger’s equation is given by

u~x,t !5(
k50

` S t

H D k

Ui~k!. (22)

For the present study, the functionu(x,t) is expressed by the
following finite series:

u~x,t !5(
k50

6 S t

H D k

Ui~k!

where k represents the number of terms within the series, a
depends on the convergence of the solutions. In the cases co
ered with the current study, a value ofk56 was adopted.

Numerical Results and Discussion
In order to illustrate the proposed hybrid method, a series

numerical calculations were carried out at various values of R
nolds Number. Figures 1 and 2 compare the numerical results
the exact solutions of Burgers’ equation under case 1 condit
for values of Re51 and 100, respectively. It is seen that the n
merical results obtained from the proposed hybrid method ar
good agreement with the exact solutions. Tables 1 and 2 provi
detailed comparison of the obtained numerical results with
exact solutions for Re51 and 100. Observation of these tabl
confirms that the present results agree very closely with the e
solutions. It is to be noted that the analytical results of the eq
tion ~i.e., the exact solutions referred to above! are obtained from
the closed-form solution derived by Cole@1#, which is presented
as an Appendix in this paper. Using the present method, i
necessary to determine the number of intervals ofx to be used for
the nonlinear convergence problems. In this study, the numbe
intervals was chosen to be 20 and 100 for the cases of Re51 and
100, respectively. When the value of Reynolds number is high
is very difficult to determine the exact solution of the Burge
equations or to obtain numerical approximations using exist

Fig. 1 Comparison of present results with exact solutions for
ReÄ1
NOVEMBER 2003, Vol. 70 Õ 927
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techniques. In this study, the proposed hybrid method was use
solve the equation for value of Re510,000. The numerical result
are shown in Fig. 3. These results show the appearance of inc
ing disturbance for higher values of Reynolds number. The dis
bance is manifested in the form of a ripple effect which becom
more exaggerated, and which decays more slowly, as the R
nolds number rises to 10,000~as discussed also by Caldwell an
Smith @2#!. The proposed method was used to obtain the stea
state solutions of Burgers’ equation for values of Reynolds nu
ber from 1 to 10,000, and with initial and boundary conditions
u(x,0)50; u(0,t)51, u(1,t)50. From Fig. 4 it can be seen tha
the numerical results are once again in good agreement with
analytical solutions. Figures 5 and 6 show that the time history

Fig. 2 Comparison of present results with exact solutions for
ReÄ100

Table 2 Solutions of Burgers’ equation for Re Ä100

x

t50.10 t51.00 t52.00

Exact Present Exact Present Exact Pres

.00 .000000 .000000 .000000 .000000 .000000 .000

.10 .235941 .235947 .075382 .075383 .042964 .042

.20 .461225 .461237 .150645 .150648 .085915 .085

.30 .664325 .664343 .225666 .225670 .128840 .128

.40 .831864 .831887 .300309 .300315 .171726 .171

.50 .947414 .947440 .374420 .374429 .214558 .214

.60 .990156 .990179 .447816 .447828 .257322 .257

.70 .934119 .934140 .520268 .520285 .299998 .300

.80 .750783 .751328 .591476 .591499 .342409 .342

.90 .423599 .427744 .660019 .660351 .373278 .374
1.00 .000000 .000000 .000000 .000000 .000000 .000

Table 1 Solutions of Burgers’ equation for Re Ä1

x

t50.01 t50.10 t50.20

Exact Present Exact Present Exact Pres

.00 .000000 .000000 .000000 .000000 .000000 .000

.10 .273239 .273310 .109538 .109727 .041929 .042

.20 .521564 .521697 .209792 .210164 .079994 .080

.30 .721852 .722028 .291896 .292437 .110622 .1110

.40 .854590 .854784 .347924 .348604 .130822 .131

.50 .905713 .905901 .371577 .372348 .138473 .139

.60 .868333 .868496 .359045 .359836 .132582 .133

.70 .744098 .744222 .309905 .310624 .113469 .113

.80 .543820 .543902 .227817 .228369 .082841 .083

.90 .286998 .287039 .120687 .120987 .043689 .043
1.00 .000000 .000000 .000000 .000000 .000000 .000
928 Õ Vol. 70, NOVEMBER 2003
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Fig. 3 Numerical results obtained by the present method for
ReÄ10,000

Fig. 5 Time history of propagating wave fronts for Re Ä100
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Fig. 4 Steady-state solutions of Burgers’ equation for Re
Ä1È10,000
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the propagating wave fronts for various values of Re. It is s
that as Re increases the propagating wave fronts become
steep particularly for Re tend to 10,000.

Conclusions
In the present study, a powerful numerical analysis, which

referred to as a hybrid method since it combines the method

Fig. 6 Time history of propagating wave fronts for Re Ä10,000
Journal of Applied Mechanics
en
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differential transformation and finite difference approximatio
has been employed to analyze Burgers’ equation for various
ues of Reynolds numbers~including high values of Re!. Two ex-
amples of Burgers’ equation have been investigated using the
posed method, i.e., with two different sets of initial condition a
boundary conditions. It has been demonstrated that the obta
numerical results are in good agreement with the analytical s
tions. The numerical results indicate that the proposed hyb
method is simple, fast, and accurate. For large values of Re,
difficult to determine the solutions of Burgers’ equation using a
lytical methods or other numerical approximations such as
Fourier series approach, spline collocation method, boundary
ment method, etc. However, it is the current authors’ belief t
the method presented in this paper overcomes these problem
provides a powerful technique for the solution of the nonline
Burgers’ equation with initial and boundary conditions, partic
larly for cases where the value of Reynolds number is high.
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Discussion: ‘‘On Global Energy
Release Rate of a Permeable Crack in
Piezoelectric Ceramic’’ „Li, S.,
2003 ASME J. Appl. Mech., 70, pp.
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In studying crack problems in a piezoelectric material, ma
crack models have been proposed and some fracture criteria
been established. The author of@1# presented a new permeab
crack model. That is, a permeable crack is modeled as a rec
gular hole having heighth0 . The first-order perturbation solutio
in terms of small parameterh0 is derived, and asymptotic electro
elastic field, together with field intensity factors, local and glob
energy release rates are further determined. The obtained the
ical prediction agrees basically with experimental observati
Here, we would like to make some discussions on@1#.

In deriving the results in@1#, Eq. ~45! is crucial. However,
based on~44!, ~45! does not hold unlessẼX(X,Y) and ẼX

a(X,Y)
are linear functions with respect to variableY and independent o
variableX. The reason is that, if denoting

f ~X,6h~X!!5ẼX~X,6h~X!!2ẼX
a~X,6h~X!!, (1)

the Fourier cosine transform off (X,6h(X)) is

E
0

`

f ~X,6h~X!!cos~zX!dX5E
0

a

f ~X,6h0!cos~zX!dX

1E
a

`

f ~X,0!cos~zX!dX, (2)

rather than

f * S z,6h0

sin~az!

z D , (3)

where

f * ~z,Y!5E
0

`

f ~X,Y!cos~zX!dX. (4)

Consequently,~45!, i.e.,
930 Õ Vol. 70, NOVEMBER 2003 Copyright ©
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have
e
tan-
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f * S z,6h0

sin~az!

z D50, 0,z,`, (5)

cannot follow from~44!, i.e.,

f ~X,6h~X!!50, 2`,X,`, (6)

whereh(x) is given by~12! in @1#.
In addition it is seen from~81!–~83! that the height of a rect-

angular crack has been taken into account. However, for su
rectangular crack,~or strictly speaking a rectangular hole!,
sYZ(X,0), eYZ(X,0), DY(X,0), andEY(X,0) should have no sin-
gularity near the points (6a,0) since the points (6a,0) are not
the crack tips (h0.0). Instead, the electromechanical field ne
the apexes of the rectangle (6a,6h0) exhibits a singularity.
Moreover, the singularity is no longer an inverse square-root
gularity. The classical definition of field intensity factors is ther
fore employed directly except for the case ofh050.
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~1! For a finite heighth0.C, C.0, we define real functions

h~X!ªH h0 , uXu,a

0, uXu.a
, (1)

and

F~X,h~X!!ªẼX~X,h~X!!2ẼX
a~X,h~X!!. (2)

It is true that in general the Fourier transform ofF(X,h(X)),

F* ~z!ªE
0

`

F~X,h~X!!cos~zX!dXÞ f * ~z,h* ~z!!, (3)

where

f * ~z,Y!ªE
0

`

F~X,Y!cos~zX!dX, (4)
2003 by ASME Transactions of the ASME
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h* ~z!ªE
0

`

h~X!cos~zX!dX. (5)

However, whenh0→0,

E
0

`

F~X,0!cos~zX!dX5 f * ~z,0!. (6)

In other words, we expect

lim
h0→0

F* ~z!→ f * ~z,0!. (7)

During this limiting process, the four corners of the slit w
merge and become the two crack tips at (X56a,0). One of the
main technical difficulties of fracture mechanics of piezoelec
materials is how to correctly describe this limiting process.

Ref. @1# suggests that in the Fourier transform domain the li
iting process may be approximated as

lim
h0→0

F* ~z!→ lim
h0→0

f * ~z,h* ~z!!5 f * S z,h0

sin~az!

z D→ f * ~z,0!

(8)

which, the author believed, is plausible in an asymptotic sens
Moreover, the approximation~8! becomes exact whenF(X,Y)

is a linear function with respect variableY, which is the difference
of ẼX(X,Y) and ẼX

a(X,Y). To require the same restriction o
ẼX(X,Y) and ẼX

a(X,Y) may be too strong.
Journal of Applied Mechanics
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~2! From the perspective of classical fracture mechanics, i
also true that for a finite rectangular slit, there is no singularity
the electrical/mechanical fields atX56a anY50. The singulari-
ties will appear at the four corners of the rectangular slit, (6a,
6h0), with a singularity power index different from21/2.

Nonetheless, it has become a consensus now that the fra
process of a piezo-electric ceramic is in fact a coupled multisc
phenomenon. This can be argued based on both its physical n
and its mathematical structure.

Ref. @1# tried to explore the asymptotic multiscale structure
the problem. Intuitively, the crack-tip field was viewed as t
outer problem, and it was assumed that it has the form of
classical solution with respect to the ‘‘slow’’ coordinate variabl
~therefore there is basically no slit there!. On the other hand, the
electrostatic problem inside the crack was viewed as an in
problem that is controlled by the slit height,h0 , which is the
length scale of the problem and it is associated with the ‘‘fa
coordinate variable.

The essential idea of this approach is using Eq.~8! to match the
outer~macro! solution with the inner~micro! solution. Of course,
the asymptotic multiscale analysis could be done differently.

Reference
@1# Li, S., 2003, ‘‘On Global Energy Release Rate of a Permeable Crack

Piezoelectric Ceramic,’’ ASME Journal of Applied Mechanics,70, pp. 246–
252.
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